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In recent years, implementing a circular economy in cities has been considered by

policymakers as a potential solution for achieving sustainability. Existing literature on

circular cities is mainly focused on two perspectives: urban governance and urban

metabolism. Both these perspectives, to some extent, miss an understanding of

space. A spatial perspective is important because circular activities, such as the

recycling, reuse, or storage of materials, require space and have a location. It is

therefore useful to understand where circular activities are located, and how they

are affected by their location and surrounding geography. This study therefore aims

to understand the existing state of waste reuse activities in the Netherlands from a

spatial perspective, by analyzing the degree, scale, and locations of spatial clusters of

waste reuse. This was done bymeasuring the spatial autocorrelation of waste reuse

locations using global and local Moran’s I, with waste reuse data from the national

waste registry of the Netherlands. The analysis was done for 10 material types:

minerals, plastic, wood and paper, fertilizer, food, machinery and electronics, metal,

mixed constructionmaterials, glass, and textile. It was found that all materials except

for glass and textiles formed spatial clusters. By varying the grid cell sizes used for

data aggregation, itwas found that differentmaterials haddifferent “bestfit” cell sizes

where spatial clusteringwas the strongest. The best fit cell size is ~7 km formaterials

associated with construction and agricultural industries, and ~20–25 km for plastic

and metals.The best fit cell sizes indicate the average distance of companies from

each other within clusters, and suggest a suitable spatial resolution at which the

material can be understood. Hotspotmapswere also produced for eachmaterial to

show where reuse activities are most spatially concentrated.
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Introduction

Our current “take-make-waste” or linear economy of

production, where materials are extracted, used, and discarded

as waste, is unsustainable. There is a pressing need to transition to

more sustainable socio-technical systems that address

environmental problems, such as resource depletion and

excessive land use; as well as economic problems, such as

supply risk and flawed incentive structures (Geissdoerfer et al.,

2017). Since 2015, transitioning to a circular economy (CE) has

been proposed by policy makers in the European Commission as

a potential solution (European Commission, 2020). In the

Netherlands, companies and households produce over

43 million tonnes of waste per year, including waste materials

such as food waste, packaging, iron, paper, plastics, glass,

chemical waste, and construction waste (Statistics Netherlands

2020). As part of its circular economy strategy, the Netherlands

aims to increase waste reuse for the production of goods, in order

to reduce the need to extract or import scarce raw materials,

reducing pressure on the environment (Hanemaaijer et al., 2021).

Although there is no consensus on its definition (Kirchherr

et al., 2017), a commonly adopted notion of CE is keeping

materials and products performing at their highest application

level for as long as possible, while reducing environmental

impacts and being aware of environmental trade-offs. CE has

also been put forward as an alternative economic paradigm that

stays within planetary boundaries and is socially just (Marin

et al., 2020). The study of circular economy was popularized by

the fields of industrial ecology, industrial design, and business

management; and examined the circularity of materials,

products, and companies (Bocken et al., 2016; Kalmykova

et al., 2018; Bakker et al., 2019; Hollander et al., 2017).

Recently, there have been growing efforts to look beyond

products to larger spatial scales—to buildings, cities, regions, and

beyond; introducing the question of what is a suitable spatial

scale at which to organize and model material flow and

distribution. Much of these efforts fall under the topic of

“circular cities,” and take the perspectives of urban

governance, which studies the circularity of a city’s policies

and stakeholders (Prendeville et al., 2018; Amenta et al., 2019;

Williams 2019a); and urban metabolism, which studies the

material, water, or energy flows of cities or regions (Kennedy

et al., 2007; Broto et al., 2012; Dijst et al., 2018).

The study of circular cities requires a spatial or geographical

perspective. For cities, transitioning to a circular economy

requires the introduction of circular (industrial) activities into

the region, such as recycling, remanufacturing, storage, and

(reverse) logistics; which are affected by spatial factors such as

proximity to materials, clients, suppliers, and other companies.

Because of this, scholars have started to recognize the importance

of adding a geographical or spatial perspective to the study of

circular cities and regions (Stephan and Athanassiadis 2017;

Wandl 2020; Van den Berghe and Verhagen 2021; Sprecher

et al., 2021; Furlan et al., 2022). The development of this

perspective is still at an early stage, and the increasing

accessibility and quality of spatial material flow data presents

new possibilities. Accessible spatial material data and spatial

analysis tools could provide a greatly enhanced ability to

generate insights for circular economy at the regional scale.

However, as more have access to these powerful tools, it is

also more important to identify the limitations of spatial data

analysis.

This paper aims to add a spatial perspective to the study of

circular economy by analyzing the spatial clustering of existing

waste reuse activities in the Netherlands. This study answers the

research question: “How does analyzing the spatial clustering and

hotspots of waste reuse locations generate insights for the circular

economy, and what are the limitations of these insights?” Spatial

autocorrelation methods, global and local Moran’s I, were used to

analyze the spatial clustering of the waste reuse locations in the

Netherlands for minerals, mixed construction materials, food,

fertilizer, metal, plastic, wood and paper, and machinery and

electronics.

A key finding was made from varying the grid cell sizes used

to aggregate the reuse location data. It was found that each

material had a “best fit” cell size that optimized the trade-offs

between cell sizes too large and too small. Materials associated

with the construction and agriculture industry (minerals, mixed

construction materials, food, and fertilizer) had a best fitting cell

size of 7 km, wood and paper of 15 km, metals and plastics of

~20–25 km, while machinery and electronics had no clear best fit

cell size. Additionally, local spatial autocorrelation results were

used to generate hotspot maps for each material, which indicated

locations with a significantly high rate of waste reuse. Together,

the best fit cell size and hotspot maps for each material could

provide insights on which spatial scale to analyze the material,

which level of governance (municipal, provincial) to write policy

influencing the material, as well as other spatial attributes such as

the material’s relationship to urban areas and level of

centralization.

Literature review

While earlier studies on CE focused on the circularity of

materials, products, and companies; researchers have started

exploring circularity at larger geographical scales—expanding

from the product scale to neighborhoods (Codoban and Kennedy

2008), cities (Kennedy et al., 2007), countries (Tanikawa et al.,

2015), and even the entire globe (Graedel et al., 2019).

Space, people, and flow of circular cities and
regions

The larger scale perspectives on material flows in a circular

economy can be categorized in three perspectives, following the

environmental planning framework of (Tjallingii 1996): space,
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people, and flows. While the following paragraphs explains these

three perspectives separately, it is important to note that an

integrated perspective is required for a truly meaningful

understanding of circular cities and regions.

The spatial perspective, within the disciplines of urban design

and planning, investigates how land use, planning, and zoning

strategies affect circular activity and material flows in regions.

Strategies can come in the form of developing circular

infrastructure, such as adequate space for storage of materials

and (circular) industrial activity, and a well functioning reverse

logistics network. This could facilitate the circular flow of

resources, helping to reduce the city’s intensive resource use

and to tackle urban waste streams (Arciniegas et al., 2019;

Williams 2019b; Wandl 2020).

The people perspective, within the urban governance context,

investigates how municipalities and policy makers implement a

circular economy at a city, provincial, or country level. Research

from this topic involves examining policies, regulations, and

strategies to understand how they facilitate, hinder, or change

waste-to-resource flows; as well as listing out societal barriers for

regions attempting to implement a circular economy (Prendeville

et al., 2018; Amenta et al., 2019; Bolger and Doyon 2019; Van den

Berghe and Vos 2019).

The flows perspective, within the field of urban metabolism,

describes the flow of resources through a region be it a city,

province, or country, in particular the movement and

consumption of materials, energy, and water (Brunner 2007;

Kennedy et al., 2007; Broto et al., 2012; Dijst et al., 2018). It also

investigates how various strategies can contribute to reducing the

resource use of regions, by reducing the overall consumption of

raw materials, and using industrial processes to turn waste into a

resource. Our study, which analyzes the locations of waste reuse

in the Netherlands, attempts to contribute to the space and flows

perspective of circular regions.

Urban metabolism
The flows perspective on circular regions stems from the

broader and more established field of urban metabolism, which

studies “the sum total of the technical and socio-economic

processes that occur in cities, resulting in growth, production

of energy and elimination of waste” (Kennedy et al., 2007).

Literature on urban metabolism began in the 1960s, with a

seminal study by (Wolman 1965), in which national data on

water, food, fuel use, and production rates of waste per capita was

used to estimate the flow rates of a hypothetical American city of

one million people.

Urban metabolism studies examine a wide variety of flows in

a city or region, such as water, materials, or nutrients, in terms of

mass fluxes, usually in kg or tons (Kennedy and Bunje 2011).

While most urban metabolism literature illustrate the input of

resources and output of waste, some papers examine cyclical

urban metabolism or waste metabolism, where waste produced

by a region is considered as a secondary resource or input for the

city. Urban metabolism studies on waste recognize that, while

products are produced from resource flow pathways, waste is

processed by waste treatment and recycling pathways (Zhang

2013).

In its early stages, urban metabolism treated cities and

regions as a system boundary for material flow analysis, rather

than a topic of study, also known as a “black box model” (Song

et al., 2018). The first studies in urban metabolism were

accounting exercises to calculate the total input, stock, and

output of water, materials, nutrients, and waste of specific

cities. There was less discussion on how the spatial aspects of

the city (e.g., density, land use, proximity, and accessibility)

affected the location of these flows. As urban metabolism

developed, so did its approach to space, resulting in a variety

of spatial approaches (Dijst et al., 2018). This includes mapping

(geo-visualization) of stocks and flows, calculating eco-footprint

of cities, incorporating insights into urban design and planning,

and spatial modeling.

Mapping of stocks includes visualization for urban mining

purposes, such as construction material stock mapping

(Tanikawa et al., 2015; Stephan and Athanassiadis 2017;

Sprecher et al., 2021); while mapping of flows include

visualization of material flows (Furlan et al., 2022; Sileryte

et al., 2022), and activity based spatial material flow analysis

(Dijst et al., 2018).

The study of ecological footprint of cities determines the

amount of land required to provide a city with its resources and

process its waste. Studies of this nature have been conducted for

Vancouver, Santiago de Chile, Cardiff, and cities of the Baltic

region of Europe (Kennedy et al., 2007). The past decade has seen

many more similar studies, mostly focusing on the so-called

megapolis—metropolitan areas with a population exceeding ten

million (Moore et al., 2013; Geng et al., 2014).

Spatial modeling (or spatial statistics, spatial econometrics)

combines statistics and geometry to create statistical spatial

models of material flows, allowing researchers to make

predictions for future scenarios and support spatial policy

decisions (Dijst et al., 2018). Urban resource demands are

simulated using activity-based modeling by (Keirstead and

Sivakumar 2012; Zhang 2013; Li and Kwan 2018). Other

researchers have considered the interactions between an urban

metabolism and the spatial distribution of land use and cover

types (Zhang 2013).

Spatial clustering and circular regions
One potentially important aspect of geographically explicit

urban metabolism is the study of spatial clustering. While there

are not many spatial clustering studies on waste reuse locations,

statistical tools for studying spatial clustering have been applied

to many topics—from the clustering of molecules and atoms in

materials studied by material scientists, to the clustering of black

holes and planets studied by astrophysicists. Literature relevant

to urban metabolism are studies examining spatial clustering
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from the perspective of waste management, urban mining, and

company location.

Literature studying spatial clustering from a waste

management perspective studies hot spots of waste production

in order to inform waste management, recovery, and policy

(Antczak 2020; Cheniti et al., 2021). Similar methods are also

used to identify hot spot areas with high concentrations of

hazardous materials in air, soil, or water; in order to minimize

negative environmental impacts of pollution (Rawlins et al.,

2005; Huo et al., 2012; Zhao et al., 2014).

Literature on spatial clustering from an urban mining

perspective identifies geographical clusters within a region

where secondary materials (such as precious metals from

e-waste, or building materials) can be extracted in the future

(Zhu 2014; Zhang et al., 2019). This is done through material

stock analysis, such as estimating the location of construction

material stocks by aggregating cadaster data, which is a

comprehensive recording of real estate in a country, including

information on building function, age, and height (Sprecher

et al., 2021; Verhagen et al., 2021).

Literature on the spatial clustering of companies stems from a

spatial econometrics perspective, which uses spatial statistical

methods to verify hypotheses on theories of company location,

spatial agglomeration, and economies of scale. These studies

identify industry clusters in order to explain and inform regional

economic development, such as infrastructure (including waste

infrastructure), policy instruments, environmental laws (Baptista

and Swann 1999; Malmberg and Maskell 2002; López and

Antonio 2017; Sunny and Cheng 2019; Hassan et al., 2020).

Research gaps

In circular economy research, the spatial study of material

flows at the city or regional scale is still in its infancy. This could

be because the concept of circular economy stemmed from the

fields of industrial ecology, business and product design, which

include the study of “people,” such as management and business

models for circular companies; and of “flows,” such as secondary

materials and reuse methods for circular production, but has less

focus on issues related to space. Another reason could be the lack

of data on material stocks and flows, as well as the all

encompassing and complex nature of materials, making it

difficult to define the scope of research. While other flows

such as energy and transportation can be easily recorded by a

centralized provider and made publicly available via census data;

data on material flows is harder to collect—there is no centralized

provider of “materials,” nor is there a straightforward way to

automatically record data on material flows (Zhu 2014).

In urban metabolism research, most studies are also not

spatially explicit. The majority of existing literature understands

the metabolism of regions as a whole, without zooming in to

examine the geographical locations of flows within the region. Of

the urban metabolism studies that are spatially explicit, few

studies have gone beyond geo-visualization to use spatial

statistical methods (Verhagen et al., 2021). While the location

of clusters or hotspots can be roughly identified by interpreting

themaps visually, there is rarely spatial statistical work describing

objectively how strongly materials are clustered, and where these

clusters are. This could be due to the lack of detailed location data

on materials, as well as the lack of accessible spatial analysis tools

in the past. While spatial data on material flows may be available

at the country scale through input-output tables, there is limited

availability of material data at the regional, urban, or

neighborhood level (Zhu 2014).

In spatial clustering research, studies have been conducted for

other disciplines and topics, locating clusters of companies,

pollutants, material stock, even waste production. However, the

authors have not found any studies on locations of waste reuse. This

is again due to lack of data. Since spatial clustering analysis has not

been conducted on locations of waste reuse before, more

investigation is needed for the potential insights and limitations

of the spatial clustering results, especially on how (or whether) these

results could provide advice for circular regional development.

Our research therefore applies existing spatial analysis

methods to new data (locations of waste reuse) that were

previously unavailable to researchers, in order to explore how

our results could contribute to circular regional development. In

terms of methodological contributions, our paper yields new

intuition on the choice of a grid size when aggregating spatial

values and its consequences on spatial clustering.

Research aim and questions

The aim of this research is to explore how using statistical

methods to analyze the spatial clustering of waste reuse in the

Netherlands could provide insights for circular regional

development, in order to bridge the gap between urban design

and urban metabolism.

The research question is therefore: What insights and caveats

can be derived from spatial clustering analysis of waste reuse

locations? The sub-research questions are:

• What is the degree, scale, and location of spatial clustering

of waste reuse locations in the Netherlands?

FIGURE 1
Flowchart of materials and methods used, created by
authors.
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• What are the potential insights and caveats of identifying

hotspot locations of waste reuse locations in the Netherlands?

Methodology

This research uses statistical methods to analyze the spatial

clustering of waste reuse locations in the Netherlands. Three

aspects of spatial clustering will be measured: how strongly waste

reuse activities are clustered across the country, the spatial scale

at which reuse activities are most strongly clustered, and the

hotspots of waste reuse clusters. Global and local Moran’s I, one

of the most commonly used and accepted methods for analyzing

spatial clustering in the fields of spatial econometrics and

location science, will be used to understand the three aspects

of spatial clustering mentioned above (Getis and Ord 1992;

Anselin 1995).

Waste reuse data from the Dutch National Waste Registry

was utilized. The data was plotted onto a map of the Netherlands

as point data, then categorized by material types. For each

material type, the following steps were conducted:

• The waste reuse point data was aggregated into 50 grids,

with cell sizes varying from 1 to 50 km.

• Global Moran’s I was calculated for each of the 50 grids (cell

sizes: 1–50 km) to measure the degree of spatial clustering

for each cell size.

• A trendline was plotted with cell size on the x-axis and

degree of clustering on the y-axis, in order to identify the

cell size at which clustering is the strongest.

• Local Moran’s I was used to map out the hotspots of waste

reuse—locations where the amount of waste reuse is

significantly high.

The steps above are summarized in Figure 1. The details of

the materials and methods are further elaborated in the sub-

sections below.

Data preparation

This study utilized data from the Dutch National Waste

Registry (Landelijk Meldpunt Afvalstoffen, LMA), which records

all waste flows in the Netherlands that are processed by waste

management companies, and includes information on the

location of waste producers, processors, and secondary

resource receivers; as well as the weight and material type of

the waste produced. This study focuses on the location of “first

receivers” (“eerste afnemers” in Dutch), which are non-waste

management companies that receive processed waste as a

secondary resource from waste processors. The locations “first

receivers” were chosen because they most resembled locations of

waste reuse. The locations of waste reuse were then aggregated

onto a gridded map of the Netherlands (Figure 2), with each grid

cell representing the sum weight of waste reused for the data

points located within the cell.

For each grid cell, the amount of waste reused was further

categorized by material type. The LMA dataset represents the

material type of each waste flow using either the European waste

code (EWC) or the combined nomenclature code (CN).

However, the categories were difficult to interpret because the

categories of the two code types (EWC and GN) did not match

well. In order to create more meaningful categorizations, the

waste flows were re-categorized using keywords.

Finally, some flows in the LMA dataset were deemed as

“invalid” because the location of the first receiver in the dataset

was either a temporary storage location, or did not represent the

true location of reuse, but rather the location of the headquarters

of the first receiver company. These “invalid” flows were removed

with consultation with waste experts from the Rijkswaterstaat

(government agency for public works and water management).

Global Moran’s I—degree and scale of
spatial clustering

Global spatial autocorrelation was used to understand the

strength of spatial clustering of waste reuse locations in the

Netherlands. Spatial autocorrelation is a term used to describe

the presence of systematic spatial variation in a variable. A

positive spatial autocorrelation of a dataset would mean that

areas closer together are more similar than areas further apart.

While there are multiple methods of measuring global spatial

autocorrelation, this study has chosen Moran’s I (Getis and Ord

1992) as the measurement method. This is because it is one of the

most commonly known spatial autocorrelation methods used in

exploratory spatial data analysis, popularized by interface-based

GIS (geographical information systems) tools like GeoDa and

ArcGIS. This study therefore aims to focus on Moran’s I to

illustrate its potentials and pitfalls, while leaving other spatial

autocorrelation methods to future studies. For this study, Global

Moran’s I was used to indicate the degree of spatial clustering for

the materials in the LMA dataset, as well as the statistical

significance of this clustering. Moran’s I values can vary

from −1 to 1. A value approaching 1 indicates strong spatial

clustering, −1 indicates strong spatial dispersion, and 0 indicates

the absence of large clusters (Figure 3).

The global Moran’s I of a spatial random variable X is:

I � n

W

∑
n

i�1
∑
n

i�1
Wij(Xi − �X)(Xj − �X)

∑
n

i�1
(Xi − �X)2

Where n is the number of spatial units indexed by i and j;X is the

variable of interest (in our case, kg of materials reused); X is the

mean of x; Wij is a queen weight matrix of spatial weights with
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zeroes on the diagonal, whereWij � 1 if cells i and j share an edge

or a vertice; and W is the sum of Wij. A p-value was also

calculated for the global Moran’s I values for each material using

a Monte Carlo method. Further explanation can be found in the

Supplementary Materials.

Aggregating the waste reuse data at different scales produced

varying results for spatial clustering. This is a common

phenomenon seen in geography, and is known as the

modifiable areal unit problem (MAUP) (Openshaw 1983).

The MAUP is a source of statistical bias that comes from

aggregating point data into polygons. The bias takes two main

forms: the scale effect, and the zone effect. Figure 4 below shows

how the representation of point location data can be significantly

changed by changing the scale (Figure 4A) and zone (Figure 4B)

of aggregation.

In order to address the MAUP scale effect, each material type in

the dataset was aggregated to grids of different cell sizes, from

1–50 km. To address the zone effect, each grid was shifted randomly

four times. For each grid variation (in scale and position), the Global

Moran’s I and p-value [of the test E(I) = 0] were calculated. The

resulting 5 Moran’s I values (1 original + 4 shifts) at each cell size

were then plotted onto a graph with Moran’s I on the y-axis and cell

size on the x-axis. A LOWESS (locally weighted scatterplot

smoothing) trendline was then used to estimate the cell size

which results in the strongest spatial clustering, see Figure 5 below.

The cell size which results in the strongest spatial clustering

can be identified by varying the cell size for each material. This is

important because spatial clustering for different materials can

occur at different scales—from neighborhoods, to cities, to

provinces. With this method of varying cell sizes for each

material, the different spatial scales of different materials can

be understood and compared.

Usually, the relatively large number cell sizes in this study

would require multiple comparison corrections to account for

false positives in order to establish statistical significance.

However, we argue that this is irrelevant in this study. The

theoretical aim of this study is to test an infinite number of cell

sizes between a minimum and maximum (1–50 km), whereas

FIGURE 2
Aggregating point data to polygon data by overlaying grid, figure created by authors.

FIGURE 3
Illustration of how map clustering affects Moran’s I score. Image adapted from (Kirkegaard 2015).
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multiple comparison corrections account for a finite amount of

hypotheses. For a more detailed explanation, refer to the

Supplementary Materials.

Local Moran’s I—locations of spatial
clusters

Finally, local spatial autocorrelation (Anselin 1995) was used

to identify the locations of clusters for each material type. Unlike

global spatial autocorrelation, local spatial autocorrelation

focuses on the relationships between each observation (each

grid cell) and its neighbors, rather than providing a single-

number summary for the whole map. While global Moran’s I

accesses the strength of clustering of a map as a whole, local

Moran’s I identifies the location of clusters on the map. The

formula for local Moran’s I is similar to its “global” counterpart;

the only difference is that, while the global Moran’s I formula

iterates through all pairs of polygons, the local Moran’s I formula

only iterates through the neighbors of one polygon. The formula

for local Moran’s I is shown below.

The local Moran’s I of a spatial random variable X is:

Ii � Xi − �X

S2i
∑
n

j�1, j ≠ i

Wij(Xj − �X)

Where Xi is an attribute for feature i, �X is the mean of the

corresponding attribute,Wij is the spatial weight between feature

i and j, and:

S2i �
∑
n

j�1, j ≠ i
(Xj − �X)

2

n − 1

With n equating to the total number of features.

The significance of a local Moran’s I value is determined in

the same fashion as global Moran’s I, except that the permutation

is carried out for each observation in turn, resulting in a p-value

for every polygon on the map (as opposed to one p-value for the

whole map).

FIGURE 4
(A) Scale effect of the modifiable areal unit problem (GIS Geography 2022). (B) Zone effect of the modifiable areal unit problem (GIS Lounge
2018).

FIGURE 5
Creating the LOWESS trendline that shows cell sizes with strongest spatial clustering for food reuse. Charts created by authors.
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In order to identify the types of clusters, local Moran’s I

calculations are combined with theMoran scatter plot. This plots,

for each polygon (such as a grid cell of a map), its value on the

x-axis (such as kg waste reused), and the average value of its

neighbors on the y-axis (also known as spatial lag). By separating

the Moran’s scatter plot into four quadrants and calculating each

polygon’s significance, we can define locations as spatial clusters

of either high values surrounded by high values (hotspots) or low

values surrounded by low values (cold spots); as well as spatial

outliers that are low values surrounded by high values

(doughnuts) or high values surrounded by low values

(diamonds). An example of a Moran’s scatter plot and its four

quadrants is shown in Figure 6 below.

Results

Global Moran’s I—degree and scale of
spatial clustering

By mapping waste reuse locations on a gridded map of the

Netherlands, varying the cell sizes of the grids, and calculating the

global Moran’s I value for each of these maps, the strength and

scale of spatial clustering for waste reuse for the different material

types can be identified. For more details on this process, please

refer to the materials and methods section. For each material, the

Moran’s I value for each cell size was compared to a random case,

where the same values were used but the coordinates were

randomly shuffled. The resulting charts and more detailed

explanation can be found in the Supplementary Materials.

The resulting line charts (Figure 7) below shows how varying

cell sizes for aggregation affects the degree of spatial clustering

(Moran’s I) and statistical significance (p-value) of each material

in the waste reuse dataset. For both plots below, the x-axis

represents the cell sizes of the grid map used to aggregate the

data, varying from 1 to 50 km. For Figure 6A, the y-axis

represents the global Moran’s I value, while for Figure 6B, it

represents the p-value. As seen in the Figures below, the majority

of materials and cell sizes resulted in p-value ≤ 0.05, with the

exception of the materials glass and textile.

Figure 8 below shows how the strength of clustering (y-axis,

represented by global Moran’s I) is affected by cell size used for

aggregation (x-axis), after statistically insignificant cell sizes and

materials have been eliminated.

As seen in Figure 7, the trendline for most materials forms a

peak, meaning that most materials have an “best fit” aggregation

cell size where spatial clustering is the most prominent. For each

material in the LMA dataset, the “best fit” cell size, as well as the

global Moran’s I value and p-value for that cell size, is

summarized in Table 1 below.

Local Moran’s I—location of spatial
clusters

Once the global Moran’s I and p-values have been

determined for each material at each cell size, we are able to

identify the locations of clusters for each material. There are four

types of clusters: hot spots (red, high-high), cold spots (blue, low-

low), doughnuts (light blue, low-high), and diamonds (pink,

high-low). For more details on the four types, please refer to the

materials and methods section. Figure 9 below shows, for each

FIGURE 6
Moran’s I scatter plot (Anselin, 2020).
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material, the locations of clusters using the minimum cell size,

the “best fit” cell size derived from the previous global Moran’s I

chart (Figure 8 and Table 1), and maximum cell size. The

minimum and maximum cell size is determined by the

smallest or largest cell size for each material that still

produced a p-value lower than 0.05 for the global Moran’s I

calculations (Figures 7, 8).

Discussion

The aim of this study was to understand the insights and

caveats that can be derived from spatial clustering analysis of

waste reuse locations. So far, this paper has presented the results

of global and local Moran’s I analysis, on the strength, scale, and

location of waste reuse clusters in the Netherlands. This section

will elaborate on the insights and caveats that can be derived from

these results.

Insights from results

The opportunities of using spatial clustering on waste reuse

data to generate insights for circular regional development are

presented in the paragraphs below.

In terms of global spatial autocorrelation results (global

Moran’s I), if a material has a high global Moran’s I value

and a p-value of less than 0.05, it indicates that its locations

of reuse form a strong spatial pattern when displayed on a

map. We can therefore conclude that the higher the Moran’s I

for a material, the more affected it is by geography, and the more

important it is to use a spatial perspective to analyze this material.

All the materials considered, except for glass and textiles, had

p-values lower than 0.05, meaning there could be spatial

dependence, and that spatial clusters exist. This indicates that

it would be fruitful to analyze these materials from a spatial

perspective.

However, it is not meaningful to compare global

Moran’s I values for different materials, because different

materials have a “peak” Moran’s I at different cell sizes (for

more explanation of cell sizes and Moran’s I, please refer to

the results section). This can be shown in Figure 10 below,

where mineral reuse locations have stronger clustering from

cell sizes 2–12 km, while wood and paper reuse locations

have stronger clustering from cell sizes 12–50 km. As seen in

the graph, an answer cannot be given on whether minerals

reuse locations are more spatially clustered than wood-

paper, because this depends on the cell size used for the

analysis.

The effect of cell size on the global Moran’s I value can be

explained with Figure 11, where the map of mineral waste reuse is

plotted as a 3D surface, with the x and y axis representing the

longitude and latitude, and the z axis representing the amount (in

kg) of mineral waste reuse.

When the cell size is too small (~2 km), the 3D plot is

highly irregular; and when the cell size is too big (~40 km), it

resembles a flat surface. For both cases, the “resolution” of the

grid is either too small or too big to form an identifiable spatial

pattern. On the other hand, when plotting the cell size at

which the global Moran’s I value is the highest (6 km), clear

clusters can be identified in the form of identifiable peaks and

troughs. This illustrates that the “best fit” cell size optimizes

between cell sizes that are too small (or too detailed) and too

big (or too vague).

FIGURE 7
(A) Effect of cell size on Moran’s I value; (B) effect of cell size on p-value. Charts created by authors.
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Since the highest Moran’s I value for minerals occurs with

6 km·cell sizes, it can be stated that 6 km is the resolution at

which mineral reuse locations should be spatially analyzed.

Explained more technically, when the locations of mineral

reuse is aggregated to a grid with cell sizes of 6 km, the

strongest spatial pattern (clustering) can be observed. This

also indicates that, within clusters of mineral waste reuse

locations, most locations are, on average, 6 km away from

each other.

As seen in Figure 12 below, locations of reuse for minerals,

fertilizer, food, and mixed construction materials all have a global

Moran’s I value that peaks at ~7 km. On the other hand, the

curves for plastic and metal both form an m-shape, with two

peaks at different cell sizes. The first peak is similar for both

materials, and happens at ~20–25 km. The “best fit” cell size for

wood-paper is somewhere in between the other materials, with

an “best fit” cell size of ~15 km. Finally, there was no clear “best

fit” cell size for aggregating the reuse locations of machinery and

electronics.

Materials with a best fit cell size of 7 km (minerals, fertilizer,

food, and mixed construction materials) are in the construction

and agricultural industry; whereas materials with peaks of

20–25 km (plastic and metal) are more associated with

consumer products. Arguably, the industries with smaller cell

sizes (construction and agriculture) have more detailed spatial

requirements than the industries with larger cell sizes (plastic and

FIGURE 8
Effect of cell size on Moran’s I value for all materials, created by authors.

TABLE 1 Best fit cell size, Moran’s I, and total reuse in tonnes of each material.

Material Best fit cell size
(km)

Moran’s I Total reuse (tonnes)

Minerals 6 0.40 26,500,000

Plastic 24 0.32 451,000

Wood-paper 15 0.36 1,260,000

Fertilizer 6 0.30 1,200,000

Food 7 0.45 1,280,000

Machinery-electronics 15 0.27 22,409

Metal 25 0.39 1,100,000

Mixed-construction-materials 7 0.37 8,420,000
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metal). Construction and agriculture are more closely related to

cities—most of the activities of the construction industry happen

in cities, whereas most agricultural activities happen away from

cities.

Reuse of materials in the construction and agricultural industry

could also be more distributed than other materials like metal or

plastic. The reuse ofmetal would require large scale machinery at high

costs, resulting in centralized locations; whereas reuse of minerals

(such as concrete aggregate) can easily be done at any construction site

in the country. For industries with distributed reuse locations, a reuse

location could be found every few kilometers, whichmight explain the

lower best fit cell sizes for the construction and agricultural industry.

From a policy or governance perspective, the resulting

spatial scales for each material might indicate the governance

level at which these materials could be manipulated—from

neighborhoods, to municipalities, to provinces.

We also investigated how the “best fit” cell size of each

material is affected by other attributes of the material: total kg

reused for the whole country, percentage of areas with zero

values, and the Moran’s I value. It was found that these

attributes had a weak correlation with the “best fit” cell

size, as seen in Figure 13 below. This indicates that the

“best fit” cell size for each material provides insights that

could not have been obtained using other material attributes,

suggesting that there is value in finding the “best fit” cell size

for each material.

The potential insights gained from the local spatial

correlation results are summarized in the paragraphs below.

The results are shown as a map of hotspots, cold spots,

doughnuts, and diamonds, and can be seen in Figure 8 in the

results section.

For almost all materials, hotspots seem to be concentrated

in the south of the country, roughly around the regions

around Amsterdam, The Hague, Rotterdam, and

Eindhoven. This is more extreme in the case of machinery

and electronics, where the hotspots form a clear line running

along the railway line from The Hague to Roermond. The

exception is fertilizer reuse hotspots, which seem to be

located around the north east of the country (Figure 14).

Cold spots, on the other hand, indicate areas that have a

significant cluster of low waste reuse. Most cold spots for most

materials are located in the North-West of the Netherlands,

where the Wadden islands are, as well as the South-West near

the border with Belgium. The exception is food reuse

FIGURE 9
Maps of hotspots (red), cold spots (blue), doughnuts (light blue), and diamonds (pink) ofmineral reuse in theNetherlands. For hotspotmaps of all
material types, please refer to the Supplementary Materials. Maps created by authors.

FIGURE 10
Comparing cell sizes for minerals and wood, chart created by
authors.
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locations, where cold spots are present on the north-east of the

country as well (Figure 14).

Doughnuts indicate areas of low value surrounded by high

value, whereas diamonds indicate areas of high value surrounded

by low value. These location types are more distributed across the

country, and don’t seem to form a distinguishable pattern.

The most evident insight from the local spatial

autocorrelation maps, comes from the location of hotspots.

These results can be used as a foundation for further research.

Further investigation into hotspot locations using spatial

regression methods can explain why hot spots are where they

are. Additionally, hot spot maps can be used to imagine future

(alternative) scenarios, understanding the co-location of future

waste production, processing, and reuse.

Looking at the hot spot maps at different cell sizes, it

becomes evident that the concept of “hot spot” should be

applied to an area (or region), rather than a given point on

the map. In the same way that a country can be financially

wealthy at the national level but may have lower-income areas

at the regional or local level, one location can be said to be a hot

spot for one given cell size while the same point may or may not

be part of a hot spot for other cell sizes. This suggests that one

point on the map plays a different role within a neighborhood,

city, province, or country. This has consequences for the

realization of circular cities, as different spatial scales

(neighborhood/municipal/regional/national) would result in

different perspectives on the hot spots, prioritizing different

areas as a consequence.

FIGURE 11
Using Moran’s I to optimize cell size, for the case of mineral reuse locations. For an interactive version, please see the Supplementary Materials
document. Charts created by authors.

FIGURE 12
(A) Materials with best fit cell size of 7 km, chart created by authors. (B) Materials with best fit cell sizes higher than 15 km, chart created by
authors.
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Research limitations

The limitations of using spatial clustering methods (Global

and Local Moran’s I) on waste reuse data to generate insights for

circular regional development are presented in the paragraphs

below. For general limitations of using waste data to monitor the

circular economy, please refer to the Supplementary Materials

document.

Generally, spatial statistics require a large number of

datapoints to be conducted. Therefore, for spatial statistical

analysis, the phenomenon examined (in this paper, material

reuse) needs to have many locations. Just because a material

has many reuse locations, however, does not mean that it should

be prioritized in a circular economy. As a consequence, spatial

research on circular economy neglects materials which have a

large environmental impact but are only concentrated in a few

FIGURE 13
The effect of total kg (kgTot), percentage of zero values (percZero), Moran’s I (mi_obs) on best fit cell size (y-axis). Charts created by authors.

FIGURE 14
(A) Hotspots for all materials in the LMA dataset. Map created by authors. (B) Cold spots for all materials in the LMA dataset. Map created by
authors.
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locations. In this study for example, glass and textiles were

eliminated from the study, even though they may have a

significant impact on the environment. Moreover, this study

only focused on locations of waste reuse, without taking into

account other activities in the waste-to-resources supply

chain—locations of material stock, waste production, and

waste processing.

Limitations for this study’s spatial analysis methods can be

found in the interpretation of the “best fit” cell size and local

Moran’s I. The “best fit” cell size should indicate the best

resolution to examine a material by optimizing the trade-off

between cell sizes that are too big and too small. This can be seen

in the global Moran’s I results, where the “best fit” cell size for a

material is the cell size at which spatial clustering is the strongest.

Following this logic, it would be expected that the hot spot

maps made with the “best fit” cell size balances the trade-off

between cell sizes that are too big or too small. When cell sizes are

too small like Figure 15 below, the map is precise but inaccurate.

When a hotspot is indicated on this map, the reader can indicate

the precise 3 by 3 km squared location that is a hotspot, but at the

same time, it’s more likely that this hotspot could have appeared

by chance. In other words, this hotspot location might not have

been statistically significant even if there had been minor changes

to the material reuse rates there. On the other hand, when cell

sizes are too big like Figure 15 below, the map is imprecise but

accurate. When a hotspot is indicated on this map, the reader can

only indicate a square of 49 × 49 km2—too large to be

informative, and therefore imprecise. But, at the same time,

it’s less likely that this hotspot could have appeared by chance.

Although it is clear in theory that a hotspotmap using the “best

fit” cell size is the most informative, this is not so evident in

practice. For example, when examining Figure 16 below, which

shows the hotspotmaps of food reuse locations with theminimum,

“best fit,” andmaximum cell size, it is tempting to say that the map

with the minimum cell size is the most informative. While the

minimum cell size map shows distinct areas as hotspots, the “best

fit” cell size map shows hotspots as one large area covering almost

the whole south side of the country.

This uncertainty from choosing between the minimum or

best fit cell size indicates two potential conclusions: either that the

best fit cell size is not relevant for other spatial analysis methods;

or that the minimum cell size map gives a false impression of

accuracy and the “best fit” cell size should be chosen. If we accept

the second potential conclusion for the hotspot maps in

Figure 14, the “best fit” cell size map (with cell size = 7 km)

would provide the best possible representation of reality. Smaller

cell sizes may look more precise and informative, but they are too

sensitive to provide reliable information on the exact shape and

number of clusters.

This indicates an important observation on spatial data

analysis: while technological advancement has allowed for

unprecedented precision on location data, spatial analysis

results do not result in the same amount of precision. While

LMA data has the precise street addresses for reuse locations, the

hotspot maps created have a far lower precision, ranging from

6 to 25 km depending on the material.

Recommendations for further research

More experimentation can be done with spatial statistical

methods to identify the spatial characteristics (such as land use,

density, and accessibility) that affect the amount of waste reuse.

In other words, this study has identified where waste reuse

clusters are, the next step is to identify why the clusters are

there. This can be done through spatial regression methods,

which could indicate the relationship between waste reuse in a

location with its associated spatial characteristics. An alternative

would be to explore the same questions qualitatively, finding

historical, social, or political reasons for waste reuse clusters. The

factor of time could also be incorporated into the analysis,

allowing a deeper understanding of how clusters change over

the years. Additionally, waste material categorization can be

improved to include information on re-usability. Material

types can have a “re-usability score,” or could be categorized

as a material, component, or product. An example can be found

in (Sileryte et al., 2022).

Other spatial autocorrelation methods beyond Moran’s I,

such as Geary’s C, can be used to analyze the same dataset of

waste reuse. Comparing Moran’s I to other spatial

autocorrelation methods would allow researchers to find out if

the results of this study are merely an artifact of the Moran’s I

statistic.

More understanding is needed for the entire “waste to

resource supply chain.” Future studies could look beyond

locations of waste reuse to examine locations of waste stock,

production, and processing. A network perspective could be

taken for this line of study, where aspects such centrality and

travel distances could be incorporated.

More work could be done on linking spatial statistical

results to policy ambitions. This would require a deeper

understanding of the policy ambitions of the Netherlands

and the European Union (EU), especially in terms of

circular economy and spatial development (Van den Berghe

and Verhagen 2021; Verhagen et al., 2021; Sileryte et al.,

2022). have made a start here, developing tools that

provide information to aid policy makers in making

decisions related to circular regional development.

Finally, spatial statistical methods have the potential to

simulate future scenarios to determine the feasibility of

current policies related to circular regional development.

Future demand for materials could be matched to future

supply of secondary resources (Verhagen et al., 2021).

Demand and supply matching could be simulated at different

scales, to determine the feasibility of “closing the loop” at the

neighborhood, city, provincial, or country level. Simulations can
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also be made from the perspective of disaster analysis, imagining

future scenarios of extremematerial scarcity, where limitations of

the global supply chain could lead to substitutions with local

secondary resources.

Conclusion

In conclusion, this paper added a spatial perspective to

existing urban metabolism studies, by answering the research

question, “How does analyzing the spatial clustering and

hotspots of waste reuse locations generate insights for the

circular economy, and what are the limitations of these

insights?” The research question was answered by

calculating the global and local spatial autocorrelation

(global and local Moran’s I) for materials in the waste flow

dataset of the national waste registry of the Netherlands.

The global Moran’s I values indicated that the reuse locations

for all materials except for glass and textiles were spatially clustered

in the Netherlands. The materials with spatial clustering are:

minerals, mixed construction materials, wood and paper,

metals, plastics, food, fertilizer, and machinery and electronics.

By varying the cell sizes used to aggregate the reuse location data, it

was found that each material had an “best fit” cell size that

optimized the trade-offs between cell sizes too large and too

small. Materials associated with the construction and

agriculture industry (minerals, mixed construction materials,

food, and fertilizer) had an “best fit” cell size of 7 km, wood

and paper of 15 km, metals and plastics of ~20–25 km, but

machinery and electronics had no clear “best fit” cell size. Local

spatial autocorrelation results were used to generate maps of

hotspots, cold spots, doughnuts, and diamonds for each material.

From the results, the potential and limitations of using these

results to find insights for circular regional development were

FIGURE 15
Trade off between large and small cell sizes for hot spot mapping. Maps and text boxes created by authors.

FIGURE 16
Comparing hot spot mapping with minimum, best fit, and maximum cell sizes. Maps created by authors.

Frontiers in Built Environment frontiersin.org15

Tsui et al. 10.3389/fbuil.2022.954642

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2022.954642


identified. In terms of potential insights, the “best fit” cell size

identified for each material could indicate the scale or resolution

at which the material could best be understood with additional

spatial analysis, the potential governance level of that material

(neighborhoods, cities, provinces, and country), or its spatial

attributes, such as its relationship to urban areas or level of

centralization. The “best fit” cell size is the cell size that

maximizes Moran’s I and allows the researcher to display the

(aggregated) map that is the most highly clustered. The hotspots

maps generated from local Moran’s I values indicate which

regions could facilitate reuse activities for a particular material.

On the other hand, there are also limitations to using spatial

analysis results for circular economy insights. Waste data limits the

focus of studies to material reuse strategies (such as recycling or

incineration), while ignoring product life extension strategies (such as

design or repair).Waste data is also difficult to categorize—categories

that are too general, such as “metal” for example, do not provide

sufficient information about the type of metal. Categorizations in

waste dataset also often cannot match the specificity of new product

material requirements. Results also lack the network or relational

perspective of the whole “waste to resource supply chain.” More

generally, spatial analysis for a circular economymay fall into the trap

of over-emphasizing on materials associated with many locations,

rather than a high environmental impact.

This study makes both theoretical and practical

contributions to existing knowledge on urban metabolism

and circular economy. In terms of theoretical contributions,

we have shown an example of using spatial analysis methods

to study waste reuse locations, in order to add a spatial

perspective to the existing literature on regional material

flows (urban metabolism) and urban governance (circular

cities) for a circular economy.

The spatial perspective allows for a more detailed

understanding of the locations of waste-to-resource flows by

examining smaller spatial units—looking at waste reuse per

neighborhood rather than per city, province, or country.

Moreover, this perspective provides more objective descriptions

of a material’s spatial characteristics (such as spatial clustering,

scale), which goes beyond geo-visualization in the form of

mapping. By varying aggregation resolutions to find an “best

fit” cell size, this study also contributes a potential method for

addressing the modifiable areal unit problem (MAUP).

Finally, with further development, we hope that this line of

research could ultimately inform spatial policy, allowing existing

circular city plans of municipalities, provinces, and countries to

expand their reach beyond governance and policy and towards

spatial and regional planning.
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