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Piezoelectric impedance sensing is promising for highly accurate damage identification
because of its high-frequency active interrogative nature and simplicity in data acquisition.
To fully unleash the potential, effective inverse analysis is needed in order to pinpoint the
damage location and identify the severity. The inverse analysis, however, may be
underdetermined since there exists a very large number of unknowns (i.e., locations
and severity levels) to be solved in a finite element model but only limitedmeasurements are
available in actual practice. To uncover the true damage scenario, an inverse analysis
strategy built upon the multi-objective optimization, which aims at matching the multiple
sets of measurements with model predictions in the damage parametric space, can be
formulated to identify a small set of solutions. This solution set then allows the incorporation
of empirical knowledge to facilitate final decision-making. The main disadvantage of the
conventional inverse analysis strategy is that it overlooks uncertainties that exist in both
baseline structural modeling and actual measurements. To address this, in this research,
we formulate a probabilistic multi-objective optimization-based inverse analysis
framework, which is fundamentally built upon the differential evolution Markov chain
Monte Carlo (DEMC) technique. The new approach can yield the Pareto optimal set
(solutions) and the respective Pareto front, which are represented in a probabilistic sense
to account for uncertainties. Comprehensive case studies with experimental investigations
are conducted to demonstrate the effectiveness of this new approach.

Keywords: damage identification, piezoelectric impedance, inverse analysis, probabilistic multi-objective
optimization, differential evolution Markov chain Monte Carlo (DEMC), uncertainties

1 INTRODUCTION

Structural health monitoring (SHM) has been an important research subject, as it can provide vital
information to protect engineering structures from unexpected catastrophic failure. A wide variety of
investigations have utilized vibration measurement to conduct SHM tasks. The modal properties
such as natural frequencies and mode shapes extracted from the vibration measurement can be used
effectively to predict the structural property change due to damage (Cao et al., 2014; Capecchi et al.,
2016). However, in actual practice, only lower-order modes can be realistically measured, which,
however, are insensitive to small-sized damage. In order to detect and identify small-sized damage,

Edited by:
Giovanni Falsone,

University of Messina, Italy

Reviewed by:
Mohsen Rashki,

University of Sistan and
Baluchestan, Iran
Corrado Chisari,

University of Campania Luigi Vanvitelli,
Italy

*Correspondence:
Kai Zhou

kzhou@mtu.edu
Jiong Tang

jiong.tang@uconn.edu

Specialty section:
This article was submitted to

Computational Methods in Structural
Engineering,

a section of the journal
Frontiers in Built Environment

Received: 25 March 2022
Accepted: 02 May 2022
Published: 14 June 2022

Citation:
Zhou K, Zhang Y, Shuai Q and Tang J

(2022) Probabilistic Multi-Objective
Inverse Analysis for Damage

Identification Using Piezoelectric
Impedance Measurement

Under Uncertainties.
Front. Built Environ. 8:904690.
doi: 10.3389/fbuil.2022.904690

Frontiers in Built Environment | www.frontiersin.org June 2022 | Volume 8 | Article 9046901

ORIGINAL RESEARCH
published: 14 June 2022

doi: 10.3389/fbuil.2022.904690

http://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2022.904690&domain=pdf&date_stamp=2022-06-14
https://www.frontiersin.org/articles/10.3389/fbuil.2022.904690/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.904690/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.904690/full
https://www.frontiersin.org/articles/10.3389/fbuil.2022.904690/full
http://creativecommons.org/licenses/by/4.0/
mailto:kzhou@mtu.edu
mailto:jiong.tang@uconn.edu
https://doi.org/10.3389/fbuil.2022.904690
https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2022.904690


high-frequency measurements with small characteristic
wavelengths need to be acquired. One promising class of high-
frequency-based detection methods is to use piezoelectric
transducers which can yield the impedance or admittance
information through active interrogation to facilitate fault
detection and identification (Kim et al., 2015; Shuai et al.,
2017; Cao et al., 2018; Kim and Wang, 2019). Impedance/
admittance-based methods for damage identification rely on
inherent electro-mechanical coupling. When a piezoelectric
transducer is attached to a host structure, the electrical
impedance of the transducer is directly coupled with the
impedance of the host structure. As such, the change of the
piezoelectric impedance signature can be used as the damage
indicator. Owing to the self-sensing interrogative nature whereas
the transducers serve as both the actuators and sensors, these
methods enable highly sensitive damage detection.

Conducting damage identification generally resorts to the
comparison of responses before and after damage occurrence.
Leveraging upon finite element (FE) simulation to map the
relation between the damage and resulting impedance/
admittance response change, damage identification can then
be facilitated. This approach falls into the general category of
FE model updating which has become the mainstream for
damage identification analysis (Zhou and Tang, 2016; Sun
et al., 2017; Chen et al., 2020; Zhou and Tang, 2021b). In this
approach, the damage is represented by the change of the
associated structural properties, for example, mass, stiffness,
and damping, and can be inversely identified in light of the
measurements. Since it is critical to accurately capture the small
change of impedance/admittance response due to damage, the
element size should be set very small, resulting in a high-
dimensional FE model. It generally leads to high
computational costs in model updating. To tackle this issue, a
variety of efficient approximators have been explored. Along with
the recent development of machine learning technology,
surrogate models have been recognized as one effective type of
approximator. Once the surrogate model is trained by the
credible input–output relations from FE simulations, it can be
directly utilized to approximate the output given any input
(Khodaparast et al., 2011; Wan and Ren, 2015; Zhou and
Tang, 2021a). A noteworthy challenge of the surrogate model-
based inverse analysis is its lack of ability to handle noise and
uncertainty effects. Moreover, in such data-driven methods, the
size and distribution of training data play an important role in
dictating damage identification accuracy. The high-fidelity
surrogate model may not be ensured over the entire input
parametric space, which may cause prediction errors that even
exceed the response changes induced by damage. The first-
principle-based approximator, on the other hand, may possess
higher approximation accuracy than the surrogate model. As one
class of first-principle-based approximation methods, sensitivity
analysis has been extensively applied (Mottershead et al., 2011;
Zhou and Tang, 2015; Shuai et al., 2017; Zhu et al., 2021). The
underlying idea of the sensitivity analysis is to calculate the
sensitivity matrices based on the FE model using the finite
difference concept, which can then be used for rapid response
approximation.

Fundamentally, inverse model/damage identification can be
cast into an optimization problem that aims at minimizing the
difference between the measurements and model prediction in
the parametric space. The aforementioned sensitivity-based
approach can be viewed as a special treatment for solving such
optimization problems. Oftentimes, a single objective function,
that is, a holistic error function between the measurement and
model prediction, is minimized. In the case of damage
identification using piezoelectric impedance/admittance, such a
single-objective approach becomes difficult to implement. On the
one hand, to predict high-frequency impedance/admittance
responses, the mesh density of the FE model has to be high,
yielding a very large number of unknowns because the structural
damage can occur in an arbitrary region with arbitrary severity in
the model. On the other hand, the impedance/admittance
measurements remain to be relatively limited. As the number
of unknowns is far greater than the available measurement data
points, the direct inverse analysis becomes underdetermined.
Meanwhile, a single objective optimization generally leads to
one single solution. As such, the solution found may not cover
the actual damage scenario (Cao et al., 2018).

In comparison, multi-objective optimization can intrinsically
yield multiple solutions and thus has much better possibility of
capturing the actual damage scenario. Indeed, since multiple
measurements are acquired in SHM practice, formulating the
multi-objective optimization problem that minimizes the
difference of these measurements with respect to the
corresponding model prediction in the parametric space is
quite intuitive. The multiple solutions obtained can then be
further analyzed either through empirical experience or by
deploying the additional inspection techniques. Owing to
these advantages, some recent investigations have attempted
multi-objective optimization in damage identification. Cao et al.
(2018) proposed a multi-objective Dividing RECTangles
(DIRECT) under embedded sparsity conditions to perform
damage identification using the piezoelectric impedance/
admittance measurement. Alexandrino et al. (2020)
developed a robust framework integrating together a multi-
objective genetic algorithm, neural network, and decision-
making strategy to solve the damage detection problem.
Magacho et al. (2021) used the multi-objective sunflower
optimization algorithm to identify the damage in large-scale
lattice-type structures. It is, however, worth emphasizing that
the aforementioned studies were conducted on the premise that
the experimental measurement and numerical FE model are
both sufficiently accurate. In practical situations, both the
measurement and numerical modeling are inevitably
subjected to noise and uncertainties. To tackle this issue, in
this research, we propose to develop a new multi-objective
optimization approach that can produce solutions in the
probabilistic sense to reflect the influence of noise and
uncertainty. The key idea is to use statistical methodologies
for characterizing sampled solutions that are uniformly
scattered around the Pareto optimal set (Zhang et al., 2008).
This is realized through integrating the differential evolution
MCMC algorithm into the multi-objective optimization
framework.
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The remainder of this study is organized as follows: Section 2
outlines the new damage identification framework, including the
FE-based piezoelectric impedance/admittance modeling and
probabilistic multi-objective MCMC optimization. Section 3
provides the case illustrations with experimental investigation.
Section 4 summarizes the concluding remarks.

2 APPROACH FORMULATION FOR
DAMAGE IDENTIFICATION

2.1 Admittance Measurement-Based
Damage Identification Using Sensitivity
Concept
The equation of motion of the coupled system consisting of the
host structure and piezoelectric transducer with an electric circuit
can be written as (Zhou et al., 2014):

M €q + C _q + Kq + K12Q � 0, (1)
KcQ + KT

12q + R _Q � Vin, (2)
where q is the displacement vector. M, K, and C are the mass,
stiffness, and damping matrices of the host structure, respectively.
K12 is the coupling vector, Kc is the inverse of the capacitance of
the piezoelectric transducer, R is the resistance of the electric
circuit,Q is the electrical charge on the surface of the piezoelectric
transducer, and Vin is the input voltage. As the frequency
sweeping of the input voltage is applied, Eqs 1, 2 can be
transferred to the frequency domain, and the admittance of
the piezoelectric transducer can be obtained as follows (note:
the admittance here is the reciprocal of the impedance) (Wang
and Tang, 2009):

Y(ω) �
_Q

Vin
� jω

jωR +Kc − KT
12(K + jωC − ω2M)K12

, (3)

where ω is the angular frequency and j is the imaginary unit. Eq. 3
indicates that the admittance of the piezoelectric transducer is
coupled with the mechanical properties of the host structure.
Structural damage is commonly assumed as localized changes in
structural stiffness. Then, structural property changes induced by
damage will be reflected in the changes of admittance of the
piezoelectric transducer, given as:

Yd(ω) �
_Qd

Vin
� jω

jωR + Kc − KT
12(Kd + jωC − ω2M)K12

, (4)

whereKd is the stiffness matrix of the damaged structure (Xia and
Hao, 2003).

Kd � ∑m
j�1
Khj(1 − αj). (5)

In Eq. 5, Khj is the stiffness sub-matrix of the jth segment of a
healthy structure,m indicates the number of segments susceptible
to damage occurrence in the structure, and αj ∈ [0, 1] is the
damage index which indicates the stiffness loss of the jth segment.

For example, if the jth element suffers from damage that leads to a
10% of stiffness loss, then αj � 0.1. In the damage identification
analysis, the measured admittance of the damaged structure
needs to be compared with that of the healthy structure.

According to Eqs 4, 5, the admittance changes are not linearly
dependent with respect to the damage index. In order to
approximate the linear relationship between the admittance
changes and damage index under the small damage
assumption, a Taylor series expansion is applied and only the
linear terms are kept:

Yd(α) ≈ Y(α � 0) +∑m
j�1

zY

zαj

∣∣∣∣∣αj�0αj, (6)

where

zY

zαj

∣∣∣∣∣αj�0 � ωi[kc − KT
12(K −Mω2 + Cωi)−K12]−2

KT
12
⎡⎣z(Kd −Mω2 + Cωi)−

zαj

∣∣∣∣∣αj�0⎤⎦K12.

(7)

The admittance changes can then be written as a linear
function of the damage index αj:

ΔY(ω) � Yd − Y(α� 0)

� ∑m
j�1
[ωi(kc − KT

12Z
−K12)−2KT

12Z
−(LT

jKejLj)Z−K12] αj,

(8)
Z � K −Mω2 + iωC, (9)

where Z denotes the dynamic stiffness of the structure and L
indicates how the elemental matrices are assembled into the
global stiffness matrix. Eq. 8 exhibits the relationship between
the admittance changes and damage index at a single excitation
frequency point ω. Theoretically, such a relationship holds at
every frequency point. Then, if admittances are measured at q
points, q equations will be formulated to establish the relation as a
matrix form,

ΔYq×1 �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
ΔY(ω1)

..

.

ΔY(ωq)
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � Sq×mαm×1, (10)

where ΔYq×1 is the admittance changes observed at m frequency
points, αm×1 is the vector of m unknown damage indices, and
Sq×m is the sensitivity matrix. The direct inversion of the matrix
Sq×m may lead to the numerical issue when the sensitivity matrix
Sq×m is ill-conditioned. To avoid the matrix inversion, we only use
such sensitivity-based relation as an efficient approximator to
predict the admittance response in the parametric space when
carrying out the damage identification analysis.

2.1.1 Multi-Objective Markov Chain Monte Carlo for
Probabilistic Optimization
Let a continuous multi-objective optimization problem be
defined as

Frontiers in Built Environment | www.frontiersin.org June 2022 | Volume 8 | Article 9046903

Zhou et al. Probabilistic Damage Identification Under Uncertainties

https://www.frontiersin.org/journals/built-environment
www.frontiersin.org
https://www.frontiersin.org/journals/built-environment#articles


min (f(x)) f(x) � [f1(x), f2(x), . . .fn(x)],
subject to x ∈ X ⊂ Rm,

(11)

where x denotes the m-dimensional decision vector and f(x)
denotes the n-dimensional vector of objective functions. In this
research, x is the vector of damage index variables (i.e., αm×1 in
Eq. 10), whereas the admittance response changes over different
excitation frequencies altogether constitute the vector of objective
functions f(x).

Solving the multi-objective optimization shown in Eq. 11
yields a set of trade-off solutions referred to as the Pareto
optimal set, which represents the decision vector solutions
whose respective objective functions cannot be enhanced in
any direction without degrading the other (Zitzler and Thiele,
1999). The Pareto optimal set usually can be determined by
evaluating the dominance relations among a set of solutions. A
solution xi that dominates another solution xj is described as
xi ≺ xj, which holds only if

∀r ∈ {1, 2, . . . , n}: fr(xi)≤fr(xj). (12)
It is worth noting that most of the existing algorithms have

been designed to target the Pareto optimal set deterministically.
When uncertainties are involved, the probabilistic approach will
need to be adopted to yield the Pareto optimal set that is
represented in a probabilistic sense. The underlying idea
behind such a probabilistic approach is to use statistical
methodologies for characterizing sampled solutions that are
uniformly scattered around the Pareto optimal set (Zhang
et al., 2008). Specifically, we seek solutions in the vicinity of
the Pareto optimal set such that the uncertainty effect can be
characterized for every dominant solution within the Pareto
optimal set. To achieve this, we construct a probability
distribution using the MCMC algorithm, which is expressed as
(Kirkpatrick et al., 1983):

π(x)∝ exp(−η(x)
T

) T> 0, (13)

where T is the simulated temperature. η(x) is the fitness function,
which is dependent on the objective functions f(x) to be defined
subsequently. Since MCMC aims to sample the solutions in the
vicinity of the global optimum in order to approximate π(x),
MCMC can be used for optimization purposes.

While the aforementioned MCMC-based optimization concept
has already been established, it is generally tailored for the single-
objective optimization problem. To extend it into themulti-objective
optimization, we specifically need to integrate differential evolution
(DE) into the MCMC to form the so-called differential evolution
Markov chainMonte Carlo (DEMC) that was originally proposed by
Braak (2006). DEMC is a special type of population-based multi-
objectiveMarkov chainMonte Carlo (MOMCMC). DEMC involves
themultipleMarkov chains in parallel to generate new solutions over
an entire parameter space based on the current solution. In this
approach, a new solution proposal at the tth state of the kth Markov
chain is formulated as the sum of its current state and the scaled
difference between the current states of two randomly selected
chains, given as:

xt+1k � xtk + γ(xta − xtb), (14)
where xt+1k and xtk represent the current and proposed new
solutions, respectively, of the kth Markov chain. xta and xtb
denote the current solutions of two randomly chosen Markov
chains. Subscripts a and b are two random integers from the
interval [0, M], where M is the population size or the number
of Markov chains. γ is a scaled factor, the suggested value of
which can be determined using 2.38/

�����(2m)√
(Braak, 2006).

One may notice that Eq. 14 fundamentally points to the
crossover operation in the genetic algorithm (GA) because
DE is a GA-based global optimization method (Storn and
Price, 1997). The DE-based solution proposal function (Eq.
14) takes advantage of the distance and direction information
contained in the current solutions, leading to the fast MCMC
convergence.

When carrying out the DEMC-based sampling to achieve the
multi-objective function optimization, special care should be
taken in defining the fitness function. While it is seemingly
straightforward to use the objective function as the fitness
function, its resulting solutions may not be sufficiently diverse.
In other words, the solutions may be clustered, and near-Pareto
optimal solutions that account for the uncertainty effect will be
missing. Therefore, a new fitness function of the individual
solution suggested by Li (2012) is defined as:

η(xi) �
⎧⎪⎪⎨⎪⎪⎩

c(xi), xi is non − dominated,

1 + ∑xj≺xi
j

HYP(xi, xj), xi is dominated, (15)

where c(xi) is defined as the proportion of total solutions
dominated by xi. HYP is the pair-wise hypervolume
surrounded by two solutions xi and xj that is used to estimate
the significance of dominance. For demonstration, the pair-wise

FIGURE 1 | Illustration of hypervolume in the bi-optimization problem.
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hypervolume of the bi-objective optimization is shown in
Figure 1. The pair-wise hypervolume generically can be
calculated using the Lebesgue measure (Bartle, 1995)
regardless of the objective function dimension. With this new
fitness function, the favorability of two solutions can be more
easily discriminated, which as a result increases the solution
diversity.

The Metropolis–Hasting (MH) algorithm (Brooks et al., 2011;
Zhou and Tang, 2021) is used to determine if the new solution
proposed by DE is accepted which recalls Eq. 13. The acceptance
probability can then be formulated as:

p(xt+1k

∣∣∣∣xtk) � min(1, π(xt+1k )
π(xtk) )

� min(1, exp(−(η(xt+1k ) − η(xtk))
T

)). (16)

It can be clearly seen that the simulated temperature
controls the acceptance rate of the MH transitions. The
acceptance rate of each iteration can be calculated, which
together with the desired acceptance rate specified,
determines the new temperature for the next iteration.
When the MOMCMC is executed, its convergence is worth
examining considering the trade-off between the
computational cost and accuracy. Generally, both the
standard convergence indicator and the maximum iteration
number defined can be used as a termination criterion. For the
sake of implementation, in this research, we terminate the
analysis when the maximum iteration number is reached and
then use the analysis result to examine the convergence.

Combining all the above-mentioned steps, we can obtain the
pseudo-code of MOMCMC for probabilistic optimization as
follows:

3 METHODOLOGY DEMONSTRATION AND
CASE ANALYSIS

In this section, we demonstrate the new methodology through
case illustrations. To fully verify the effectiveness of this new
methodology, we formulate the two testing cases, both of which
are validated through experimental investigations.

3.1 Problem Setup of Case Investigation
The structure to be investigated is a cantilever aluminum plate
that is attached to a piezoelectric transducer. The material and
geometrical properties of the plate and piezoelectric transducer
are given in Table 1, and the experiment setup is shown in
Figure 2. A resistor of 100Ω is connected in series with the
piezoelectric transducer to measure the voltage drop (Figure 2).
A signal analyzer (Agilent 35670A) with a source channel is used.

TABLE 1 | Geometrical and material properties of the plate and piezoelectric transducer.

Geometry Material property

Length Width Thickness Young’s modulus Density

Plate 0.561 m 0.01905 m 0.004763 m 68.9 GPa 2,700 kg/m3

Piezoelectric transducer 0.015 m 0.01905 m 0.0014 m 86 GPa (Y11) 7,500 kg/m3

73 Gpa (Y33)

FIGURE 2 | Experimental setup.
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The source channel is used to generate sinusoidal voltage sent to
the piezoelectric transducer (Vin), and the output voltage across
the resistor is recorded (Vout). Hence, the admittance can be
computed as:

Yexp � I

Vin
� Vout

RsVin
. (17)

In the model updating-based damage identification, an
electromechanical FE model accounting for the coupling
between the plate and piezoelectric transducer is developed
using the in-house MATLAB finite element code. The material
and geometrical properties in Table 1 are used to build the FE
model. In addition, in the FE model, the piezoelectric and
impermittivity constants of the piezoelectric transducer are
defined as h31 � −1.0288 × 109Vm−1 and
β33 � 1.3832 × 108mF−1, respectively. The 20-node hexahedron
element is used, and the entire FE model consists of 11,250
elements in total. Prior to damage identification, we need to
calibrate the FE model of the healthy structure to match the
experiment setup because the FE model error usually is induced
by non-perfect boundary conditions. Therefore, in this research,
we update the boundary conditions to minimize the discrepancy
between the actual measurements and model predictions. As
indicated in the previous research (Shuai et al., 2017), this is an
important step to ensure the subsequent investigation of damage
identification.

For damage identification illustration, the FE model is divided
into 25 segments, which are evenly divided along the length
direction of the plate. For the sake of validation, we assume that
the 11–15th segments are subjected to damage (Figure 3), leading
to a 5-dimensional damage parameter space. The new damage
parameter ID is mapped to the segment ID for result
visualization. In damage identification using admittance
measurements, the admittance changes due to damage
occurrence are most evident around the resonant peaks. While
there are many resonances that can be used, we choose the
resonant frequencies according to our prior knowledge about
the damage size and FE model scale. Detecting a smaller size of
damage requires a higher frequency response. However, the
higher frequency response only can be accurately characterized
by a larger-scale FEmodel with increasing mesh density, resulting
in the growing computational cost. By taking such a trade-off into

consideration, we eventually acquire the admittance change
information around the plate’s 14th (1,893.58 Hz) and 21st
(3,704.05 Hz) natural frequencies for subsequent damage
identification analysis. For the damage emulations, instead of
cutting the plate to reduce the local stiffness, we use the
nondestructive method, that is, adding a small mass onto the
plate. Mathematically, this results in the resonant frequency shift
and admittance change equivalent to a local stiffness reduction. In
the first experimental case, a 6 × 10−4kg mass is attached to the
14th segment (i.e., parameter 4) of the plate which is equivalent to
a 0.28% local stiffness loss (Figure 3). It is noted here that the
local stiffness loss is calibrated by comparing its respective finite
element admittance prediction with the admittance measured
from the actual damaged structure, which also is applicable for
the second case. The admittance curves over two resonant
frequencies corresponding to the damaged structure are
compared with that corresponding to the healthy structure
shown in Figure 4. There are 100 and 85 frequency points in
the two admittance curves over the 14th resonant and 21st
resonant frequencies, respectively. To perform the rigorous
model updating, the frequency points of FE harmonic analysis
should exactly match the experimentally specified frequency
points for assessing admittance curve similarity. In the second
experimental case, the same mass is attached to the plate at the
location corresponding to the 12th segment (i.e., parameter 2) in
the model (Figure 3), which causes resonant frequency change
commensurate with a 0.16% local stiffness loss.

3.2 Damage Identification Practice on
Case 1
We first examine the damage identification result of case 1 using
MOMCMC. The operating parameters to execute MOMCMC are
defined in Table 2. It is noted that the scaled factor is strictly
calculated following the empirical formula mentioned in Section
2. The admittance measurements shown in Figure 4 are used as
the evidence information to direct the inverse analysis. As can be
seen clearly, the admittance indeed is sensitive to the damage,
where the variations of the admittance profile and resonance are
noticeable. Following the general form of the optimization
problem shown in Eq. 11, we formulate the optimization
problem of this inverse model updating analysis as:

min(fi(x))fi(x) �
����Yi(x) − �Y

����2 i � 1, 2,
subject to x ∈ X ⊂ Rm,

(18)

where Yi(x) and �Y are the admittance responses over ith resonant
frequency from FE simulation and the respective admittance
measurement under damaged structure, respectively. Yi(x) and �Y
essentially are the vectors of complex numbers including amplitude
and phase values, respectively. x is the m-dimensional damage
vector. ‖.‖ is the l2 norm operator. Since in this research two
resonant frequencies are involved for admittance evaluation, a bi-
objective optimization problem is to be investigated. The sensitivity
matrices indicated in Eq. 10 are computed via the finite difference
method, which will be used for the admittance prediction to facilitate
an efficient objective function evaluation. The uncertainties to be

FIGURE 3 | Formulated cases with damage introduced.
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considered in this research mainly include the modeling inaccuracy
due to the lack of knowledge and the admittance measurement
inaccuracy that inevitably exists.

With the required simulation setup finalized, the inverse analysis
can be implemented, and the results are obtained. Figure 5 gives the
probabilistic Pareto optimal set, which essentially encompasses the
deterministic optimal set. There are a total of 17 solutions identified
in the deterministic Pareto optimal set, which all closely agree with
the “ground truth” (i.e., 0.28% damage severity of parameter 4). The
closest damage severity of parameter 4 in the optimal set is found to
be nearly identical to the ground truth, only with 3.62 × 10−4%
difference. The result indeed illustrates the validity of the

probabilistic Pareto optimal set identified. Ideally, both the
numerical models and measurements are error-free, and the
deterministic Pareto optimal set thus can be deemed as the final
solution. In this context, the results from the probabilistic multi-
objective inverse analysis are more generic. As the interested
parameters are high-dimensional, the probabilistic Pareto optimal
set essentially is represented by a multivariate distribution. For the
sake of illustration, we project such multivariate distribution into
different two-dimensional planes. To capture the main features and
keep the results concise, only the two-dimensional distribution
associated with parameter 4 is presented as shown in Figure 6.
Obviously, due to uncertainties, many near-optimal solutions are

FIGURE 4 | Admittance measurements over two frequency bands. (A)Magnitude (lower frequency band); (B) phase (lower frequency band); (C)magnitude (higher
frequency band); and (D) phase (higher frequency band).

TABLE 2 | Operating parameters of MOMCMC.

Maximum iteration
number Q

Desired acceptance
rate ϑspecified

Initial temperature
T

Temperature
increasing
rate αincrease

Temperature
decreasing
rate αdecrease

Scaled factor = γ Population size
M

3,000 0.7 10 1.1 0.9 0.75 50
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FIGURE 5 | Solutions identified in the probabilistic Pareto optimal set
(squared markers indicate the deterministic Pareto optimal set).

FIGURE 6 | Two-dimensional illustration of the probabilistic Pareto optimal set. (A) Parameter 1 versus Parameter 4; (B) Parameter 2 versus Parameter 4; (C)
Parameter 3 versus Parameter 4; and (D) Parameter 5 versus Parameter 4 (note: the Pareto optimal set boundary is roughly estimated).

FIGURE 7 | Probabilistic Pareto front (note: the Pareto front boundary is
roughly estimated).
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scattered in the vicinity of the deterministic Pareto optimal set to
construct the probabilistic Pareto optimal set. It is interestingly
observed that the actual damage (parameter 4) in the presence of
uncertainties may be identified as less severe than the one without
uncertainties. Parameter 1, which is in fact damage-free, is identified

as being subjected to severer damage under uncertainties than that
without uncertainties. This observation indicates the high sensitivity
of the identification of parameter 1 with respect to uncertainties.
There may exist a boundary/envelope to truly encompass the
probabilistic Pareto optimal set. Usually, the larger the population

FIGURE 8 | Autocorrelation of the 1st Markov chain with respect to lag. (A) Parameter 1; (B) Parameter 2; (C) Parameter 3; (D) Parameter 4; and (E) Parameter 5.
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size involved, the clearer and more accurate the boundary will be
captured. However, increasing the population size will increase the
computational cost ofMOMCMC analysis. The population size thus
needs to be carefully chosen. Here, for illustration purposes, we
arbitrarily generate the boundaries for all projected two-dimensional
distributions of the probabilistic Pareto optimal set (Figure 6). It is
noted that those boundaries in the lower dimension are built without
constraints. Therefore, a valid high-dimensional boundary cannot be
established because of the compatibility issue.

Depending on the probabilistic Pareto optimal set obtained,
FE simulation can be implemented accordingly to calculate the
admittance response and then identify the associated
probabilistic Pareto front with the estimated boundary as
shown in Figure 7. Unlike the high-dimensional probabilistic
Pareto optimal set, there is no compatibility issue of boundary
estimation for the two-dimensional probabilistic Pareto front.
The boundary of the probabilistic Pareto front is intrinsically
related to the boundary of the probabilistic Pareto optimal set.

As mentioned, the convergence of MOMCMC plays an
important role in ensuring a reliable optimization result. For
implementation convenience, we set a relatively large maximum
iteration number which is expected to lead to the MCMC
convergence. There are multiple metrics that can be used to
evaluate the MCMC convergence performance (Dodds and
Vicini, 2004; El Adlouni et al., 2006; Roy, 2019). Among them,
the autocorrelation function (ACF) is conceptually simple, which
is particularly used in this research. It is mathematically
formulated as (Kumar, 2019):

r �
∑M−k

i�1
(xi − �x)(xi+k − �x)

∑M
i�1
(xi − �x)2

, (19)

FIGURE 9 | Last-lag autocorrelation values of all Markov chains.

FIGURE 10 | Overall implementation flow.

FIGURE 11 | Solutions identified in the probabilistic Pareto optimal set
(squared markers indicate the deterministic Pareto optimal set).
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wherexi andxi+k are two samples at different time steps with k lag. �x
is the average of samples at all time steps in the chain. Generally,
k-lag autocorrelation plots are used to diagnose and assess the
MCMC convergence. The k-lag autocorrelation value decreases to
zero quickly as k increases, which indicates the fast-mixing Markov
chains (fast convergence). On the other hand, a large k-lag
autocorrelation value for large k indicates the presence of a high
degree of correlation and slow mixing of the Markov chains. In the
MOMCMC, the number of Markov chains that are subjected to DE
crossover is identical to the population size, that is, 50. Here, for
demonstration, we only draw the autocorrelation plots of the
samples in the 1st Markov chain with respect to lag as shown in
Figure 8. One can notice that, in these 200-lag plots, the
autocorrelation of all parameters decreases to less than 0.1,
indicating that the samples generated every 200 iterations in
MCMC can be deemed as independent samples. When choosing
several accepted solutions in every 200 iterations as the subset of the
probabilistic Pareto optimal set, the maximum number of iterations
specified in the simulation (i.e., 10,000) is sufficient to cover all

FIGURE 12 | Two-dimensional illustration of the probabilistic Pareto optimal set. (A) Parameter 1 versus Parameter 4; (B) Parameter 2 versus Parameter 4; (C)
Parameter 3 versus Parameter 4; and (D) Parameter 5 versus Parameter 4 (case 2).

FIGURE 13 | Probabilistic Pareto front (case 2).
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solutions in the probabilistic Pareto optimal set with good
convergence. We further examine the convergence performance
in a succinct manner, in which we only retrieve the autocorrelation
value of the last lag (i.e., 200th lag) for each Markov chain, and

combine the information of all chains altogether as shown in
Figure 9. As can be observed, the convergence performance of
Markov chains of parameter 5 is slightly inferior to that of the
remaining parameters, which is consistent with the result in

FIGURE 14 | Autocorrelation of MCMC with respect to lag. (A) Parameter 1; (B) Parameter 2; (C) Parameter 3; (D) Parameter 4; and (E) Parameter 5 (case 2).
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Figure 8. However, the overall autocorrelation degree of all Markov
chains for all parameters is quite low, that is, under 0.1. This set of
results illustrates that the good convergence of MCMCs can be
ensured using the maximum iteration number specified in the
simulation. It is therefore confirmed that the identified
probabilistic Pareto optimal set and respective probabilistic Pareto
front (Figures 5–7) are reliable. Putting all the aforementioned
procedures together establishes the overall implementation
flowchart as shown in Figure 10, which is intended for the
interested readers to repurpose their own tasks using our
proposed methodology.

3.3 Additional Case (Case 2)
Investigation–Identification of a Smaller
Damage
In case 2, the location of damage (i.e., segment ID) changes,
and the actual damage severity becomes smaller than that in
case 1. Intuitively, the reduced damage severity in this case will
pose the difficulty in pursuing the high accuracy of damage
identification, since the identification result may be easily
interfered with by uncertainties. We follow the same
operating parameters tabulated in Table 2 and use the
admittance measurement of the structure with the new
damage introduction to execute the inverse model updating
analysis. Following similar procedures, we first identify the
probabilistic Pareto optimal set with many solutions as shown
in Figure 11. The deterministic Pareto optimal set
encompassed by the probabilistic Pareto optimal set
includes 17 solutions, all of which well approach the actual
damage scenario (i.e., 0.16% damage in parameter 2). The
closest damage severity of parameter 2 in the optimal set is
0.0145%. While the discrepancy, that is, 0.015% between the
best severity value and ground truth increases as compared to
that of case 1, it is still very minor. The near-optimal solutions
essentially are yielded as the consequence of uncertainties. The
two-dimensional projections of the probabilistic Pareto

optimal set are then given in Figure 12, where a similar
observation is obtained. Parameter 2 is identified to be less
severe when uncertainties are considered. In comparison,
parameter 5 has the severer damage identified under
uncertainties even though it is damage-free. The boundaries
of scattered solutions are also estimated to reflect the
uncertainty effect. Overall, the variation of solutions in this
case appears to be smaller than that in case 1 (Figure 6), which
may be because of the smaller true damage considered in this
case. Based on the probabilistic Pareto optimal set, we can
obtain the associated probabilistic Pareto front and estimate its
boundary as given in Figure 13.

Similarly, we then implement the MCMC convergence
analysis using the autocorrelation plots. The autocorrelation
plots of the 1st Markov chain are shown in Figure 14. The
autocorrelation of parameter 5 is higher than those of the other
parameters. Specifically, the last-lag autocorrelation value of
parameter 5 is around 0.1, whereas the last-lag autocorrelation
values of other parameters are all close to 0. However, a quite
uniform autocorrelation decreasing trend of parameter 5
implies that further increasing lags will likely continue to
de-correlate two observations. Therefore, the maximum
iteration number chosen in this case should also be
reasonable. The last-lag autocorrelation values of all Markov
chains are given in Figure 15, consistently showing a
satisfactory convergence performance.

In an ideal case without the measurement uncertainties and
modeling errors, the admittance response prediction of the
actual damage becomes identical to the experimental
admittance measurement. The deterministic Pareto optimal
set, hence, is expected to embrace the “ground truth” solution,
which is already captured in the results obtained through
carrying out the proposed methodology. This finding
indicates the effectiveness of the proposed methodology.
More importantly, the unique advantage of this
methodology can be fully exploited, that is, its capability in
producing the solutions which can elucidate their intrinsic
correlations with respect to uncertainties. This will provide in-
depth insights to guide practical damage identification that is
inevitably subjected to various uncertainties.

4 CONCLUSION

In this research, we develop a probabilistic multi-objective finite
element (FE) model updating framework built on the differential
evolution Markov chain Monte Carlo (DEMC) to conduct
damage identification in the presence of uncertainties. Taking
advantage of the high sensitivity with respect to the damage, the
piezoelectric admittance measurements are particularly used to
facilitate the inverse model updating analysis. This new
methodology is generic since it can yield the probabilistic
Pareto optimal set that already encompasses the deterministic
Pareto optimal set provided through the conventional multi-
objective inverse analysis. More importantly, such a probabilistic
feature also is capable of accounting for the effect of uncertainties
that inevitably exist either in FE modeling or measurement when

FIGURE 15 | Last-lag autocorrelation values of all Markov chains
(case 2).
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performing the multi-objective inverse analysis. Systematic case
studies on a cantilever plate with experimental validation clearly
illustrate the effectiveness and robustness of this proposed
methodology. In addition to elucidating the uncertainty effect,
the proposed methodology yields the damage severity degrees
which closely match the ground truth values, only with
3.62 × 10−4% and 0.015% stiffness loss discrepancies for cases
1 and 2, respectively.
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