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Owing to particle leanness, the standard Particle Filter (PF) algorithm is prone to

the problem of reduced prediction accuracy when predicting fatigue crack

propagation. An improved particle filter algorithm based on the optimization

algorithm of beetle antenna search (IBAS-PF) for fatigue crack propagation in

metals is proposed in this paper. The discrete Paris formula was used to

establish the state equation of fatigue crack propagation, in which the

uncertainty of material and crack propagation process were considered.

Meanwhile, the characteristics of Lamb wave signals under different crack

lengths were extracted to establish the observation equation. The sampling

process of the PF algorithmwas optimized based on the beetle antennae search

algorithm to improve the particle diversity and the prediction accuracy.

Compared with the standard PF algorithm, the improved BASO-PF algorithm

has higher accuracy for metal fatigue crack propagation, as well as better state

estimation ability.
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1 Introduction

Fatigue cracks are regarded as one of the main reasons for the failure of engineering

structures. If the crack propagation process cannot be monitored and predicted by

effective means, the accumulation of damage to a certain extent can easily cause the

sudden failure of the overall structure, which will lead to serious accidents and hazards.

Therefore, it is of great significance to accurately predict the fatigue crack growth in

metals.

The Paris formula (Paris and Erdogan, 1963) is often used in engineering to predict

fatigue crack growth. However, the fatigue crack growth of engineering structures is

affected by both the internal material and external environmental factors, and usually

shows a certain degree of uncertainty (Yeratapally et al., 2017). The Paris model cannot

take this into account, so it is difficult to predict the fatigue crack growth with high

accuracy. The data-driven fatigue crack growth prediction method is a current research

hotspot. Wang et al. (2016) combined the extended Kalman filter (EKF) and unscented

Kalman filter (UKF) algorithms to estimate the parameters m and c in the Paris model,

and carried out crack propagation prediction. He et al. (2013) proposed a crack
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propagation prediction method combining Lamb wave finite

element simulation analysis and Bayesian update. Compared

with the EKF and UKF algorithms, the particle filter (PF)

algorithm has fewer restrictions on the model and wider

application range. Orchard and Vachtsevanos (2009) used the

PF algorithm to predict the life of planetary gears with cracks,

and found that its prediction accuracy was higher than the EKF

algorithm. Chen et al. (2016, 2017, 2018, 2019) and Sbarufatti

et al. (2016) applied the PF algorithm to fatigue crack growth

prediction, and the research results show that this method can

effectively improve the prediction accuracy.

However, the optimal number of particles in the PF

algorithm is often difficult to choose. In addition, too many

particles will reduce the computational efficiency and affect the

real-time prediction of crack growth (Yang and Gao, 2019). By

introducing intelligent optimization algorithms into the standard

PF algorithm, the particles obtained by a priori sampling can

move to the region with high a posteriori probability, and the

problem of particle leanness can also be overcome. Some

researchers combined the particle swarm algorithm (Zhang

et al., 2014), the genetic algorithm (Li et al., 2017), and the

firefly algorithm (Tian et al., 2019) with the PF algorithm, which

has successfully increased the number of effective particles and

improved the prediction accuracy of the PF algorithm.

This paper proposes a fatigue crack growth prediction

method based on the improved beetle antenna search-

particle filter (IBAS-PF) algorithm. The state space model

based on the Paris formula is used to characterize the crack

growth process, and the observation space equation is

established based on the characteristics of the monitoring

signals of the Lamb waves. This method uses Lamb waves to

online monitor the crack growth, and combines the IBAS-PF

algorithm to correct the cumulative error of the Paris model in

real time. Finally, the unilateral fatigue crack growth

experiment of Q235 steel specimens is used to verify the

effectiveness of the method proposed in this paper.

2 Particle filtering

2.1 Standard particle filter algorithm

A discrete-time system is composed of the state equation (Eq.

1) and the observation equation (Eq. 2):

xk � gk(xk−1, qk) (1)
yk � hk(xk, rk) (2)

where xk and yk are the state value and observation value of the

system at time k respectively, gk (·) and hk (·) can be nonlinear

functions, qk and rk represent the random noise.

Suppose Xk = {x0, ···, xk} is the state sequence from time 0 to k,

and Yk = {y1, ···, yk} is the observation sequence from time 1 to k.

According to the Bayesian filtering theory, the optimal estimated

value x̂k at time k is calculated by Eq 3:

x̂k � ∫xkp(xk|Yk)dxk (3)

The posterior probability distribution p (xk|Yk) can be

obtained following the two steps below:

Prediction:

p(xk|Yk−1) � ∫p(xk|xk−1)p(xk−1|Yk−1)dxk−1 (4)

Update:

p(xk|Yk) � p(yk

∣∣∣∣xk)p(xk|Yk−1)
p(yk

∣∣∣∣Yk−1) (5)

where p (xk|Yk-1) is the prior probability distribution without

considering the current measurement value yk, p (xk|xk-1) is the

transition function defined by Eq. 1, p (yk|xk) is the likelihood

function defined by Eq. 2, and p (yk|Yk-1) is the normalization

constant.

For general systems, it is usually difficult to obtain the

analytical solution of a posteriori probability p (xk|Yk). The PF

algorithm introduces the Monte Carlo sampling to solve the

problem, which approximates the posterior probability

distribution p (Xk|Yk) by sampling a series of weighted particles:

p(Xk|Yk) ≈ ∑N
i�1

~wi
kδ(Xk −Xi

k) (6)

where ~wi
k is the normalized weight corresponding to the particle

set Xi
k, N represents the number of particles, δ (·) is the Dirac

function.

However, the true posterior distribution p (Xk|Yk) is generally

unknown. Therefore, Xi
k (i = 1,. . ., N) is usually sampled from a

pre-defined and easy-to-implement reference distribution q (Xk|

Yk) (i.e., the important density function), and the corresponding

unnormalized importance weight is defined by:

wi
k ∝

p(Xi
k

∣∣∣∣Yk)
q(Xi

k

∣∣∣∣Yk) (7)

If the important density function can be decomposed into q

(Xk|Yk) = q (xk|xk-1, yk)q (Xk-1|Yk-1), then the importance weight

can be further written as:

wi
k ∝wi

k−1
p(yk

∣∣∣∣xi
k)p(xi

k

∣∣∣∣xi
k−1)

q(xi
k

∣∣∣∣xi
k−1, yk) (8)

Considering the feasibility of the algorithm, p(xi
k|xik−1) is

selected as q(xi
k|xi

k−1, yk) in the standard PF algorithm, and

Eq 8 can be simplified as:

wi
k ∝wi

k−1p(yk

∣∣∣∣xi
k) (9)

The normalized importance weight is written as:
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~wi
k �

wi
k

∑N
i�1
wi

k

(10)

However, with the continuous progress of the prediction-

update recursion, only a few particles will have large weights

while most particles will have small weights, which is known as

the phenomenon of particle degradation. Gordon et al. (2002)

introduced the resampling step into the PF algorithm to

overcome particle degradation, and the commonly used

resampling methods are system resampling (Carpenter et al.,

1999), random resampling (Kitagawa, 1996), residual resampling

(Liu and Chen, 1998), polynomial resampling (Li et al., 2015), etc.

However, excessive use of resampling will lead to particle

depletion. Since particles with large weights are replicated

multiple times, a large number of particles are repeated

during the sampling process. When the number of particles is

small or the number of recursive steps is large, the prediction

accuracy of the particle filter algorithm will decline.

2.2 Improved beetle antenna search-
particle filter algorithm

In the standard PF algorithm, the particles are sampled from

p (xk|xk-1) only according to the a priori knowledge, without

considering the influence of the current observation value yk. In

order to optimize the sampling process, we introduce the BAS

algorithm into the PF algorithm.

Jiang and Li, 2017a proposed the beetle antenna search

algorithm, of which the basic idea is based on the foraging

process of longhorn beetles. A longhorn beetle has two

antennae. It decides the next search direction based on the

intensity of the food smell felt by the antennae on the left and

right sides, and then moves toward the side with stronger smell.

Even in an unknown environment, longhorn beetles can

successfully find food in most cases. Similarly, the fitness

function f (·) is analogous to the smell of food. Suppose the

location of the longhorn beetle is defined by xt at time t, the

search space of the left and right antennae are defined as:

⎧⎪⎨⎪⎩ xt
l � xt − dt �b

xt
r � xt + dt �b

(11)

where xt
l and xtr represent the locations of the left and right

antennae at time t, dt is the perception length of the antennae, and
�b is a random unit vector which represents the orientation of the

head of the longicorn beetle is random.

The longicorn beetle updates its position according to the

odor concentration f(xt
l) and f(xt

r) at the left and right

antennae:

xt+1 � xt + δt �bsign(f(xr) − f(xl)) (12)

where δt is the step length at time t, sign (·) is the sign function.

The perception length dt and the step length δt should be set

large enough to cover the whole area and avoid falling into the

local optimum. As time goes on, the values of the two parameters

should be gradually reduced to facilitate high-precision local

search. Therefore, the two parameter values are updated as

follows:

dt � αdt−1 + 0.01 (13)
δt � βδt−1 (14)

To improve the performance of the beetle antennae search

optimizer.

The BAS method can be integrated with many other

algorithms to promote the efficiency of the optimization. For

example, BAS with particle swarm optimization (Lin and Li,

2018; Zhang et al., 2020), artificial bee colony (Cheng et al.,

2019), fallback (Wu et al., 2020), and ADAM (Khan et al.,

2020). Some researchers have also proposed the improved

variants of the BAS algorithm such as beetle swarm

antennae search (Mu et al., 2019) and BAS without

parameter tuning (Jiang and Li 2017b).

In the present study, the standard PF algorithm is

optimized based on the BAS algorithm to improve the

particle diversity and the prediction accuracy. The specific

steps of the IBAS-PF algorithm proposed in this paper are as

follows:

Step 1. Initialization. Generate the particle set {xi
0}Ni�1 from the

prior distribution p(x0), set the weights of all particles to 1/N, and

then set k = 1.

Step 2. Generate the particles {xi
k}Ni�1 from the transition

function p(xi
k|xi

k−1).

Step 3. Update the locations of the particles using the BAS

algorithm according to Eq. 12, where the fitness function f is

given by:

f � exp[ − 1
2R

(yobs
k − ypre

k )2] (15)

where yobs
k is the true observed value at time k, ypre

k is the

observed value predicted by the observation equation (Eq. 2),

and R is the variance of the observed noise r.

Step 4. Update the weights according to Eq. 9, and then

normalize them according to Eq. 10.

Step 5. Resample to obtain the new equally-weighted particle set

{xi
k, 1/N}Ni�1.

Step 6.Obtain the estimated state value using Eq. 3. Set k = k +1,

and then return to Step 2.
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3 Prediction of fatigue crack
propagation in metals based on
improved beetle antenna search-
particle filter

3.1 State equation based on the paris
formula

The classic Paris formula is applied to establish the state

equation of fatigue crack growth:

da
dNf

� C(ΔK)m (16)

where a is the crack length, Nf is the number of fatigue cycles, da/

dNf is the crack growth rate per cycle. C and m are material

parameters. According to the previous research Qu et al. (2008),

it is assumed that C obeys the lognormal distribution, whilem is a

constant. The stress intensity factor amplitude ΔK can be

calculated by Eq. 17:

ΔK � YΔσ
���
πa

√
(17)

where Δσ is the stress amplitude, and Y is the geometric shape

correction coefficient.

Discretize Eq. 16 and consider the dispersion of materials and

the uncertainty of fatigue crack growth process, the state

equation is given by:

{ at � at−1 + Ct−1(ΔKt−1)mΔNf + q
Ct � Ct−1

(18)

where at-1, Ct-1, ΔKt-1 are the crack length, material parameter, and

stress intensity factor amplitude at time t-1 respectively, ΔNf is the

fatigue cycle period from time t-1 to t, and q is the process noise.

3.2 Observation equation based on the
lamb wave signals

The PZT sensors were mounted on the surface of the test

specimen to excite and receive Lamb wave signals. During the

fatigue test, the Lamb wave monitoring signals corresponding to

different crack lengths were collected. As shown in Figure 1, the

S0 wave packet from t1 to t3 is intercepted for analysis (Liu et al.,

2019). The damage index DI based on the correlation coefficient

is used to quantitatively characterize the influence of the crack

length on the Lamb wave signals:

DI � 1 − CAB

σAσB
(19)

where A is the reference Lamb waves signal, and B is the damage

signal obtained under different crack lengths. CAB and σA (σB)

represent the covariance and the standard deviation of the

signals.

The relationship between DI and the crack length a is

obtained by curve fitting, and the observation equation is

given by:

DIt � s(at) + r (20)

where DIt is the damage index at time t, s is the fitting function,

and r is the observation noise of the Lamb wave signal.

3.3 Process of fatigue crack growth
prediction

The process of fatigue crack growth prediction based on the

IBAS-PF algorithm in Section 2.2 is shown in Figure 2.

4 Experimental verification

4.1 Experimental setup

The effectiveness of the proposed prediction method is

verified by the unilateral fatigue crack growth experiment of

Q235 steel specimens in this section. The experimental setup

was similar to that of Chen et al. (2019), and the fatigue test of

five specimens was carried out. Nevertheless, a unilateral

fatigue crack was cut in the present study instead of

machining a through hole. As shown in Figure 3, the size

of the test specimen is 300 mm × 45 mm × 2 mm, and the

initial vertical defect of 3 mm × 0.2 mm × 2 mm was preset at

the midline using wire cutting to control the direction of crack

propagation.

As shown in Figure 4, the experimental system consists of

a fatigue testing machine (MTS Landmark), a signal

generator (Unit UTG 2025A), a power amplifier (Krohn-

Hite 7602M), and a signal receiver (Yokogawa DL350). The

FIGURE 1
Schematic diagram of the Lamb wave signal extraction.
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PZT piezoelectric ceramic sensor is made of P51 material.

The specimen bears a sinusoidal fatigue load with a maximum

load of 16 KN, a stress ratio of 0.1, and a loading frequency of

6Hz. Apply an appropriate amount of white correction fluid

to the surface near the crack of the test piece to facilitate

observation, and the fatigue crack is projected on the laptop

screen through a microscope and measured with a ruler.

4.2 Determination of the state and
observation equations

The geometric shape correction coefficient Y can be

calculated by the following formula:

Y � 1.12 − 0.23
a

b
+ 10.6(a

b
)2

− 21.7(a
b
)3

+ 30.4(a
b
)4

(21)

where a is the fatigue crack length and b is the width of the

specimen. The a-Nf curves of the four specimens T1-T4 under

the same loading condition are plotted in Figure 5. The material

parameters C and m in the Paris formula are calculated using

the seven-point incremental polynomial method, and the

standard deviation of the process noise q is determined by

the average maximum crack growth after ΔNf = 75 cycles, which

gives log

C0 ~ N (−13.07, 0.13772), m = 3.19, w ~ N (0, 0.02342).

After each observation of the crack growth length, the

measurement signal of Lamb waves is collected. In this

experiment, a 5-peak sinusoidal modulation signal with a

center frequency of 220 kHz was used as the excitation

signal. The voltage amplitude was 10 V, which was

amplified by a power amplifier 100 times and applied to

PZT1. PZT2 was the signal receiving end. The sampling

frequency of the signal receiver is 10 MHz, and the

collected signal is passed through a band-pass filter for

FIGURE 2
Fatigue crack growth prediction based on IBAS-PF algorithm.

FIGURE 3
The dimension of the test specimen.
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noise reduction. Figure 6 shows the extracted Lamb wave

signals under different crack propagation lengths of the

T3 specimen. Extract the Lamb wave signals of the T1 to

T4 specimens to calculate the DI curve, and get the

relationship between DI and crack length a by curve

fitting (Figure 7):

DIt � 6.21 × 10−4(at − 3)3 − 4.46 × 10−3(at − 3)2
+ 1.08 × 10−2(at − 3) + 7.29 × 10−3 + r (22)

The standard deviation of the observation noise r is taken as

the root mean square error obtained by cure fitting, which gives

r ~ N (0, 0.07652).

4.3 Fatigue crack growth prediction

The effectiveness of the fatigue crack growth prediction

method based on the IBAS-PF algorithm is verified using the

T5 specimen. The number of particles N is set to 500, and the

initial values of the perception length dt and the step length δt are

set as 0.1 and 0.5 respectively. Both α and β are set as 0.95. The

prediction experiment was carried out in Matlab R2016a on a

win10 Dell desktop computer with 64-bit 8G memory. The

algorithm simulation prediction experiment was performed

20 times, and the average value was taken as the output of the

prediction result. The fatigue crack growth can be divided into

FIGURE 4
The experimental platform for fatigue crack growth monitoring.

FIGURE 5
The fatigue cycle versus the crack length.

FIGURE 6
Signal extraction of the T3 specimen under different crack
lengths.
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three stages: unstable crack initiation, stable cracking

propagation and final fracture. The comparison between the

prediction and experimental data is carried out in the second

stage since the Paris law is only valid when the fatigue crack

growth is stable. Figure 8 shows the results of fatigue crack

growth prediction using the PF and the IBAS-PF algorithm. As

the fatigue cycle period continues to increase, the prediction error

of the Paris formula is increasing. The filtering algorithms

consider the influence of material dispersion and the

uncertainty of fatigue crack propagation process, and uses the

observed value extracted from the Lamb wave signals to

constantly correct the prediction error of the state equation

based on Paris formula. Thus the prediction accuracy is

significantly improved. However, in the middle and late stages

of crack propagation, with the aggravation of particle leanness,

the prediction error of the standard PF algorithm increases

gradually. After 46,000 fatigue cycles, the relative error and

root mean square error of the PF algorithm are −15.1% and

0.385 mm respectively, while the relative error of the IBAS-PF

algorithm is 1.8% and the root mean square error is 0.118 mm,

indicating that the IBAS-PF algorithm has higher prediction

accuracy than the PF algorithm.

The number of particles of the material parameter C which

are not repeated in the prediction experiment, NC, was used to

evaluate the effectiveness of the algorithm in alleviating the lack

of particles. As shown in Figure 9, the number of particles in the

IBAS-PF algorithms is significantly higher than that of the

standard PF algorithms at the same time.

5 Conclusion

In the prediction of metal fatigue crack growth, the standard

PF algorithm is prone to the problem of reduced prediction

accuracy due to particle leanness. A metal fatigue crack

propagation method based on the IBAS-PF algorithm is

proposed in the present paper. The discrete Paris formula is

used to establish the state equation of the fatigue crack

propagation, and the characteristics of Lamb wave signals

under different crack lengths are extracted to establish the

observation equation. By introducing the latest observed

information, the sampling process of the PF algorithm is

optimized based on the beetle antenna search algorithm, and

the diversity of the particles is improved. The experimental

results of the Q235 steel specimens show that compared with

the standard PF algorithm, the IBAS-PF algorithm has higher

FIGURE 7
The DI values corresponding to different crack lengths.

FIGURE 8
Crack length prediction and the experimental results.

FIGURE 9
The NC values corresponding to different fatigue cycles Nf.
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accuracy of crack propagation prediction and stronger ability of

state estimation. In principle, the proposed method can also be

extended to predict the propagation of multiple fatigue cracks, as

well as the crack growth in a real structure with several elements

and connections. However, more sensors will be needed to

identify the cracks, and the state equation and the observation

equation of the IBAS-PF algorithm will be much more

complicated. Further studies are required to solve these

problems.
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