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The integrated use of building information modeling (BIM) and geographic

information system (GIS) is promising for the development of asset

management systems (AMSs) for operation and maintenance (O&M) in smart

university campuses. The combination of BIM-GIS with cognitive digital twins

(CDTs) can further facilitate the management of complex systems such as

university building stock. CDTs enable buildings to behave as autonomous

entities, dynamically reacting to environmental changes. Timely decisions

based on the actual conditions of buildings and surroundings can be

provided, both in emergency scenarios or when optimized and adaptive

performances are required. The research aims to develop a BIM-GIS-based

AMS for improving user experience and enabling the optimal use of resources in

the O&M phase of an Italian university. Campuses are complex assets, mainly

diffused with buildings spread across the territory, managed with still

document-based and fragmented databases handled by several subjects.

This results in incomplete and asymmetrical information, often leading to

ineffective and untimely decisions. The paper presents a methodology for

the development of a BIM-GIS web-based platform (i.e., AMS-app) providing

the real-time visualization of the asset in an interactive 3D map connected to

analytical dashboards for management support. Two buildings of the University

of Turin are adopted as demonstrators, illustrating the development of an easily

accessible, centralized database by integrating spatial and functional data,

useful also to develop future CDTs. As a first attempt to show the AMS app

potential, crowd simulations have been conducted to understand the buildings’

actual level of safety in case of fire emergency and demonstrate how CDTs

could improve it. The identification of data needed, also gathered through the

future implementation of suitable sensors and Internet of Things networks, is

the core issue together with the definition of effective asset visualization and

monitoring methods. Future developments will explore the integration of

artificial intelligence and immersive technologies to enable space use

optimization and real-time wayfinding during evacuation, exploiting digital

tools to alert and drive users or authorities for safety improvement. The
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ability to easily optimize the paths with respect to the actual occupancy and

conditions of both the asset and surroundings will be enabled.

KEYWORDS

BIM, GIS, asset management, operation and maintenance, smart campus, crowd
simulation, digital twins, data integration

1 Introduction

Recently, several universities borrowed the smart city concept at

the campus scale in the aim of defining innovative digital AMS to

provide more satisfactory user experience, in addition to an optimal

and more resilient use of resources during the low digitalized and

investigated O&M phase (Lu Q. et al., 2020; Moretti et al., 2021;

Ward et al., 2021; Qiuchen Lu et al., 2019).

Indeed, BIM-GIS integration (i.e., GeoBIM) is promising for

the development of smart campuses and digital twins (Zaballos

et al., 2020) aimed at simulating building behavior in the actual

conditions of both the surrounding and interior environment,

providing prompt decisions through contextualized data. The

GeoBIM approach provides several advantages particularly when

applied together with Internet of Things (IoT) networks and

artificial intelligence (AI) systems with the aim of developing

cognitive digital twins (CDTs), that is, buildings with cognitive

functions able to autonomously and dynamically react to

environmental changes. The dynamic, resilient, and

heterogeneous nature of CDTs could be the solution for the

management of complex and variable systems, such as large and

diffused university assets, scattered on the territory. CDTs can be

developed starting from DT and then providing them with

cognitive functions using AI systems (Yitmen et al., 2021).

Nevertheless, this is possible only if a centralized, accessible,

scalable, and well-structured database is available (Villegas-Ch

et al., 2019; Deng et al., 2021). Thus, data structuring through a

holistic information management (IM) approach is key and

represents the focus of the first phase of the present research.

The research tackles the development of an AMS app, based on

BIM–GIS integration, for the O&M phase of the University of Turin

(i.e., UniTO), chosen as a pilot case. Its vast building stock is scattered

through the territory of Turin and its surroundings, representing one

of the largest, diffused Italian campuses with a huge catchment area.

Nonetheless, its management system is still fragmented and poorly

digitalized, entailing a strong information asymmetry among

stakeholders which prevents the exact awareness of its consistency

and use. In the last academic year, despite the pandemic in progress,

80,856 students enrolled at UniTO, with a growing rate of around 4%

in the last 5 years. Also considering teaching, administrative, and

technical staff, it represents the management of a small town with a

high level of complexity. It was estimated that the yearlymanagement

expense would amount to 40 million euros; thus, even a little

improvement can provide significant savings.

In particular, the research has two main purposes. The short-

term goal is to provide administrators with awareness about the

actual UniTO asset consistency and distribution through a digital

AMS providing both spatial and functional attributes with the

aim of optimizing space occupancy and resources use. The long-

term goal concerns the development of a smart campus through

interconnected CDTs aimed at several purposes

(i.e., management of energy, facility, mobility, and emergency)

and providing promptly reacting buildings, autonomously

optimizing their behavior based on both historical, real-time,

external, and internal contextualized data (Desogus et al., 2017;

Yitmen et al., 2021). The first objective is provided through the

development of an AMS app, enabling the visualization of the

UniTO asset through an interactive 3D map based on BIM-GIS

integration. The paper illustrates in-depth how the AMS app

gathers all the data currently separately handled by several

directorates using a centralized and flexible database, in order

to enable holistic asset management. Concerning the second

objective, such a database is suitable to develop future consistent

CDTs aimed at managing both ordinary and emergency

scenarios. Among the latter, fire emergencies are the most

probable in university campuses and are still less investigated

with respect to facility or energy management (i.e., ordinary

scenarios) (Chagnon-Lessard et al., 2021). The main features of a

CDT are summarized, exploring how it could provide dynamic

and active support during building evacuations in fire

emergencies. With this aim, a crowd simulation methodology

is developed and exploited to check the current building fire risk

level, in addition to identifying required data, which should be

found in the centralized database, also collected in real-time by

means of IoT systems, which will be implemented in the future.

Furthermore, two demonstrators with different levels of

complexity were chosen among the UniTO building stock.

The former, due to its modest size and simple geometry, was

identified as the most suitable to implement and test the

methodology developed to integrate buildings in the AMS app

and was then replicated for the whole asset. The latter was

identified as a complex building suitable to reiterate and tune

the methodology, in addition to showing one of the AMS app and

centralized database’s possible applications through the

implementation of crowd simulation in case of fire

emergency, based on actual space occupancy and conditions.

2 Literature review

The literature review was conducted on previous and current

approaches related to the main topics tackled, that is, BIM-GIS
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integration, smart campuses, and asset management (AM) with a

focus on the O&M phase, CDT development, and crowd

simulation.

2.1 BIM-GIS integration

BIM was developed with the main aim of managing the

whole building lifecycle through parametric models fed with

relevant information (Eastman et al., 2011), promoting

collaboration and information sharing among stakeholders

and boosting productivity in the construction industry (Bryde,

2013). On the other hand, GIS emerged as a tool for acquiring,

storing, retrieving, transforming, analyzing, and reproducing

spatial data at the territory scale (Burrough, 1986). This

system enables spatial analyses through tailor-made

parameters with spatial and non-spatial attributes, providing

large amounts of data stored in a relational database (Liu

et al., 2017).

Recently, due to the growing need of resilient smart cities,

BIM and GIS integration (i.e., GeoBIM) has become a key

research topic, able to support and enhance data integration,

urban management, and strategic decision-making (Yamamura

et al., 2017), providing many advantages and useful applications

(Shkundalov and Vilutienė, 2021). Nevertheless, BIM and GIS

are not fully interoperable domains: they both exploit

information models but in different ways and at different

levels of detail (Noardo et al., 2020a). This contemporarily

represents the main difference and the strength of such an

integration, as BIM facilitates information management (IM)

at the “micro-level,” providing a deep description of single

buildings and components, and GIS enables to extend this

feature at the “macro-level,” with information about the

district and building surroundings (Wang et al., 2019).

Therefore, the great power of GeoBIM consists in enabling

digital AM from the micro-scale of the single asset

component to the territorial macro-scale. However, the

different levels of detail and information provide intrinsic

incompatibilities which struggle with BIM-GIS integration,

including users, spatial sizes, coordinate systems, standardized

degrees of detail, geometric and semantic representation,

granularity levels, information storage, and access methods.

Many investigations focused on the BIM-GIS interoperability

issue with promising findings (Zhu andWu, 2021). According to

Noardo et al. (2020), the most important challenges are as

following:

• Data harmonization and consistency: All items and data

must fit together and have a specified feature class (e.g.,

georeferencing, accuracy, geometric and semantic

representation, and quantity of detail);

• Interoperability: Metadata must be structured, clear, and

thorough to correctly use them in multiple pieces of

software. Open standards such as Industry Foundation

Classes (IFC) for BIM and CityGML for GIS (Laakso and

Kiviniemi, 2012) would promote interoperability and

unchangeability among disparate dataset processes that

convert a dataset into a uniform format. IFC and

CityGML are the two most used open standards;

• Common guidelines: Guidelines shared among

stakeholders to adopt GeoBIM models rather than BIM

and GIS independently, with reduced losses during

information exchanges.

Furthermore, Ma and Ren (2017) identified three suitable

domains to apply GeoBIM: planning and design (P&D), O&M,

and the demolition phase. Floros and Ellul (2021) highlighted

how BIM-GIS integration simplifies IM throughout the whole

lifecycle and improves decision-making in the pre-construction

phase. Other studies highlighted that the activities which benefit

most from BIM-GIS integration during the O&M phase are AM

and crowd simulation with a focus on risks, energy, security,

heritage, and facility management (Ma and Ren, 2017; Song et al.,

2017; Garramone et al., 2020; Heaton and Parlikad, 2020; Fan

et al., 2021; Shkundalov and Vilutienė, 2021). Teo and Cho

(2016) provided an excellent example of BIM-GIS integration for

crowd simulation in order to support indoor and outdoor

combined emergency plannings, and they connected BIM

indoor paths with GIS outdoor paths. Despite the achievable

advantages and the need of “location and spatial links” (Date,

2009), Moretti et al. (2021) highlighted how GeoBIM was rarely

investigated in the AM field also due to the high amount of

heterogeneous data needed, with different levels of granularity,

which poses a challenge to both their collection and storage. They

provided an interesting methodology for condition assessment in

a GeoBIM model development, demonstrating good results in

data collection, visualization, and analysis, enhancing AM

decision-making processes, and highlighting the key challenge

of technological complexity to develop an AMS through BIM-

GIS integration. Finally, during the demolition phase, GeoBIM

could enhance material disposal management, reducing both

environmental impact and expenses. Furthermore,

transportation networks and material information from BIM

models might be easily integrated into GIS systems for waste

management (Al-saggaf and Jrade, 2015), with resources

optimization and cost savings.

Several studies addressed the data exchange issue between the

two systems, identifying three possible paths to convert data and

integrate them in a GeoBIM environment: from BIM and GIS to

a third system, from BIM to GIS, and from GIS to BIM (Ma and

Ren, 2017). Among them, the BIM to GIS path is considered the

optimal one (Ma and Ren, 2017), consisting in extracting data

from BIM and importing them into GIS. Similarly, numerous

studies agreed that ESRI ArcGIS Pro® paired with Autodesk

Revit® represents the best and most common authoring solution

to achieve BIM-GIS interoperability (Ma and Ren, 2017),
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providing a useful data management and visualization platform.

Finally, Zhu and Wu (2021) highlighted that BIM-GIS

integration is usually closely related to other topics such as

smart cities and DT development together with IoT and AI

(Lee and Lee, 2021). It states that BIM-GIS integration “is thought

to be the backbone of digital twins.” Impressions confirmed by

other studies (Lu Q et al., 2020; Moretti et al., 2021) stressed how

the growing demand of DTs can provide further improvements

to the BIM-GIS integration with other technologies, allowing to

understand how all these technologies exploited together can

significantly contribute to the development of smart cities and

smart campuses.

2.2 Smart campus and asset management

The wide diffusion of digital technologies and IoT networks

in the construction industry is enabling the smart building

concept to finally come true and consequently that of the

smart city (Deng et al., 2021; Shahat et al., 2021; White et al.,

2021). It is easier to achieve through BIM-GIS integration and the

recent DT advent (Deng et al., 2021), promising to provide

consistent cognitive buildings, autonomously reacting to

environmental changes toward more resilient, proactive, and

sustainable environments.

Recently, several universities borrowed the smart city

concept at the campus scale, particularly to improve the still

less investigated O&M phase and provide more satisfactory user

experience and optimal resources use (De Angelis et al., 2015;

Villegas-Ch et al., 2019; Lu Q et al., 2020; Ward et al., 2021).

Indeed, university assets could represent a “little city in the city”

with both a variety of users (e.g., students, professors, researchers,

external people, facility managers, and administrative staff) and

services (e.g., lecturers, courses, and seminars) (Abdullah et al.,

2019), leading a highly dynamic and variable environment,

which represents a complex system to manage (Naticchia

et al., 2019). The presence of several heterogeneous users with

different aims and schedules provides a high level of

unpredictability both in standard scenarios and even more in

emergency ones, when panic stresses user behavior (Naticchia

et al., 2019). Date (2009) defines AM as the systematic process of

maintaining, upgrading, and operating physical assets.

University AM is often organized on fragmented and hardly

accessible databases, still document-based, resulting in

incomplete and asymmetrical information leading to

ineffective decisions and use of resources, especially during

the O&M phase. Lu Q et al. (2020) explain that this phase

covers over 50 years and is complex to manage due to the

need for integrated, comprehensive data exchanged by

multiple stakeholders. Seghezzi et al. (2021) state that this

phase proved to be the most expensive of the whole asset life

cycle. Thus, efficient space management according to occupancy

flows, considering users’ behavior in addition to the needs for

supplies and services have strong impacts on building usability,

causing resource waste and an increase in management,

operational, and maintenance costs if inadequately managed

(Bosch et al., 2014; Lindkvist, 2015; Nical and Wodynski,

2016). Hence, a dynamic and intelligent AMS based on the

principles of IM can support decision-making processes and

provide a more comfortable environment along with reduced

costs (Qiuchen Lu et al., 2019; Lytras and Visvizi, 2021; Moretti

et al., 2021; Seghezzi et al., 2021). Nonetheless, the O&M phase

still lacks a holistic system to manage information spread in

several databases (Qiuchen Lu et al., 2019; Moretti et al., 2021),

particularly relevant in smart campuses.

Despite many studies tackled smart campus development

with interesting results (Chagnon-Lessard et al., 2021), there is

still not a unique definition; however, Dong et al. (2020)

identified six main features, that is, context-aware, data-

driven, forecasting, immersive, collaborative, and ubiquitous.

Thus, data and their contextualization have a key role,

providing more valuable information (National Infrastructure

Commission, 2017, Qiuchen Lu et al., 2019) and more aware

decision-making processes. These are critical features also for the

development of valuable DTs for universities AM (Qiuchen Lu

et al., 2019). Therefore, a switch from fragmented document-

based approaches to digital collaborative ones is needed with

great benefits from both BIM adoption and digitalization (Date,

2009; Roberts et al., 2018; Love and Matthews, 2019; Moretti

et al., 2020). An optimal IM strategy is still a relevant challenge to

enable the transition toward full digital AM, in particular,

information protocols to ensure the availability of accurate

information at the right time, to the proper subject, in the

required format (Chen et al., 2015). Barrett and Finch (2013)

also argue that a holistic view is needed to consider

heterogeneous but interlinked factors, which influence several

ordinary AM activities (e.g., maintenance, cleaning, occupancy

monitoring, and space optimization) in addition to the best value

and the best possible environment for users and owners.

Leveraging a smart campus through user-friendly, data-driven,

and analytical digital tools was demonstrated to enable an actual

holistic IM approach, useful to optimize information flow among

the several stakeholders involved throughout such a complex

asset lifecycle. In particular, BIM-GIS and DT integration

promise to provide huge benefits in decision-making processes

during the still less investigated O&M phase (Lu Q et al., 2020;

Moretti et al., 2021).

It is remarkable that most cases developed so far, both at

international and national level, adopted a “micro to macro”

approach, that is, starting from the BIM model of a single

building exploited as a case study and only later

georeferencing it through BIM-GIS integration, extending the

procedure to the whole asset (Wang et al., 2019; Heaton and

Parlikad, 2020). This works for minor-sized assets, while a similar

approach for large and diffused ones would require years of

development, preventing enhancement possibilities to reduce the
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environmental footprint and promoting higher resilience and

sustainability. Just few examples, such as Pagliaro et al. (2016)

and Moretti et al. (2021) adopted a “macro to micro” approach,

preferable when a quick overview of the asset and its distribution

can be gained, in order to check the overall consistency of the

needed interventions and optimization options. Indeed, it is

worthy to note that there is not a unique and correct method,

rather the approach depends on the purpose.When an analysis of

the consistency and distribution of the whole asset is urgently

needed to provide a strategic management tool, the “macro to

micro” approach should be preferred (Wang et al., 2019).

2.3 Cognitive digital twins and emergency
management

Despite there being no unique common definition of DT in

the construction industry, it can be described as a digital replica

of a built asset throughout its lifecycle, composed by the three key

features cited by their first formalizer (Grieves and Vickers,

2017), that is, the real part, the digital part, and the

information link between them (Boje et al., 2020; Jiang et al.,

2021; Opoku et al., 2021; Pan and Zhang, 2021). DTs are a

consolidated technology in several engineering fields such as

manufacturing and aerospace (Liu et al., 2017; Boje et al., 2020;

Jones et al., 2020), and now, they represent a disruptive solution

to overcome existing gaps in managing complex systems as those

concerning the building lifecycle (Corneli et al., 2021). The recent

growing interest in DTs is particularly due to the constant

increase of data to be managed due to both the growing

complexity of construction projects (Afsari et al., 2017) and to

the wide integration of IoT and AI technologies (Batty, 2018;

Kirchhof et al., 2020; Yitmen et al., 2021). Now, DTs can provide

buildings dynamic and timely reaction to environmental

changes, especially when applied in GeoBIM systems,

unlocking the way toward smart cities and smart campuses

(Afsari et al., 2017; Austin et al., 2020; Zaballos et al., 2020;

White et al., 2021; Zhu and Wu, 2021). They represent the

solution to fill the gap toward a lifecycle management

perspective and actually provide the long-mentioned cognitive

functions to buildings, enabling the development of CDTs

(Escherich, 2016; Du et al., 2020; Lu J et al., 2020; Stojanović,

2020; Yitmen et al., 2021).

CDT first appeared in the industry field and its first formal

and comprehensive definition was provided by Fariz and

Saračević (2017). Yitmen et al. (2021) highlight that the main

difference with the DT is that it gets data from physical entities

applying them to the virtual model, while CDT gets the same data

and compares them with virtual models including expert

knowledge. The core cognitive capability is provided by IoT

systems and machine learning (ML) analysis, ensuring

optimization through decision-making processes based on

DTs (Lu J et al., 2020). There are few examples of CDT

development so far. Al Faruque et al. (2021) identified six key

features: perception, attention, memory, reasoning, problem-

solving, and learning. Yitmen et al. (2021) developed a

framework for consistent CDTs for building lifecycle

management (BLM), arguing that various pipelines of ML and

analytical tools are needed at various lifecycle stages and

individuated “cognition” as a set of reasoning, learning, and

planning activities enabling to solve unforeseen problems

preventively when they occur. With the aim of developing

CDTs, it is feasible to start from DT development; then

providing them with cognitive functions through AI systems

(Yitmen et al., 2021); and exploiting structured, heterogeneous,

always accessible, and centralized databases (Deng et al., 2021).

Hence, exploiting IoT, ML, and AI technologies, a CDT provides

buildings that are able to autonomously adapt and optimize their

performances considering both internal and external

environmental variables. As stated before, BIM, GIS, and DTs

are considered enablers of the smart city concept, and Lu Q et al.

(2020) and Moretti et al. (2021) illustrate how BIM-GIS

integration is promising for future CDT development. GIS not

only provides the key feature of data contextualization, it also

enables data integration and DT interconnection with a

consequent added value (Bolton et al., 2018; Centre for Digital

Built Britain, 2022). CDTs are able to provide a broader decision-

making context in economic, environmental, and social

perspectives, enabling the visualization of currently unknown

and dynamic contextualized information, useful for

decentralized management based on a “single source of truth”

(SSOT) (Pang and Szafron, 2014; Bolton et al., 2018). It is

challenging to provide such an interconnection, but it could

be key to managing the O&M phase of large, diffused, and

heterogeneous campuses with multiple activities and users also

interacting with the urban context in high dynamic and

changeable scenarios. As Naticchia et al. (2019) state, users

can be described as a significant causality source due to their

extreme unpredictability, especially in variable and complex

systems with crowded spaces, requiring quick and prompt

reactions to unpredictable changes, with the aim of

automatize the responses (e.g., fire emergency, pandemic

scenarios, floods, and earthquakes). One of the most

interesting applications unlocked by DTs consists in the

ability to manage emergencies, which means complex

scenarios due to their rapid evolution and variability

(Naticchia et al., 2019; Selamat et al., 2020; Fan et al., 2021).

Particularly, in smart cities and smart campuses, where the

presence of a large number of users carrying out various

activities requires crowd management, DTs can enhance quick

decision-making and crowd coordination through active

wayfinding or alerting systems. White et al. (2021) provide a

great example of flood and crowd simulation in a DT smart city,

while Fan et al. (2021) show how data integration and

visualization enhance spatiotemporal information exchange

among relief actors, and AI enables real-time data gathering
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and analysis in emergency scenarios (Zohdi, 2020; Zhao et al.,

2021).

2.4 Crowd simulation

A crowd can be defined as a collection of individuals present

in a common environment while usually sharing common goals

with complex behavior influenced by several exogenous and

endogenous variables (Selamat et al., 2020). Generally, crowds

do not pose any serious issues; nevertheless, injury and fatalities

have sometimes been caused by inadequate escape routes and

poor crowd management (Fruin, 1993). Selamat et al. (2020)

identify crowd behaviors and space design as the two major

causes of crowd disasters or accidents during emergencies.

Among crowd behavior, panic is identified as a major reason

for life loss in crowded environments (Liu and Lo, 2011). Mutual

ignorance among the different segments or groups composing a

crowd is one of the crowd phenomena, in panic circumstances,

which contributes to and triggers accidents (Johnson, 1987).

“Front-to-back-to-front” dynamic in evacuation movement,

occurring during evacuations from buildings, was

demonstrated to cause injuries and accidents (Johnson et al.,

1994; Santos and Aguirre, 2004). Moreover, considering the

egress time from a facility, Løvås (1998) demonstrated that

evacuation time is affected by three major impact factors.

• Occupants delayed initial response: In case of fire, the delay

is mainly caused by the reduced visibility due to thick

smoke, which also influences escape route selection

(Proulx, 1997).

• Non-optimal selection of escape routes; People typically

exit by walking the same way used to enter into the

building, rather than following planned escape routes

(Shell and Matarić, 2005; Naticchia et al., 2019).

• Congestions along the escape routes, caused by different

factors and phenomena such as design shortcomings and

self-reinforcing herding effects.

The so-called herding behavior drives people acting as a

group, putting aside their capacity of choice and to act as

individuals (Saloma and Perez, 2007); it affects the vital choice

of the exit during an emergency evacuation (Almeida et al., 2013;

Lovreglio et al., 2014a). Herding behavior can heavily impact exit

choice, driving people toward a congested route rather than a

clear exit, which ensures a safer and faster evacuation, only

because perceived as a common choice (Pan, 2006; Lovreglio

et al., 2014b). This in turn can cause even greater congestion and

overcrowding, which represents a frequent cause of crowd

disasters (Haase et al., 2019).

In the literature, two main traditional approaches can be

found aiming at assessing building safety effectiveness, which are

evacuation tests (Chu et al., 2014) or compliance with

prescriptive fire emergency building codes (Sagun et al., 2008).

The former can be impractical, time and cost consuming (Kobes

et al., 2010), and dangerous when huge crowds are involved

(Selamat et al., 2020). In addition, during evacuation tests,

evacuees tend to underestimate its importance, reducing its

usefulness and preventing a decision-making process due to

panic behavior (Almeida et al., 2013). This is an important

issue as the walking decision path in normal conditions is

proven to be completely different than that adopted in

emergency conditions (Quarantelli, 1957; Shiwakoti et al.,

2008). On the other hand, the second approach, compliant

with prescriptive-based building codes, does not automatically

ensure high levels of safety during emergency evacuation (Yi

Rong et al., 2014). Several countries modified their prescriptive-

based building codes in favor of a performance-based approach

to better evaluate fire safety effectiveness, especially in terms of

the evacuation efficiency (Tavares, 2009). In the aim of

overcoming the traditional approach limitations, researchers

and experts started to develop and test computer-based

simulation of evacuation processes to assess building life

safety (Kuligowski and Gwynne, 2010). Crowd simulation was

demonstrated to be a valuable approach for the evacuation

performance-based assessment with respect to existing

methodologies to double check safety efficiency in complex

buildings (Mirahadi et al., 2019). This approach consists in a

computer-based analysis of crowd behavior exploited in the

construction industry, mostly to simulate and test what-if

scenarios both in standard and emergency situations

(Kasereka et al., 2018; Di Giuda et al., 2019) in order to

optimize design and safety measure choices (Portillo-Villasana

et al., 2017; Liu and Kaneda, 2020). Nowadays, crowd simulation

models are used by technicians to optimize building layouts

before the construction phase (Pelechano and Malkawi, 2007;

Khamis et al., 2014). In fact, crowd modeling and simulation

traditionally is applied as 1) a modeling tool to simulate crowd

and pedestrian dynamic, 2) safety risk assessment tool for spaces

or buildings also useful to optimize safety management strategies,

and 3) a design optimization approach (Zhao et al., 2017; Zhang

et al., 2018).

According to the literature, crowd simulations can be divided

into three main approaches: macroscopic, mesoscopic, and

microscopic (Yang et al., 2020). The macroscopic and

mesoscopic models are typically exploited for huge crowds in

large infrastructure as computationally efficient models

(Biedermann et al., 2016). The microscopic approach typically

models the pedestrian behavior with high precision, performing

highly detailed simulations (Biedermann et al., 2016), and the

microscopic simulation is suitable when the pedestrian flow is

close to the full capacity of the buildings and/or in the presence of

bottlenecks. Generally, in the case of high-density scenarios

(Klügl et al., 2009) or in the case of small and complex

geometries, such as office buildings and clubs (Alonso-

Marroquín et al., 2014), several microscopic models rely on
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collision avoidance algorithms and are based on vision-based

cognitive models (Ondrej et al., 2010; Hughes et al., 2015; López

et al., 2019), providing the agents with the perception of mutual

position and movements on the basis of which they act

accordingly (Moussaïd et al., 2011). It can be stated that the

simulation approach acts only on the building design variable,

analyzing and aiming at optimizing it, rather than actively

intervening in crowd behavior. This represents one of the two

major causes of crowd accidents during emergency situations,

along with the building design variables (Selamat et al., 2020).

Basically, there are two approaches to control and guide

crowds during emergency evacuations, which are as follows:

• Traditional evacuation strategies: Occupants rely on visual

signs, markers, and plans, which determine whether people

can safely leave a building (Bahamid et al., 2020) and

correct position and visibility according to the emergency

plan adopted (Cabinet Office, 2009). Consequently, fire

escape routes are frequently marked with visual signs,

despite their relatively rapid deterioration in

effectiveness with smoke accumulation on the higher

part of emergency corridors (Rea et al., 1985; Shell and

Matarić, 2005; Ibrahim et al., 2016), and it was

demonstrated that people fail to notice and follow them

when panicked (Bahamid et al., 2020). Shell and Matarić

(2005) demonstrated that even a small number of beacons

can help overcome this gap, reducing the expected egress

time. Directional audio-based systems are even more

effective in the case of multi-floor and complex

buildings. Placing beacons near stairwells, emitting an

ascending tone alerting evacuees to ascend the stairs or

a descending tone alerting to descend the stairs, could also

improve the escape time in multi-story buildings

(Withington, 2001).

• Intelligent and robot-assisted evacuation strategies were

recently implemented to overcome the typical evacuation

criticalities, proved to ensure a quicker and safer

evacuation, and efficiently guide to the shortest and

safer exit route. In addition, they detect and dynamically

act according to the environment changes in real-time by

considering density, pedestrian flow, and location of the

hazard (Tang et al., 2016). Research studies about this field

can be divided into three main categories according to the

purpose and function of the proposed systems (Bahamid

et al., 2020): 1) evacuation guidance systems (Wada and

Takahashi, 2013; Ikeda and Inoue, 2016; Zhou et al., 2019),

2) search and rescue systems (Ruangpayoongsak et al.,

2005; Murphy et al., 2008; Annuar et al., 2016; Enshasy

et al., 2019), and 3) regulation and management of the

people flow during evacuation (Boukas et al., 2015; Jiang

et al., 2016; Shan et al., 2018; Wan et al., 2020).

As previously stated, CDTs improve quick decision-making

and coordination in emergency scenarios, enabling crowd

management and enhanced evacuation strategies through

active wayfinding or advanced alerting systems (Zohdi, 2020;

Fan et al., 2021; White et al., 2021; Zhao et al., 2021). Crowd

simulation data can inform CDTs to better manage complex

systems as crowds in emergency situations within smart

campuses or cities, by optimizing dangerous phenomenon

communication and preventing the mutual ignorance among

different segments or groups of users. Moreover, they can

significantly impact the evacuation time, especially together

with VR/AR (i.e., virtual reality and augmented reality)

systems and occupancy sensors (Zhu and Li, 2021). They can

provide users with emergency alerts, preventing occupants’

delayed initial response and active wayfinding through the

safest escape way (Naticchia et al., 2019). CDTs can also

prevent congestions along escape routes and fill one of the

biggest gaps in crowd simulation: the real-time or

simultaneous crowd management acting on users’ behavior,

rather than building design, through a dynamic and proactive

reaction which prevents front-to-back-to-front and herd

behaviors (Johnson et al., 1994; Santos and Aguirre, 2004).

Furthermore, CDTs integrated with BIM-GIS platforms

inform responders and relief actors with useful, reliable, and

prompt information about accident localization, optimizing

intervention time through informed and contextualized data

(Hashem et al., 2016; Ismagilova et al., 2019; Fan et al., 2021).

3 Methodology

The methodological path defined for the wide research

project also concerning the development of future CDTs for

the O&M phase of large, diffused campuses, such as the UniTO’s

one, is shown in Figure 1 and presented in two parts.

The first part, Section 3.1, focuses on the method used to

develop the AMS app, which represents the first step of the whole

research project. It is illustrated how it involved the definition of a

centralized and scalable database and the georeferencing of the

whole university building stock through BIM-GIS integration in

a web-based 3D interactive map. A description of each step

implemented is provided:

• Data acquisition and analysis of building stock and

management processes;

• Data structuring to develop the integrated database;

• BIM-based information modeling;

• Information models georeferenced through the BIM-GIS

web-based platform;

• Business intelligence (BI) to develop interactive analytics

dashboards.
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The second part, Section 3.2, describes the methodology

developed to exploit the significant potentials of the AMS app

and the centralized database in one of its multiple possible

applications. It illustrates the methodology used for crowd

simulation applied on the second demonstrator and replicable

for the whole UniTO asset in order to map current fire risk, also

identifying needed data for future fire emergency CDTs. This

part ends with a description of data integrated in the centralized

database useful for crowd simulation, fire risk mapping, and the

development of fire emergency dashboards using the previously

illustrated approach based on BI tools.

3.1 AMS app development

3.1.1 Data acquisition and analysis of building
stock and management processes

The methodological path (Figure 1) started with the analysis

of the UniTO asset and its management system to identify

needed data already available from the involved directorates

and understand how they were managed and shared, in

addition to unveiling missing data and collecting them in

an SSOT.

At first, the UniTO’s communication channels, such as the

freely accessible website section with core activities and staff

official documentation (i.e., “transparent administration

section”), were investigated to identify the already available

data, the administrations involved in the AM, and the existing

databases and platforms. Table 1 (existent databases or

platforms, related data, and involved directorates) shows the

results of this preliminary analysis. A web platform, namely,

Opensipi, was identified, aimed at managing both spatial and

functional building attributes (e.g., dimensions, occupancy, and

mechanical assets) handled by the “information systems and

e-learning portal directorate” and the “Building, Logistics, and

Sustainability Directorate.” Furthermore, an external database,

namely, Cineca, was identified as the management platform for

student data (i.e., course catalog, enrollment data, and exams).

In-depth analysis of existing databases pointed out that

Opensipi aimed to provide a space and an AM tool to explore

and visualize the whole university building stock with its spatial

attributes using Google Maps©, in addition to interactive digital

plans with further information about single spaces (Table 2,

spatial attributes available from the Opensipi platform). Opensipi

floor plan drawings in a pdf format were useful to obtain

geometric data when official CAD drawings were not

available. Nonetheless, functional attributes useful during the

O&M phase (e.g., occupancy, timetables, furniture, mechanical

systems, and evacuation data and times) were totally missing, and

the platform was not continuously updated, so data did not

match with the actual space conditions. Thus, additional

documentation was required for the “Building, Logistics, and

Sustainability Directorate” in order to gather updated data and

plans, also identifying ongoing renovations projects, information

previously known only by the involved staff.

It was also found that Cineca provided the “Educational

Services Directorate” with two tools whose functionalities are

detailed in Table 3 (functionalities provided by Cineca tools): 1)

Esse3, for students’ academic career management and 2)

University Planner to automatically generate timetables based

FIGURE 1
Research project methodological path.
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on courses and spaces availability but without any optimization for

space occupancy. Interviews with the involved administrative and

management directorate staff highlighted that Cineca data were not

directly queryable but just accessible through dedicated interfaces.

Customized queries must be forwarded to Cineca, leading to

inefficient management since required information had to be

demanded on purpose with long processing and waiting times.

Further analysis, conducted in collaboration with the

“Educational Services Directorate,” highlighted that heterogeneous

and customized Excel sheet files were used to collect data on

academic activities, complicating information accessibility and

preventing a coordinated asset management activity.

3.1.2 Data structuring to develop the
integrated database

A fundamental step (Figure 1) concerned the definition of

useful data for the UniTO AMS app. It was crucial to define a

centralized database structured to gather needed data from

several existing sources, ensuring data interconnection and

integration in a single database, available and accessible by

each stakeholder. The centralized database was developed

starting from the existing data sources with the main aim to

ensure needed flexibility and adaptability useful for further

evolution throughout the university asset lifecycle, such as in

the case of CDT development for the O&M phase. Table 4

(collected data sources and formats) shows collected data,

related formats, and sources. The most suitable way to store

them in a flexible and accessible way was identified in relational

databases (RDBs), that is, the most secure and consolidated

system to provide data structured with a precise hierarchy

(Atzeni and De Antonellis, 1993). RDBs enable different types

of relationships between data.

• one-to-one: A record in a table is associated with one and

only one record in another table;

• one-to-many: A record in a table may be associated with

one or more records in another table;

• many-to-many: Several records in one table are associated

with several records in another table.

Thus, customized queries can be used with the aim of filtering

and aggregating data according to the intended purpose.

Currently, a significant amount of data are managed by

Microsoft Excel®, and Microsoft Access® was used to develop

the centralized relational database. In this way, a high level of

interoperability is guaranteed together with the lowest level of

data loss, also during the development of analytical dashboards

by Microsoft Power BI®, as better illustrated in the following

paragraphs.

The database structure (Figure 2) branches into 10 tables fed

with the collected data. This organization is based on forecast

data needed in future O&M activities and DT development,

individuating how different information should be linked at

different detail levels. The most suitable type of starting data

TABLE 1 Existent databases or platforms, related data, and involved directorates.

Database/platform Data Administrative directorate

OpenSIPI ▪ Building stock Information systems and e-learning portal, Building, logistics, and sustainability

▪ Building name

▪ Geometric data

▪ Building location

▪ State of use

Excel sheet files ▪ Timetables Educational services

▪ Courses

Cineca ▪ Student Educational services

▪ Student career (enrollment and exams.)

▪ Course catalog

▪ Fees

TABLE 2 Spatial attributes available from the Opensipi platform.

Data Format Data Format

Building name Format Space state of use Text

Building code Text Space height Number

Area code Number Space capacity Number

Encoding Number Area/Capacity Number

Building type Text/Number Space name Text

Building state of use Text Storeys (Building) Number

City name Text Net area (Building) Number

Address Text Perimeter (Building) Number

Floor code Text Net area (Space) Number

Space code Number
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TABLE 3 Functionalities provided by Cineca tools.

Esse3 University planner

Student lifecycle management
▪ Student secretariat
oAdmissions
oMatriculations
oEnrollment renewals
oChange of course, suspension, and renunciation
oBadge management
▪ Didactics
oCourses and course catalog
▪ Fees and right to study
oFee payment management
oAcquisition and control of income data (ISEE, SPC, and INPS databases)
▪ Student career
oAcquisition of frequencies of teaching activities
oCalendar and booking of exams
oCalculation of profit and qualification exams, with and without digital signature of minutes
oAcquisition of Credits (CFU) for didactic activities
oManagement of study periods in mobility abroad
oRecognition and validation of CFUs
oOnline thesis (UNITESI module)
oAchievement of degree
oTraineeships and internships
▪ Postgraduate studies
oDoctorates
oPostgraduate schools
oMasters
oState examinations

Classroom and resource management
▪ Planning
oFirst draft of timetable (lectures)
oCalendar of individual dates (exams)
▪ Change management
oIndividual timetable changes
oIndividual calendar changes
▪ Monitoring
oMonitoring of the actual progress of scheduled events
oStatistical analysis

TABLE 4 Collected data sources and formats.

Data Format Source Data Format Source

Building name Text Opensipi platform Space name Text Opensipi platform

Encoding (Building level) Number Opensipi platform Storeys (building) Number Opensipi platform

Encoding (area level) Number Opensipi platform Net Area (building) Number Opensipi platform

Encoding Text/number Opensipi platform Perimeter (building) Number Opensipi platform

Building type Text Opensipi platform Net Area (space) Number Opensipi platform

Building state of use Text Opensipi platform Start time (timetable) Time Department office

City name Text Opensipi platform End time (timetable) Time Department office

Address Text Opensipi platform Start-end time (timetable) Time Department office

Latitude Number Google Maps Day (timetable) Text Department office

Longitude Number Google Maps Day Number (timetable) Number Department office

Encoding (Floor Level) Number Opensipi platform Subject (timetable) Text Department office

Encoding (Space Level) Number Opensipi platform Subject code (timetable) Text/number Department office

Space typology Number New data creation Title (Building) Text University website

Space description Text New data creation Prevalent use Text University website

Space state of use Text Opensipi platform Annual income Currency University website

Equipment Text University website Annual expenses Currency University website

Space height Number Opensipi platform Course name Text Students registry office

Space capacity Number Opensipi platform Course code Number Students registry office

Number of occupants Number Department office Enrolled students Number Students registry office

Area/Capacity Number Opensipi platform
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were identified in the spatial data (“building stock” table in

Figure 2) as they are needed in most AM activities and should

not significantly change over time. Thus, the database structure

was developed starting from the central table “building stock,”

and then, on one side, it branches in data about “floors” and

single “spaces” (i.e., “space typology legend,” “timetables,” and

“staff”). On the other side, data about “titles” related to the real

property, “rental incomes,” “rental expenses,” and “degree

programmes” were branched out. It was key to define a tailor-

made encoding system, to uniquely identify building spaces and

link data across the database, overcoming current difficulties due

to duplicated codes, which prevent the correct space

identification and sometimes lead to multiple assignments.

With the aim of facilitating a smooth transition from a

management system to another, the encoding system was

arranged, starting from the one used in the Opensipi platform,

as follows:

PR1_0002_0003_A4_P005_00006

1: Province, 2: venue, 3: settlement, 4: building, 5: floor, and 6:

space.

It is made up of a two-letter code corresponding to the

province (e.g., TO as the Italian abbreviation of Turin), two

numerical codes of three spaces indicating the venue and the

settlement, a letter corresponding to the building, the letter P

followed by the floor number, and, finally, the space code number.

The future development of CDTs was also considered, and

the data structure can be expanded with additional branches

whenever new information needs to be added; in addition, the

customized coding scheme enables queries to identify the

required information at different scales.

3.1.3 BIM-based information modeling
The fourth phase of the methodology path toward the AMS

app (Figure 1) concerned the BIM model’s development and

enrichment with both spatial and functional semantic data

collected in the centralized database.

As better illustrated in Section 4, the University of Turin is

one of the largest Italian universities. Thus, it was neither feasible

nor useful to provide detailed BIM models of the whole building

stock at once; rather, a gradual approach was implemented. All

the buildings that compose the diffused campus were modeled as

masses and georeferenced using the AMS app. Two of them were

selected as demonstrators of the AMS potential and implemented

as actual BIM models with detailed information up to the room

level.

The technical drawings (plans, elevations, and sections)

provided by the “Building, Logistics, and Sustainability

Directorate” were integrated with some missing information

identified through on-site inspections. It was crucial to model

the buildings through masses, floors, and rooms in order to

obtain an adequate level of information to represent the whole

diffused UniTO asset, without overburdening the AMS app with

an excessive amount of data. Another objective was to guarantee

the digitalization and geo-referencing of the entire building stock,

FIGURE 2
Database structure.
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in order to display synthetic information suitable for ordinary

management activities (e.g., rental costs, housing title, and

number of classrooms and seats) by interacting with the

app. In the future, when differences arise while using the

AMS app for facility management and CDT development

aimed at real-time management of space and occupancy,

reduction of energy consumption, comfort management, and

so on, more detailed BIM models can be implemented and

enriched with additional data. Autodesk Revit® has been used

mainly due to three factors: 1) the possibility to represent only the

main volumes of the university building stock such as masses,

floors, and rooms, which can be further detailed in the future; 2)

the Dynamo for Revit® plugin, useful to automate both modeling

and parameter assignment processes; 3) a good level of

interoperability between Revit and Esri’s ArcGIS Pro, to

import BIM files (e.g., .rvt and .ifc format) directly into the

GIS environment, minimizing information loss (Song et al.,

2017). At the moment, the .rvt format was used to import

BIM models, but one of the future aims of the research is to

switch to the open format.

Then, the single categories of elements created (masses,

plants, and environments) were assigned to the related spatial

and functional data previously acquired and archived in the

centralized digital database, using visual programming

language (VPL) (The Dynamo Primer, 2021). In particular,

the advanced visual programming software Dynamo for

Revit® was used to integrate the semantic data shown in

Table 5 (centralized database information layer with related

spatial and functional attributes) within the parametric

models of the UniTO asset. Dynamo is an open-source

Revit interface between its API and VPL (The Dynamo

Primer, 2021) with elements, which can be linked to the

aim of defining relationships and action sequences useful to

set up tailored algorithms according to highly customized

requirements. These spatial and functional data were

structured individually within the database and then linked

to the information models. Figure 3 shows the steps

implemented within dynamo to import alphanumeric

databases and their assignment to three categories of

parametric elements (e.g., masses, floors, and rooms).

Customized nodes enabled data extrapolation from

spreadsheets and new shared parameter development in the

.txt format, assigned to each BIM model.

3.1.4 Information model georeferencing
through the BIM-GIS web-based platform

The fifth step of the methodology path (Figure 1) concerned

the actual implementation of the information models into the

web-based BIM-GIS platform, providing the real-time

visualization of the UniTO assets and its attributes in an

interactive 3D digital environment (i.e., AMS app). Such a

GeoBIM system enabled information models, spatial, and

functional data connection at once.

It was crucial to test BIM-GIS interoperability, achieved

through the “BIM to GIS” approach together with ESRI

ArcGIS Pro® and Autodesk Revit ®, currently representing the

most suitable approach, as stated in the literature review. This

choice is also due to the fact that the University of Turin already

uses ArcGIS Pro for geotechnical research and holds a campus

license.

A key step concerned the BIM models checking in the GIS

environment, to demonstrate the correct importation of

TABLE 5 Centralized database information layer with related spatial and functional attributes.

Layer Functional attribute Spatial attribute

Building
(Mass)

Building name, building code, address,
building state of use, pole, department, space
capacity, and accessibility

Degree
programme

Building floors [n°], building net area [m2], building
spaces [n°], building classrooms [n°], building offices
[n°], building restrooms [n°], building technical
rooms [n°], and dashboard link

Enrolled students [n°], professors [n°]
researchers [n°], PhD students [n°], and
employees [n°]

Plans
(Floors)

Floor name — Floor capacity [n°], Floor net area [m2], Floor height
[m], Floor technical rooms [n°], Floor classrooms
[n°], Floor offices [n°], Floor restrooms [n°], Floor
spaces [n°]

—

Floor code

Title

Accessibility

Spaces
(Rooms)

Space name — Space capacity [n°], space net area [m2], space
height [m], space equipment, space users [n°], and
dashboard link

—

Space code

Address

Building name

Floor

Space state of use

Space typology

Accessibility
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information linked to them, in addition to their accessibility and

usability. A tailored workflow was developed to check

geographical coordinates and attributes. Once the model was

imported into the GIS environment (i.e., ArcGIS Pro), vertices

(X, Y, and Z) geometrical coordinates were extrapolated through

the specific tool “Feature Vertices to Points.” Then, a vertex with

FIGURE 3
Dynamo workflow to import alphanumerical databases to parametric model elements.

FIGURE 4
BIM-GIS integration workflow to develop the AMS app.
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known coordinates was identified and used to check its

geographical coordinates and correct georeferencing in space.

Figure 4 shows the BIM-GIS integration workflow used to

model and then georeference the whole UniTO asset, finally

providing the AMS app. The BIMmodels of the whole asset were

imported in the GIS platform as georeferenced building masses,

with geometric and semantic attributes (corresponding to

“building layer” in Table 5), while the BIM models of the two

demonstrators were fully imported with geometric and semantic

information detailed from the floors up to the spaces (“floor

layer” and “space layer” in Table 5).

Once all the buildings were imported in the GIS platform, the

interactive map was generated through the web environment.

The ArcGIS Scene Viewer application was used to import the

building models as layers were configured to allow specific

queries, and then tailored slides were created to facilitate user

navigation throughout the whole asset. A QR code was assigned

to each of them and placed both at the entrance and in strategic

points of each building, enabling quick asset and data

visualization through digital devices.

3.1.5 Business intelligence to develop interactive
analytics dashboards

A further step of the methodology (Figure 1) concerned the

development of valuable tools to support strategic decisions. BI

technology was investigated as it enables both the analysis of

large amounts of data and interactive dashboard development

aimed at facilitating information visualization and

understanding, and this is key for future building

management via CDTs.

The analysis conducted in the first step of the research

revealed that Microsoft Excel® and Office® suite were the

main software used by the directorates. Thus, Microsoft

Power BI® was selected to achieve the best interoperability

through already existing tools and a plugin, which enables

ArcGIS map visualization, ensuring interoperability with the

ESRI® suite. Furthermore, power BI is internationally

recognized as one of the most suitable software to handle

large amounts of data (Shaulska et al., 2021) and in addition,

allows to work on datasets without changes to the source

dataset, preventing original data loss. Data at different levels

of detail have been analyzed to develop several dashboards

and obtain information visualization at different scales,

ranging from the macro level of the single building or

groups of buildings to the room micro level, as shown in

Section 5.

Three main types of dashboards were developed so far:

• Overall dashboards about the whole UniTO asset with

related analytical and interactive components;

• Single building dashboards were designed to visualize the

single educational center or department, its spaces, and

attributes, filtered from the whole asset visualization;

• Fire emergency dashboards help visualize crowd

simulation and fire emergency information and can be

updated in real-time by the future CDTs.

3.2 Crowd simulation methodology

The methodology and the steps outlined so far involved the

integration of information models in the AMS app with related

spatial and functional attributes. A further step concerned the

development of crowd simulations in case of fire (crowd

simulation in Figure 1), exploiting data stored in the central

database and conducted according to the methodology described

in the following paragraph.

The methodology presented here aims at visualizing user

reaction and movements in an emergency scenario, to verify the

crowding levels in all spaces and escape routes, in addition to

measuring escape time and comparing it with a reference one.

This allows investigating possible dangerous circumstances with

high-density moving crowds at critical points of a building, such

as fire exits and stairs. In addition, the methodology enables to

evaluate emergency evacuations and crowding during hazardous

events, which impede the use of one or more escape routes at a

selected building floor.

In the first step, the maximum crowding level is identified by

previous studies, and the maximum density of moving crowds

over which high risk situations can arise is equal to five people per

square meter (Still, 2011; Still et al., 2020). On the other hand, the

reference escape time (TR) is defined through the analysis of

national prescriptive regulations, considered as the maximum

time for the effectiveness of the safety measures required. It

allows investigating the actual safety of the building floors with

high-risk levels of moving crowds detected, by comparing the

measured escape time with the reference one from prescriptive

regulations.

A microscopic approach was adopted (Klügl et al., 2009) and

applied to the analysis of the so-called casual crowd (Berlonghi,

1995). Among the four influencing crowd simulations identified

in the literature review, space layout and human behavior can be

identified. Space layout can be considered in the model by

including the whole building or just a selected portion

relevant for the analysis. In the latter case, it should include

all spaces and user flows gathering in the same safe place and

using the same escape routes and stairs, ensuring simulation

reliability. In addition, limitations on space access or escape route

for predefined user groups are considered in the model setting.

The agents representing the users are controlled by an AI system,

enabling them to choose the best escape route, according to the

least effort principle and crowd behaviors, as described in Section

2.4. In particular, the model relies on a collision avoidance

algorithm based on vision-based cognitive models (Ondrej

et al., 2010; Hughes et al., 2015; López et al., 2019), providing

the agents with the ability to perceive mutual position and
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movements, acting accordingly (Moussaïd et al., 2011).

Consequently, user speed, field of view (FoV) angle, avoidance

range, and avoidance preference direction are defined. In

addition, agents are modeled considering the maximum

building, building section, or occupancy capacity, in order to

simulate the worst possible evacuation scenario. Additional

scenarios are simulated and tested by introducing a hazardous

event that prevents the use of one or more escape routes on a

selected building level, enabling agents to use only free escape

routes during the simulation. The proposed crowd simulations

aim to assess space distribution, and escape routes’ and exits’

efficacy and safety.

The third methodology step performs crowd simulation

scenarios. The first scenario considers the whole building or

the section analyzed as in the selected demonstrator. The agents

are triggered to leave their personal spaces and evacuate the

building using all the possible escape routes and exits. Then,

other scenarios are performed, introducing a hazardous event in

one or more escape routes, preventing agents from using them

during the evacuation.

Then, the fourth step involves the density map analysis

resulting from performing crowd simulation. It is the

maximum density of moving crowds reached during the

whole simulation in each point of the building. It is

particularly important to verify density values at critical points

(i.e., fire exits, stairs access, and corridors), where different user

flow intersections can provide overcrowding and accidents, as

stated in the literature review. In addition, scenario simulations

enable the identification of the building floors with high risk

levels of moving crowds, that is, density values greater than five

people per square meter (i.e., 5 p/sqm) in non-safe areas, selected

to be analyzed in the fifth step. Non-safe areas are spaces and

corridors, while safe areas are the protected and external stairs

and the safe places identified by fire emergency plans.

In the fifth step, the building floors which showed high-risk

levels of moving crowds are further analyzed, and for each selected

floor, the escape time is measured (T1, T2, . . . , Tn). This time starts

when the first agent of the floor is triggered to leave the building

and continues until the last agent has reached the safe place or the

floor exit, which leads directly to the protected or external stairs.

The measured escape time is then compared with the reference

one. If Tn <TR, the escape time is comparable or inferior to the one

defined by prescriptive regulations, safety measures are defined

based on it, and the check is satisfied. Otherwise, if Tn > TR, the

check is not satisfied, and the actual building layout, escape routes,

exits, and other safety measures are not sufficient to ensure user

safety during an emergency.

The outlined methodology for crowd simulation in fire

emergencies enabled the database integration with data

concerning the escape times and the level of fire risk of the

single building. Furthermore, it provided information useful to

develop tailored dashboards to visualize fire safety analysis of

each floor, as illustrated in Section 5.

4 Demonstrators

In this section, the pilot case and the first two selected

demonstrators are described, illustrating their main

characteristics and peculiarities that influenced their choice.

4.1 A big, distributed campus

The large and complex UniTO asset represents a widespread

campus characterized by a large catchment area in continuous

growth, with a complicated management and usability at both

the single building and urban scale. Despite the pandemic, in the

last academic year, enrollments increased by 3,300 students with

a positive trend through the previous 5 years. The building stock

is mostly concentrated in the metropolitan area of Turin and

Grugliasco, with few detached hubs. It counts 112 buildings for

an amount of almost 629,000 net square meters, mixed in the

building era, style, and destination, ranging from historical

buildings, theaters, museums, hospitals, and more recent

buildings, providing a huge heterogeneity, which further

complicates its management. Indeed, some uses are

inadequate with respect to the available spaces due to the

architectural and huge renovation expenses required to adapt

them both to functional and sustainable needs. Furthermore,

they host various activities usually mixed with others open to the

public such as exhibitions, seminars, and cinema and also include

teaching, administrative, and technical staff; basically, it

represents the management of a small town with a high level

of complexity. Although it is the third largest Italian university

with a huge catchment area, its current AMS is fragmented and

poorly digitized, entailing a strong information asymmetry

among stakeholders, which prevents the exact awareness of its

consistency and use. Consequently, administrators urgently need

the prompt perception of the UniTO asset consistency and

distribution over the territory, in addition to a management

system strongly connected with the urban space rather than

disjointed.

The illustrated management complexity explains the need for

dynamic and proactive systems for the UniTO O&M phase.

CDTs enable real-time and quick decisions to resolve or prevent

deviations from expected behaviors, both in ordinary scenarios

and in emergency ones, improving campus resilience, safety, and

sustainability. In emergencies, it is particularly needed to

promptly provide users and administrators with

contextualized and reliable information, enabling aware and

effective decisions. Proactivity and a quick response are

crucial in such high-stress situations with the presence of

panicked crowds difficult to manage. This is especially the

case in large, diffused campuses, where multiple buildings

scattered throughout the territory need to be managed and

monitored. It becomes fundamental to provide them with IoT

networks and AI systems, providing proactive and cognitive
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features useful to autonomously react to stressful situations or

deviations, based on the surrounding conditions.

4.1.1 Demonstrator one: Piero della Francesca
The building located in the northwest of Turin, which hosts

the computer science department (CSD), namely, “Piero della

Francesca,”was selected as the first demonstrator. The University

of Turin purchased a portion of a multifunctional center

(i.e., 2,850 sqm out of 170,000 sqm) that houses various

offices and commercial enterprises (Figure 5) in order to host

CDS educational, administrative, and research activities. Even

though it is small in terms of area, it experienced the largest rate

of increase in the university population in the last 5 years (i.e., 50

%), with a steady demand for new spaces.

Specifically, the university holds spaces on the ground, first,

and third floors of the building. The ground floor is mostly used

for educational purposes, while the first and third floors are used

for research and administrative purposes. The 12 classrooms on

the bottom floor can accommodate up to 1,318 students, while

the 93 offices on the first and third floors can hold 153 occupants.

This demonstrator was identified as suitable to test the

methodology provided to develop the AMS app, further tuned

with the application on the second demonstrator. Indeed, its

small dimension and the presence of a single department enabled

it to easily define required data and test the platform’s

functionalities.

4.1.2 Demonstrator two: Palazzo Nuovo

The second demonstrator was chosen due to architectural

and management complexity worsened by the strong crowding,

which makes it a significant case study to refine the proposed

methodology. This complex building was identified as suitable

for the application of the defined crowd simulation methodology

to unveil useful fire-emergency data to be added in the database

and visualized using the AMS app. In addition, crowd

simulations enabled to check the current level of fire risk and

demonstrate the usefulness of a “fire emergency CDT” aimed at

optimizing user evacuation through an active wayfinding system

together with alerts for occupants, responders, and relief actors.

The building, namely, Palazzo Nuovo, houses the school of

humanities with five departments, 33 degree courses, and about

965 study courses. It amounted to a total of 22,641 students in the

last academic year, accounting for 27.7% of the total university

population showing a positive enrollment trend in the last

4 years, with a growing rate of 14.8%. The structure is made

up of seven floors above ground and three basement floors, in

addition to three large classrooms separate from the main body

(Figure 6). It can accommodate up to 3,975 students in the

classrooms and 1,000 in the study rooms, for a total of 5,006 seats

also considering the spaces assigned for degree events;

furthermore, it has external places in other buildings for a

total amount of 7,475 places available. This highlights that

both current places are not sufficient to cover Palazzo Nuovo

demand and its management complexity, which also made it a

suitable case study for crowd simulation in fire emergency

scenarios.

Palazzo Nuovo is one of the first steel constructions built in

Turin, and it has undergone extensive renovations in recent years

to minimize asbestos-related concerns. Space and fire safety

upgrades followed the remediation work, and the fifth and

sixth floors are still under development. Specifically, all of the

staircases and escape routes were isolated in accordance with

national standards, leading to a safe place according to the

requested escape time.

5 Results and discussion

This section provides the first results of the project through

the application of the defined methodology on the two

FIGURE 5
First demonstrator, Piero della Francesca.
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demonstrators, illustrating their implementation through the

BIM-GIS platform. Then, the fire emergency crowd

simulations carried out on the most complex and significant

demonstrator are reported.

5.1 Integrated database and AMS app

The pilot use case identified in the vast and complex UniTO

asset was entirely modeled with low detail and georeferenced

FIGURE 6
Second demonstrator, Palazzo Nuovo.

FIGURE 7
AMS app with example of building query.
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using the AMS app, accessible both by asset managers and users

(Figure 7) through digital devices and QR codes placed in

strategic points of the buildings. Although the datasets are still

incomplete compared to all possible future AMS app uses

(facility and maintenance, emergency management, crowd

simulation, occupancy management, etc.), most of spatial and

functional attributes are already displayable, providing a valuable

tool to support strategic decisions through BI technology. As

previously illustrated, the AMS app can be navigated and filtered

at different information levels to visualize only the needed

information, contextualized, and with a high level of consistency.

The replicable methodology illustrated in Section 3.1 was

tested on the first demonstrator and fine tuned in the second one.

The initial “data acquisition and analysis of building stock and

management processes” confirmed the lack of a holistic view

throughout the several managed data, worsened by customized

and individual interfaces and management systems, often still

document-based, by independent and geographically distant

administrators. Thus, the large amount of data needed to

manage such a complex and diffused asset were neither easily

accessible nor fully shared among the administrators. This is

mainly due to the lack of interconnection between existing

platforms managed by different directorates, which led to

highly fragmented and not fully digitized databases, struggling

for the complete data collection for the optimal AM.

Furthermore, the lack of IM guidelines prevented the correct

data collection and their interconnection, preventing the

gathering of useful and contextualized information for

effective decisions with consequences on both management

costs and efficiency.

Thus, a centralized, integrated, and flexible database was

provided through RDBs aiming at defining an SSOT with a

defined but adaptable hierarchy throughout the asset lifecycle.

The future development of CDTs was considered, aiming to be

an easily accessible, updatable, queryable, and expandable data

structure so that all the useful management information, also

from on-field sensors, could be included. The data structure can

be expanded with additional branches whenever new

information needs to be added, and the customized coding

scheme enables queries to identify the needed information at

different levels of detail. Furthermore, future developments will

concern the implementation ofML to automate database feeding,

providing more accurate information and avoiding possible

errors.

5.2 Analytics dashboards
As illustrated in Section 3.1, data were analyzed usingMicrosoft

Power BI® and its ArcGIS plugin through the centralized database.

This results in several interactive and analytic dashboards enabling

the visualization of synthetic information useful to support strategic

decisions through the O&M phase.

Currently, the dashboards provide the visualization of static

data from the integrated database, with some interactive elements

enabling to filter or aggregate them and see defined key

performance indicator (KPI) variations. In the future, they

will be linked to CDTs to display real-time, dynamic data

gathered from on-site IoT networks (e.g., occupancy, internal

temperature, and energy consumption) and processed by AI

systems aimed at optimizing space and resource use, in addition

to building performances.

At first, an overall dashboard concerning the whole UniTO

asset was developed (Figure 8), displaying the following

analytical elements which can be filtered for each single building:

- an interactive map with localization,

- number of buildings,

- building name,

- building title,

- prevalent use,

- rental income,

- rental expenses, and

- bar graph with annual rental income and expenses.

This dashboard is very useful for administrators to gain an

immediate perception of building location and housing titles,

rent expenses, and incoming for the properties given in use. It

enables quick financial evaluations and identification of

optimization possibilities, prevented by the fragmented and

document-based management so far.

A second overall dashboard enables to visualize asset

information filtered by educational poles or departments,

providing the immediate identification of departments or

courses hosted in a certain building, in addition to the

distance between buildings or spaces such as laboratories or

university residences (Figure 9). This information, crossed with

that related to classroom occupancy and timetables, enables to

check the optimal allocation of courses, building use, and users’

mobility across the campus and the city, providing a more

sustainable and resilient use of resources particularly if

analyzed using an AI system which avoids human inaccuracy

and considers multiple variables and data sources at once in real-

time.

Then, other dashboards were developed to analyze the first

demonstrator level of occupancy and space exploitation

(Figure 10) at each floor and then replicated for the second

demonstrator (Figure 11) with following data for each room that

can be filtered based on hosted courses or academic year.

- interactive map of the floor,

- room name,

- net surface area,

- capacity,

- equipment,

- available and occupied hours for each academic semester,

- target indicators (percentage of use), and

- teaching hours for each semester.
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FIGURE 8
Overall analytic dashboard of UniTO asset distribution and destinations, with related expenses.

FIGURE 9
Overall analytic dashboard of UniTO asset with information filtered by the educational pole.
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FIGURE 10
Example of space analysis dashboard for Piero della Francesca with hosted courses information.

FIGURE 11
Example of space analysis dashboard for Palazzo Nuovo with hosted courses information.
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In the case of a floor dedicated to teaching activities, the

following information can be found and filtered:

- room name,

- net surface area,

- assigned staff,

- staff (without permanent contract),

- classification,

- tree diagram (classification filter), and

- ring diagram (classification [%]).

In conclusion, data previously fragmented or inaccessible,

which prevented the exact awareness of space use and

availability, are now integrated and visualized through

dashboards also with information required for occupancy

optimization. The analyses conducted so far highlighted some

optimizing margins as currently some classrooms result

underexploited, while others over-exploited with consequent

users discomfort and expenses for renting additional spaces.

Some crowded courses are assigned to inadequate spaces,

leading students to sit in common spaces such as bleachers or

the corridors between the desks. This is unacceptable for safety

concerns as well; in fact, the already complex scenario derived

from the crowd simulations conducted so far could be further

compromised. Furthermore, by visualizing which spaces were

partially used during the year, it will be possible to reduce rental

expenses, raising awareness about the use of the classrooms and

management costs (e.g., cleaning, maintenance, heating, and air

FIGURE 12
First floor plan with location of the hazardous event for the second scenario simulation.

FIGURE 13
Density maps of crowd simulation of the first scenario.
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conditioning) can be optimized. Now, the Educational Services

Directorate and other administrations can easily view and consult

such information for an optimal allocation of study courses based

on the actual space availability.

As a first attempt to show the AMS app and centralized

database application potential, crowd simulations have been

conducted on Palazzo Nuovo to investigate the actual level of

safety in case of fire emergency. The methodology defined in

Section 3.2 was used to simulate different evacuation scenarios

compliant with fire and safety prescriptive standards in order to

identify limitations of a traditional approach and explore possible

improvements through dynamic simulations and CDTs during

evacuations.

First and foremost, national fire regulations were analyzed to

define the reference escape time for each floor, TR. Italian

Ministerial Decree 10/03/1998 provides regulatory

prescriptions and limitations relevant both for new buildings

and existing ones and identifies three possible buildings fire risk

level: low, medium, or high. Palazzo Nuovo represents a

university facility hosting more than 1,000 occupants, so its

fire risk level is high (Italian Government, 1998). According

to the regulation, TR can be individuated as the maximum escape

time from each single floor, which enables the users to reach the

nearest fire exit, leading either to external stairs or fire protected

stairs. For the high fire-risk level, the simulation TR is equal to

1 min for escape routes between 15 and 30 m long (Italian

Government, 1998). According to the literature review, the

maximum moving crowds density considered is equal to

5 p/sqm.

Then, the crowd simulation model was defined including the

six floors above the ground, with 1,765 users in full capacity using

the same stairs, escape routes, and exits to reach the only two safe

places at the ground floor. Specifically, the six stairs represent the

escape routes for all the six levels and are placed two by two in the

center and on the two opposite sides of the building (Figure 12).

The basement floors are excluded as its occupants can use

dedicated escape routes and exits, causing less worrying crowd

phenomena. Similarly, the ground floor is excluded as most of the

spaces’ exits lead directly to safe places. Accordingly, the

simulation model involved the following elements:

• The six floors above the ground and their spaces;

• The ground floor with two safe places;

• The expected maximum occupants’ number in each space

from fire emergency plans, their walking speed, field of

view (FoV) angle, avoidance range, and avoidance

preference. User speed is defined as a triangular

distribution function of three speed values: high value of

FIGURE 14
Density maps of crowd simulation of the second scenario.
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1.75 m/s, medium value of 1.35 m/s, and low value of

0.8 m/s (Tack et al., 2006; Bohannon and Williams

Andrews, 2011). The field of view angle and avoidance

range were set equal to 75° and 10 m, considering the

default settings of the simulation software, and the

avoidance preference was set on right;

• The six staircases represent the escape routes (i.e., three

protected and three external).

The third step tackled the performance of the crowd

simulations in two evacuation scenarios. The first one

performed in the entire building section, the second one with

a hypothesized hazardous event on the first floor, hosting the

greatest number of users. The hazardous event is hypothesized in

the area located in front of the two staircases on the left,

preventing access to the two stairs for the users of the first

floor (Figure 12).

The fourth step involved the density map analysis, at each

floor of the building, during the simulation for the two crowd

scenarios (Figures 13 and 14). Levels of density above five p/sqm

are considered dangerous when detected in non-safe areas, that

is, areas different from safe places and protected or external

stairs. Considering the first scenario (Figure 13), only the first

floor shows high risk levels of moving crowds and becoming

considerably more crowded in relation to other floors.

The same results are seen in the second scenario (Figure 14).

When comparing the first-floor density maps in the first and

second scenario, in the latter, non-safe place area with density

values over five p/sqm is 14.23% greater than in the former.

In the final step, each floor with detected density values over

five p/sqm of the two scenarios has been analyzed. A value of Tn

is defined for each floor as the time at which the first agent of the

floor is triggered by the emergency alarm, ending when the last

agent of the floor reaches the fire exit, which leads to a safe place

or to the protected or external stairs. Each Tn for the two

scenarios is then compared to the previously defined TR,

equal to 1 min. The escape time of the first floor, in the first

scenario, T1, and in the second scenario, T2, respectively is:

T1 = 12 min 52 s > TR (1 min); 12.86 time greater than TR

T2 = 15 min 48 s > TR (1 min); 15.80 times greater than TR

Comparing these, it shows T2>T1; in particular, T2 is 22.79%

greater than T1.

These results highlighted the limits of using only prescriptive

regulations to ensure building fire safety. Even though the

maximum length of the escape routes defined according to

regulations (i.e., between 15 and 30 m with high fire-risk level,

corresponding to a TR of 1 min) should guarantee the correct

evacuation at all the building levels to all users, the dynamic

simulation highlighted criticalities due to user flows, resulting in

overcrowding and an escape time far superior to prescribed

FIGURE 15
Example of space analysis dashboard for Palazzo Nuovo with hosted courses information.
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values. In both scenarios, it exceeds the reference escape time, TR,

provided by prescriptive regulations, while in the second one, it

highlights the strong negative impact that a hazardous event can

have, both on the evacuation and on the occurrence of dangerous

phenomena.

Once the crowd simulations were completed, the set of

significant data, which should be found in the database (e.g.,

TR, Tn, density values, walking speed, FoV angle, avoidance

range, expected occupants, and avoidance preference), was

identified. It will be fundamental both for future dynamic

simulations aimed at defining the “fire emergency CDT” and

to map the current asset fire-risk level through the AMS

app. Furthermore, the actual occupation was individuated as

the first, key data to be detected and provided in real-time

through IoT networks. The current data set is clearly

incomplete, so in the future, it should be enriched. For

instance, it will be necessary to simulate and enter all the

possible crowd evacuation routes at each floor. So, an ML

algorithm could analyze and optimize them as simulations

progress, and the CDTs could learn how to better behave;

they should also be loaded into a VR system to implement

active wayfinding.

A new type of dashboard was developed and integrated for

fire safety analysis of each floor (Figure 15) and shows:

- the floor plan with occupancy levels,

- the floor plan with crowd simulation,

- the level of fire risk with respect to the regulations, and

- the maximum escape time and the effective one deriving

from the simulation.

6 Conclusion and further
development

The paper tackled the development of BIM-GIS-based AMS

for improving user experiences and the optimal use of resources

in the O&M phase of the large and diffused UniTO asset.

The first short-term objective concerning the development of

a replicable methodology, aimed at defining an AMS app based

on a centralized and flexible database, was presented. The

developed methodology was tested and tuned through two

demonstrators with diverse levels of complexity. It was shown

that the AMS app enables the visualization of the whole

university building stock with its attributes and analytics

dashboards using a 3D interactive map. Now, the AMS is

limited to authoring formats, but in the future, open

standards could be exploited to ensure greater BIM-GIS

interoperability and flexibility. In addition, a deep analysis is

needed to understand how automated data flow and analysis

could be implemented exploiting ML.

Furthermore, the first steps toward the second long-term

research objective are presented. It concerns the future

development of CDTs aimed at several purposes, in order to

define UniTO smart campus. This will enable real-time and

quick decisions to resolve or prevent deviations from expected

behaviors, both in ordinary scenarios and in fire emergency ones,

improving campus resilience, safety, and sustainability. With this

aim, a crowd simulation methodology is also provided. It was

tested through the most complex demonstrator, highlighting

limitations posed by current prescriptive regulations, in

addition to checking the current fire-risk level and suitable

evacuation time as a benchmark to evaluate possible future

improvements. Required data which should be available from

the centralized database and should also be provided through the

implementation of IoT networks were individuated.

Future development concerns the fire-risk assessment of the

whole UniTO asset through the reiteration of the developed

crowd simulation methodology, providing a “fire risk map” using

the AMS app. Administrators could obtain a quick overview of

the asset fire-risk level, highlighting interventions needed and

enabling to allocate space uses also depending on the safety level

and the distance from rescuers. Additionally, it will be

investigated how to implement AI and AR/VR systems to

enable the cognitive features required by CDTs, enabling them

to promptly react and adapt their behavior to environmental

changes and to learn simulation by simulation, improving their

performances. Furthermore, active wayfinding during fire

scenarios could be provided, driving user evacuation through

lighting signals and audio-based systems according to actual

occupancy and real-time data from IoT networks. Users can be

guided in real-time through the safest and shortest evacuation

routes, using paths loaded in the AMS app and visualization

systems, which enable active wayfinding through digital devices.

The rescuers could use the AMS app to be alerted and obtain

precise indications to reach the fire outbreak point or life in

danger in the shortest possible time and path.

In conclusion, the developed AMS could overcome current

fragmented and still document-based management issues, in

addition to providing a suitable database to develop consistent

CDTs both for ordinary and emergency scenarios in the O&M

phase of a diffused campus. It could provide effective decisions

and management processes based on complete, contextualized,

and real-timed data, stored in a centralized and implementable

database. Using synthetic dashboards and through BI tools linked

to the AMS app, useful strategic data and graphs could be

displayed. These features will enable better management of

the university’s financial and spatial resources, with a

reduction of waste and cost savings. It should be possible to

1) rationalize space use depending on the actual availability,

courses timetables, and occupancy; 2) optimize real estate

investments by visualizing over or under exploitation of both

buildings and spaces; 3) optimally managing maintenance and

cleaning operations concerning the actual space use; and 4)

implementing dynamic and active management systems

during the O&M phase, in particular during fire emergencies,
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both for users and rescuers. Challenges will concern IoT and AI

implementation and connection to the AMS app, in addition to

the development and interconnection of several CDTs, along

with overcoming stakeholders’ hesitance to switch to new

projects and collaborative approaches.
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