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The development of the theories of undamageable materials and bimodal self-
regenerating materials leads directly to four-dimensional materials. Both are types
of sought after materials. The authors have established that undamageable materials
are the limit of Voyiadjis-Kattanmaterials of order n as n approaches infinity. Similarly,
the authors established also that so called bimodal materials are the limit of self-
regenerating materials of order n as n approaches infinity. In this work, a solid link is
established between these theories that were developed recently and the new four-
dimensionalmaterials to come. It is concluded that both undamageablematerials and
bimodal materials are prime examples of four-dimensional materials. The conclusion
is based on sound mathematical and mechanical principles.
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1 Introduction

The basic principles of damage mechanics were laid out in the fifities with the pioneering
work of Kachanov (1958). More recent work on this topic was made by Lee et al. (1985),
Voyiadjis and Kattan (1992, 2005, 2006, 2009), Sidoroff (1981), and Kattan and Voyiadjis
(1993, 2001a, 2001b).

Kachanov (1958) developed the fundamental basis of continuum damage mechanics
using the concept of effective stress. More recent advancements in this topic were made by
Rabotnov (1969) and by others later (Ladeveze and Lemaitre, 1984; Kattan and Voyiadjis,
2001a; 2001b; Voyiadjis and Kattan, 2005; 2006; 2009; 2012a; 2012c). The value of the
damage variable ranges between 0 and 1 but usually cannot exceed 0.3. In the two extreme
cases of 0 and 1, the material is in the virgin state and totally damaged, respectively.

Many advancements were made in damagemechaics recently (Rice, 1971; Sidoroff, 1981;
Ladeveze et al., 1982; Lee et al., 1985; Voyiadjis, 1988; Kattan and Voyiadjis, 1990; 1993;
Voyiadjis and Kattan, 1990; 1992; Hansen and Schreyer, 1994; Doghri, 2000; Luccioni and
Oller, 2003; Celentano et al., 2004; Lubineau and Ladeveze, 2008; Lubineau, 2010).

Basaran and coworkers develop the theory further to apply it to novel materials (Basaran and
Yan, 1998; Basaran and Tang, 2002; Basaran et al., 2003; Basaran and Nie, 2004; 2007). Other
theoretical developments appeared later by Sosnovkiy and Sherbakov (2016). A relation has also
been made thus far linking damage mechaics to biological systems. For details about the concept
of the fourth dimension, check the Appendix.
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This work consists of three major sections. In Section 2 the
principles of the mechanics of undamageable materials are reviewed.
The section starts with a review of higher-order strain energy form.
This is followed by a study of the damage variable and the proof that
the undamageable material maintains a zero value for the damage
variable throughout the process of deformation and damage. Finally,
the elastic stiffness equations for undamageable materials are
presented.

In Section 3 the principles of the mechanics of self-regenerating
materials are presented. First the theoretical formulation is reviewed.
This is followed by the elastic stiffness equations and how the elastic
stiffness recovers in self-regenerating materials. Finally, the road to
bimodal materials is explored by studying self-regenerating
materials when the exponent n goes to infinity. In this extreme
case it is seen that the elastic stiffness disappears and appears
suddenly again. Thus these materials at the extreme case are
called bimodal materrials.

Finally in the Conclusion it is postulated that both
undamageable materials and bimodal materials are types of four-
dimensional materials. It is seen that when infinity is reached, a
dimension is crossed and we enter into the world of four-
dimensional materials.

The original issue in this work is the term “fourth-dimensional
material” and its associated conepts. This term has never appeared
before in the literature or anywhere else. However, the theories of
undamageable materials and bimodal materials have been presented
before by the authors and they review them here along with their
associated concepts and equations (Voyiadjis and Kattan, 2013a;
2017d). The presentation here is brief and updates the previous work
of the authors.

As it was stated in the conclusion this work addresses both the
theory of undamageable materials and the theory of self-
regenerating materials. In particular both the undamageable
material and the proposed bimodal material are of vital interest
to the manufacturing world. Both these materials are achieved
mathematically as one approaches infinity. It is noted that as
infinity is approached a dimension is crossed and one evolves
into the four-dimensional materials. This fact was proved
mathematically in the authors’ own work on the subject
(Voyiadjis and Kattan, 2017c). Thus it is seen that both
undamageable materials and bimodular materials are types of
four-dimensional materials. This is the true nature of these
hypothetical materials.

2 Mechanics of undamageable
materials

In this section the mechanics of undamageable materials are
reviewed. One starts with the higher-order strain energy forms, then
proceeds to a study of the damage variable in these materials, then
the elastic stiffness equations are presented.

2.1 Higher-order strain energy forms

Higher order strain energy forms are studied and introduced
in this section. These new forms are usually linked to non-linear

stress-strain relations and are studied in detail in this work These
new proposed types of materials are called here Voyiadjis-Kattan
materials (Voyiadjis and Kattan, 2013a, 2013b).

One first starts with the linear relation. The linear stress-strain
relation σ � E ε corresponds to the classsical strain energy form
U � 1

2 σ ε. Now, suppose higher powers of the stain are suggested in
the expressions like the following 1

2 σ ε
2, 12 σ ε

3, What happens to the
stress-strain relations in these cases? This issue is studies in the
sequel.

Use will be made of the terminology by Voyiadjis-Kattan
material of order n to designate any non-linear elastic material
that has a higher-order strain energy of the form 1

2 σ ε
n.

One first starts with the most general from of the stress-strain
equation: σ � Ef(ε), where f(ε) is an unknown function of the
strain that is to be determined. Ther strain energy U in this case is
obtained using the following equation:

U � ∫ σ dε (1)

One now illustrates the general case using the higher-order
strain energy formU � 1

2 σ ε
n. Substituting this expression forU into

Eq. 1, one obtains:

1
2
σ εn � ∫ σ dε (2)

Next, one substitutes the general stress-strain relation σ �
Ef(ε) into Eq. 2 to obtain:

1
2
Ef(ε) εn � E∫f(ε)dε (3)

Simplifying the above relation, one obtains:

f(ε) εn � 2∫f(ε)dε (4)

Differentiating both sides of the above equations lead to the
following:

f/(ε) εn + nf(ε) εn−1 � 2f(ε) (5)
The above is the governing differential equation of the system

and is solved using the MATLAB Symbolic Math Toolbox. The
solution is obtained as follows:

f(ε) � 1
εn
e−2/[(n−1)ε(n−1)] (6)

Substituting the above expression into the general constitutive
relation σ � Ef(ε), one obtains:

σ � E
1
εn
e−2/[(n−1)ε(n−1)] (7)

The above solution is obtained after applying the initial
condition that the stress is zero when the strain is zero. The
above equation is a non-linear stress-strain relationship that
governs the behavior of the Voyiadjis-Kattan material of order n.

For certain selected values of n, the results are shown in Table 1.
Other existing materials similar to the Voyiajdis-Kattan material are
shown in Table 2. Figure 1 showns a graph of the various stress-
strain relations of Table 1. Figure 1 is generated based on Eq. 7 and
proper units appear on the figure.
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2.2 The damage variable

One considers a linear elastic material with modulus of elasticity
E. Another confiuguration of the material is considered that is
fictitious with no damage with the modulus �Ε. In order to compute

the effective elastic modulus �Ε in this case, one may use the
hypothesis of elastic energy equivalence where the elastic strain
energy is assumed to be equal in both configurations (Sidoroff,
1981). Figure 2 is obtained based on Eq. 9 and Eq. 11 below. Proper
units and a proper legend now appear on the figure.

TABLE 1 The proposed higher-order strain energy forms and their corresponding stress-strain relations (constitutive equations for Voyiadjis-Kattan material of
order n).

Proposed higher-order strain energy form Corresponding stress-strain relation Type of new proposed material

U � 1
2 σ ε σ � E ε Voyiadjis-Kattan material of order 1 (linear elastic)

U � 1
2 σ ε

2 σ � E 1
ε2 e

−2/ε Voyiadjis-Kattan material of order 2

U � 1
2 σ ε

3 σ � E 1
ε3 e

−1/ε2 Voyiadjis-Kattan material of order 3

U � 1
2 σ ε

n n � 1, 2, 3, .... σ � E 1
εn e

−2/[(n−1)ε(n−1) ] Voyiadjis-Kattan material of order n

TABLE 2 Comparison between the Voyiadjis-Kattan material of order n and other non-linear elastic materials from the literature.

Value of n Proposed material Comparable material (from the literature)

1 Voyiadjis-Kattan material of order 1 Linear elastic material

2 Voyiadjis-Kattan material of order 2 Mooney-Rivlin material

3 Voyiadjis-Kattan material of order 3 Neo-Hookean material

. . .

. . .

n (finite) Voyiadjis-Kattan material of order n Ogden material

∞ Undamageable material ------

FIGURE 1
Valid stress-strain curves for various values of n.
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The scalar damage variable ℓ is defined in terms of the reduction
in the elastic modulus as follows:

ℓ � �E − E

E
(8)

where E is the elastic modulus in the damaged state while �E is the
effective elastic modulus (in the fictitious state) with �E>E (see
Figure 2). Other researchers used the new damage variable in their
wrok—Celentano et al. (2004) and Voyiadjis (1988) and Voyiadjis
and Kattan (2009). The expression in Eq. 8 can be re-written as
follows:

�E � E(1 + ℓ) (9)
Using the hypothesis of elastic energy equivalence one assumes

the complementary elastic strain energy (σ
2

2E ) to be equal in both
configurations, i.e.,

σ2

2E
� �σ2

2�E
(10)

Using the hypothesis of elastic energy equivalence and using
Eq. 10, one obtains �σ �

�
�E
E

√
σ. In this case, it can be easily shown

that the damage variable ℓ � �E−E
E will yield the relation �σ �

σ
����
1 + ℓ

√
.

Postulating a new hypothesis of higher-order energy equivalence
in the form

1
2
σ2 ε � 1

2
�σ2 �ε (11a)

one consequently obtains:

σ3

2E
� �σ3

2�E
(11b)

Finally, one obtains the relation

�σ �
��
�E

E

3

√
(11c)

In this case, it is easily shown that using ℓ � �E−E
E will yield the

relation

�σ � σ
����
1 + ℓ

3
√

(11d)
For the general case and for a general value of n, one obtains:

�σ �
��
�E

E

n

√
(12a)

In this case, it is easily shown that using ℓ � �E−E
E will yield the

general relation

�σ � σ
����
1 + ℓ

n
√

(12b)
Several curves are plotted on the same graph paper to show the

relations between the ratio of the stresses �σ
σ and ℓ using Eqs 11b, 12b

FIGURE 2
Damaged and effective moduli of elasticity.
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(see Figure 3). It is clear that for the limiting case when n → ∞, the
curve has a constant value at 1. Figure 3 is generated based on Eq.
12b and proper units appear on the figure.

One now explains the above results using the formulas derived
for ℓ. Starting with the formula �σ � σ

����
1 + ℓ

n
√

of Eq. 12b which was
derived in the previous paragraphs one now studies the case when
n → ∞. In this case, the following is obtained:

�σ � σ
����
1 + ℓ

n
√ � σ (1 + ℓ)1n � σ (1 + ℓ) 1

∞ � σ (1 + ℓ)0 � σ · 1 � σ

(13)
Therefore one obtains �σ � σ irrespective of the value of the

damage variable ℓ. The following is a summary of the main concepts
and results in this section:

1. TheVoyiadjis-Kattanmaterial of order n is a non-linear elasticmaterial
which has strain energy of the form 1

2 σ ε
n, where n is greater than 1.

2. The undamageable material is the limit of the Voyiadjis-Kattan
material of order n as n goes to infinity.

3. The linear elastic material is a type of Voyiadjis-Kattan material
of order 1.

4. In an undamageable material, the value of the stress will remain
equal to zero throughout the deformation process. Also, the
damage variable will be equal to zero throughout.

5. The undamageable material has zero strain energy.

6. The undamageable material has non-zero strain values. Thus, the
undamageable material is a type of deformable body, not a
rigid body.

7. The Voyiadjis-Kattan material of order n has non-zero stress
values. The range of the non-zero stress values changes
depending on the value of n. The higher the value of n, the
narrower the range of non-zero stress values.

2.3 Elastic stiffness equations

In this section, the precise equations governing the elastic stiffness
transformation for Voyiadjis-Kattan materials are derived (Voyiadjis
and Kattan, 2013a; 2012b; 2012c; 2013b; 2014). For this derivation, use
is made of the classical damage variable that is defined in terms of area
reduction. In this regard, the effective stress is given by:

�σ � σ

1 − φ
(14)

where σ is the Cauchy stress and ϕ is the classical damage variable.
Utilizing a hypothesis of higher-order energy equivalence in the

following form:
1
2
�σ �εn � 1

2
σ εn (15)

FIGURE 3
Relation between ℓ1 and the ratio of the stresses.
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and substituting Eq. 14 into Eq. 15, and simplifying, one obtains the
following expression for the effective strain:

�εn � (1 − φ) εn (16)
It should be noted that the stress-strain relationship for the

Voyiadjis-Kattan material of order n is given by Eq. 7. Rewriting Eq.
7 in the effective fictitious configuration, one obtains:

�σ � �E
1
�εn
e−2/[(n−1)�ε(n−1)] (17)

Substituting for the effective stress from Eq. 14 into Eq. 17, one
obtains:

σ � (1 − φ )�E 1
�εn
e−2/[(n−1)�ε(n−1)] (18)

Next, substituting for the stress from Eq. 7 into Eq. 18 and
simplifying the resulting equation, one obtains:

E
�E

�εn

εn
� (1 − φ) e−2/((n−1)ε

n−1)
e−2/((n−1)�ε n−1) (19)

and furthermore substituting Eq. 16 into Eq. 19 and simplifying one
obtains:

E
�E
� e

2�ε n−1−2εn−1
(n−1) �ε n−1εn−1 (20)

The above relation can be re-written in the following form:

ln
E
�E
� 2�ε n−1 − 2εn−1

(n − 1) �ε n−1εn−1
(21)

Again, substituting Eq. 16 into Eq. 21 and simplifying, one
obtains:

ln
E
�E
� 2 [(1 − φ)1−1/n − 1]
(n − 1) (1 − φ)1−1/nεn−1 (22)

It should be noted that as one approaches infinity, a dimension is
crossed and evolves into of four dimensions. Thus undamageable
materials are a type of four-dimensional material. Their realization
in the manufacturing technology will require work in the fourth
dimension. Another type of four-dimensional materials will be the
bimodal material of Section 3.3 below where infinity is approached
and a dimension is crossed again.

3 Mechanics of self-regenerating
materials

In this section the mechanics of self-regenerating materials are
presented. One starts with the scalar formulation then this is
followed by the recovery of elastic stiffness in these materials.
Finally the extreme case when the exponent n goes to infinity is
studied and the science of bimodal materials evolves.

3.1 Scalar formulation

Based on the recent work of the authors (Voyiadjis and Kattan,
2017a; 2017b), one utilizes a new scalar bur non-linear damage
variable φp defined as follows:

φp �
�������
2φ − φ2

√
(23)

It is noted from Figure 4 that both damage variables satisfy the
same boundary condition but while φ is linear, the new damage
variable φp is non-linear. Figure 4 is generated based on Eq. 23 and it
now appears with units and a proper legend.

Based on the above equations, one can then write the following
relation:

�σ � σ

1 − φp
� σ

1 − �������
2φ − φ2

√ (24)

The values of the effective stress are real when the damage
variable φ has values in the range 0<φ< 2. A plot of the expression
of the effective stress of Eq. 24 is shown in Figure 5 for the range of

FIGURE 4
Comparison between the linear and non-linear damage
variables.

FIGURE 5
Effective stress behavior for self-regenerating materials.
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values 0<φ< 2. The value of two for the damage variable is twice the
rupture value of 1 for the damage variable in classical damage
mechanics. However, the authors have no physical interpretation for
the value of two for the damage variable.

The following observations are made regarding Figure 5 and the
associated Eq. 7: Note that Figure 5 is generated based on Eq. 24 and
appears with proper units.

1. The simple expression shown in Eq. 24, along with Figure 5,
clearly describes a damage stage that is followed by a healing
stage.

2. The behavior observed in Figure 5 is a characteristic of soft
materials, especially for biological tissue.

3. The expression given in Eq. 24 is the basis for a new hypothetical
type of material to be called Self-Regenerating Material (SRGM).
This material may be developed in the future when the
manufacturing technology may address such challenges.

4. The constitutive equations of Self-Regenerating Materials in
terms of elastic stiffness are developed in Section 4.

5. Upon loading, the virgin (undamaged) material undergoes
damage in the range 0<φ< 1. This observed behavior
continues until the material ruptures and the effective stress
explodes at φ � 1. The behavior in this primary stage is in
accordance with the classical formulation of continuum
damage mechanics and applies to currently existing materials.

6. Upon further loading, beyond φ � 1, something unexpected
happens. In the range 1<φ< 2, some form of re-integration
or re-assembly of the material occurs during a stage of healing
and strengthening of the elastic modulus. This secondary stage
continues until all the damage is recovered and the virgin
(undamaged) material restored to its original configuration at
φ � 2.

7. The two boundary cases at φ � 0 and φ � 2 are exactly identical,
and the virgin material is restored completely. In fact it is clear
that the graph in Figure 5 is symmetrical around φ � 1. That is
why it is termed bimodular as it reverts back to its initial
configuaration.

3.2 Recovery of elastic stiffness

Using the hypothesis of elastic strain equivalence, substituting
the elastic constitutive relations ε � σ/E and �ε � �σ/�E, along with
using Eq. 24, and simplifying, one obtains the following expression
for the elastic stiffness transformation:

E � �E(1 − �������
2φ − φ2

√ ) (25)

Alternatively, using the hypothesis of elastic energy equivalence,
substituting Eq. 24 into Eq. 10, and simplifying (while assuming
n � 1), one obtains the following expression for the elastic strain
transformation:

�ε � ε(1 − �������
2φ − φ2

√ ) (26)

Finally one obtains the following expression for the elastic
stiffness in this case:

E � �E(1 − �������
2φ − φ2

√ )2

(27)

The relations of Eqs 27, 25 are plotted in Figure 6. The results of
this section are summarized in Table 3.

3.3 Toward a science of bimodal materials

Further developments of the theory derived in Section 4 for self-
regenerating materials are shown in this section especially with the
loss of stiffness and its further recovery. These results can be
extended to the hypothetical case when n → ∞. In this case
interesting results are obtained, and a new type of material
emerges that can be constructed mathematically. This new limit
material is termed a bimodal material.

3.4 Two hypotheses of damage mechanics

Both Eqs 25, 27 for the elastic stiffness transformation due to
damage can be generalized using the following expression:

E � �E (1 − �������
2 φ − φ2

√ )n

(28)

where n is an integer exponent with n � 1, 2, 3, 4, ...... It is noted
that Eq. 25 of the hypothesis of elastic strain equivalence is
recovered using n � 1, while Eq. 27 of the hypothesis of elastic
energy equivalence is recovered using n � 2. The material
behavior described by the generalized Eq. 11 is called a self-
regenerating material of order n (see Figure 6). Note that
Figure 6 is generated based on Eq. 28 and appears with
proper units.

The expression of Eq. 28 is plotted in Figure 7 for several values
of the integer exponent n. The special case when n → ∞ is
illustrated separately in Figure 6. The curve obtained in Figure 8

FIGURE 6
Elastic stiffness degradation and recovery for the.
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represents the limit of the sequence of curves appearing in Figure 7
as n → ∞. This limiting case is very interesting as it gives rise to a
new type of material that has some curious and strange
characteristics. It should be noted that both the self-regenerating

materials of order n of Figure 7, as well as the hypothetical limit
material of Figure 8 do not currently exist except as biological tissue
which is explained in Section 4. Figures 7, 8 are generated based on
Eq. 28 and appear with proper units.

It is very interesting and paramount to observe in this section the
strange behavior of the limit material of Figure 8 which naturally
exists as biological tissue with its capability to fully heal itself (see
Section 4) As shown in Figure 8, the elastic stiffness of this material is
zero everywhere except at the two end points, i.e., at φ � 0 and φ � 2.
This means that the stiffness of the material vanishes as soon as the
loading starts and remains vanished until the final load is applied at
the end of the deformation and damage process. At the final point of
loading, it seems that the elastic stiffness appears suddenly, behaving
in a bimodal way, to its full extent. Thus, this material exhibits vital
behavior in the sense that the elastic stiffness disappears due to
excessive damage at the start of loading, and biologically mends itself
through tissue regeneration at the end of loading. The elastic
stiffness vanishes throughout the loading process between the
start point and the end point. Therefore, the material exhibiting
the characteristics shown in Figure 8 is termed a bimodal material. It
is emphasized that the bimodal material is the limit of the self-
regenerating material of order n as n → ∞. The bimodal material
does not exist currently but the basic equations governing its
behavior are formulated in this work.

The main characteristics of the postulated bimodal material are
summarized below based on Eq. 28 and Figure 8:

1. The bimodal material suffers a sudden drop of its elastic stiffness
from �E to zero at the starting point of loading.

2. The bimodal material breaks down (or its elastic stiffness
vanishes completely) upon the start of loading and remains in
this vanished state until the end point of loading.

3. The bimodal material undergoes a sudden gain in elastic stiffness
from zero to its maximum value of �E at the ending point of
loading.

4. It seems that the elastic stiffness of the bimodal material suddenly
disappears upon the start of loading and suddenly re-appears
upon the end of loading. This strange behavior gives this material
its name.

5. The bimodal material is the limit of the self-regenerating material
of order n as n → ∞.

It should be noted that as one reaches infinity, a dimension is
crossed and enters the mathematics of four dimensions. Thus this
bimodal material is another type of four-dimensional materials. The
first type of four-dimensional material was the undamageable
material of Section 2.

TABLE 3 Elastic stiffness degradation and recovery equations in the scalar case.

Equation Type of behavior

Hypothesis of Elastic Strain Equivalence �ε � ε (1 − �������
2φ − φ2

√ ) Linear

Hypothesis of Elastic Energy Equivalence E � �E (1 − �������
2φ − φ2

√ )2 Non-linear - Quadratic

Generalized Hypothesis of Elastic Energy Equivalence of Order n E � �E (1 − �������
2φ − φ2

√ )n Non-linear—General

FIGURE 7
Elastic stiffness degradation and recovery for different values of
the integer exponent n.

FIGURE 8
Elastic stiffness behavior as n approaches infinity.
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4 Conclusion

This work has been divided into twomajor parts, existingmainly in
Sections 2, 3. In Section 2 the theory of undamageable materials is
presented while in Section 3 the theory of self-regenerating materials is
presented. In particular both the undamageable material of Section 2
and the bimodal material of Section 3.3 are of vital interest to the
manufacturing world. Both thesematerials are achievedmathematically
as one approaches infinity. It is noted that as infinity is approached a
dimension is crossed and one evolves into four-dimensional materials.
This fact was proved mathematically in the authors’ own work on the
subject (Voyiadjis and Kattan, 2017c). Thus it is seen that both
undamageable materials and bimodal materials are types of four-
dimensional materials. This is the true nature of these hypothetical
materials.

As it was stated here this work addresses both the theory of
undamageable materials and the theory of self-regenerating
materials. In particular both the undamageable material and the
proposed bimodal material are of vital interest to the manufacturing
world. Both these materials are achieved mathematically as one
approaches infinity. It is noted that as infinity is approached a
dimension is crossed and one evolves into the four-dimensional
materials. This fact was proved mathematically in the authors’ own
work on the subject (Voyiadjis and Kattan, 2017c). Thus it is seen
that both undamageable materials and bimodular materials are types
of four-dimensional materials. This is the true nature of these
hypothetical materials.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

All authors listed havemade a substantial, direct, and intellectual
contribution to the work and approved it for publication.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

References

Basaran, C., Lin, M., and Ye, H. (2003). A thermodynamic model for electrical current
induced damage. Int. J. Solids Struct. 40 (26), 7315–7327. doi:10.1016/j.ijsolstr.2003.
08.018

Basaran, C., and Nie, S. (2007). A thermodynamics based damage mechanics model
for particulate composites. Int. J. Solids Struct. 44, 1099–1114. doi:10.1016/j.ijsolstr.
2006.06.001

Basaran, C., and Nie, S. (2004). An irreversible thermodynamics theory for damage
mechanics of solids. Int. J. Damage Mech. 13 (3), 205–223. doi:10.1177/
1056789504041058

Basaran, C., and Tang, H. (2002). Implementation of a thermodynamic framework for
damage mechanics of solder interconnects in microelectronics packaging. Int.
J. Damage Mech. 11 (1), 87–108. doi:10.1106/105678902022259

Basaran, C., and Yan, C. Y. (1998). A thermodynamic framework for damage
mechanics of solder joints. Trans. ASME, J. Electron. Packag. 120, 379–384. doi:10.
1115/1.2792650

Bower, A. F. (2009). Applied mechanics of solids. Boca Raton, FL, USA: CRC Press.

Celentano, D. J., Tapia, P. E., and Chaboche, J-L. (2004). “Experimental and
numerical characterization of damage evolution in steels,”. Editors G. Buscaglia,
E. Dari, and O. Zamonsky (Argentina: Bariloche), XXIII.Mec. Comput.

Doghri, I. (2000). Mechanics of deformable solids: Linear and nonlinear, analytical
and computational aspects. Münster, Germany: Springer-Verlag.

Hansen, N. R., and Schreyer, H. L. (1994). A thermodynamically consistent
framework for theories of elastoplasticity coupled with damage. Int. J. Solids Struct.
31 (3), 359–389. doi:10.1016/0020-7683(94)90112-0

Kachanov, L. (1958). On the creep fracture time. Izv. Akad. Nauk. USSR Otd. Tech. 8,
26–31. (in Russian).

Kattan, P. I., and Voyiadjis, G. Z. (1990). A coupled theory of damage mechanics and
finite strain elasto-plasticity – Part I: Damage and elastic deformations. Int. J. Eng. Sci.
28 (5), 421–435. doi:10.1016/0020-7225(90)90007-6

Kattan, P. I., and Voyiadjis, G. Z. (1993). A plasticity-damage theory for large
deformation of solids – Part II: Applications to finite simple shear. Int. J. Eng. Sci.
31 (1), 183–199. doi:10.1016/0020-7225(93)90075-6

Kattan, P. I., and Voyiadjis, G. Z. (2001b). Damage mechanics with finite elements:
Practical applications with computer tools. Munster, Germany: Springer-Verlag.

Kattan, P. I., and Voyiadjis, G. Z. (2001a). Decomposition of damage tensor in
continuum damage mechanics. J. Eng. Mech. ASCE 127 (9), 940–944. doi:10.1061/(asce)
0733-9399(2001)127:9(940)

Ladeveze, P., and Lemaitre, J. (1984). “Damage effective stress in quasi-unilateral
conditions,” in Proceedings of the The 16th International Cogress of Theoretical and
Applied Mechanics, Pennsylvania, USA, December 1984 (Denmark: Lyngby).

Ladeveze, P., Poss, M., and Proslier, L. (1982). Damage and fracture of tridirectional
composites. Jpn. Soc. Compos. Mater. 1, 649–658.

Lee, H., Peng, K., and Wang, J. (1985). An anisotropic damage criterion for
deformation instability and its application to forming limit analysis of metal plates.
Eng. Fract. Mech. 21, 1031–1054. doi:10.1016/0013-7944(85)90008-6

Lubineau, G., and Ladeveze, P. (2008). Construction of a micromechanics-based
intralaminar mesomodel, and illustrations in ABAQUS/standard. Comput. Mater. Sci.
43 (1), 137–145. doi:10.1016/j.commatsci.2007.07.050

Lubineau, G. (2010). A pyramidal modeling scheme for laminates – identification of
transverse cracking. Int. J. Damage Mech. 19 (4), 499–518. doi:10.1177/
1056789509102725

Luccioni, B., and Oller, S. (2003). A directional damage model. Comput. Methods
Appl. Mech. Eng. 192, 1119–1145. doi:10.1016/s0045-7825(02)00577-7

Rabotnov, Y. (1969). “Creep rupture,” in Proceedings, Twelfth International Congress
of Applied Mechanics, Berlin, Germany, October 1969. Editors M. Hetenyi,
W. G. Vincenti, and Stanford (Springer-Verlag), 342–349.

Rice, J. R. (1971). Inelastic constitutive relations for solids: An internal variable theory
and its application to metal plasticity. J. Mech. Phys. Solids 19, 433–455. doi:10.1016/
0022-5096(71)90010-x

Roizen, M. (2014). The healing of injured soft tissues. https://chiro-trust.org/
whiplash/healing-injured-soft-tissues-including-neck-back/.

Sidoroff, F. (1981). “Description of anisotropic damage application in elasticity,” in
IUTAM colloqium on physical nonlinearities in structural analysis (Berlin, Germany:
Springer-Verlag), 237–244.

Sosnovskiy, L. A., and Sherbakov, S. (2016). Mechanothermodynamic entropy and
analysis of damage state of complex systems. Entropy 18, 268. doi:10.3390/e18070268

Voyiadjis, G. Z. (1988). Degradation of elastic modulus in elastoplastic coupling with
finite strains. Int. J. Plasticity 4, 335–353. doi:10.1016/0749-6419(88)90023-x

Frontiers in Built Environment frontiersin.org09

Voyiadjis and Kattan 10.3389/fbuil.2023.1066525

https://doi.org/10.1016/j.ijsolstr.2003.08.018
https://doi.org/10.1016/j.ijsolstr.2003.08.018
https://doi.org/10.1016/j.ijsolstr.2006.06.001
https://doi.org/10.1016/j.ijsolstr.2006.06.001
https://doi.org/10.1177/1056789504041058
https://doi.org/10.1177/1056789504041058
https://doi.org/10.1106/105678902022259
https://doi.org/10.1115/1.2792650
https://doi.org/10.1115/1.2792650
https://doi.org/10.1016/0020-7683(94)90112-0
https://doi.org/10.1016/0020-7225(90)90007-6
https://doi.org/10.1016/0020-7225(93)90075-6
https://doi.org/10.1061/(asce)0733-9399(2001)127:9(940)
https://doi.org/10.1061/(asce)0733-9399(2001)127:9(940)
https://doi.org/10.1016/0013-7944(85)90008-6
https://doi.org/10.1016/j.commatsci.2007.07.050
https://doi.org/10.1177/1056789509102725
https://doi.org/10.1177/1056789509102725
https://doi.org/10.1016/s0045-7825(02)00577-7
https://doi.org/10.1016/0022-5096(71)90010-x
https://doi.org/10.1016/0022-5096(71)90010-x
https://chiro-trust.org/whiplash/healing-injured-soft-tissues-including-neck-back/
https://chiro-trust.org/whiplash/healing-injured-soft-tissues-including-neck-back/
https://doi.org/10.3390/e18070268
https://doi.org/10.1016/0749-6419(88)90023-x
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1066525


Voyiadjis, G. Z., and Kattan, P. I. (2009). A comparative study of damage variables in
continuum damage mechanics. Int. J. Damage Mech. 18 (4), 315–340. doi:10.1177/
1056789508097546

Voyiadjis, G. Z., and Kattan, P. I. (1990). A coupled theory of damage mechanics
and finite strain elasto-plasticity – Part II: Damage and finite strain plasticity. Int.
J. Eng. Sci. 28 (6), 505–524. doi:10.1016/0020-7225(90)90053-l

Voyiadjis, G. Z., and Kattan, P. I. (2017c). A generalized hypothesis of elastic energy
equivalence in continuum damage mechanics. Eng. Trans. 65 (2), 351–369.

Voyiadjis, G. Z., and Kattan, P. I. (2012b). A new class of damage variables in
continuum damage mechanics. ASME J. Eng. Mater. Technol. 134 (2). doi:10.1115/1.
4004422

Voyiadjis, G. Z., and Kattan, P. I. (1992). A plasticity-damage theory for large
deformation of solids – Part I: Theoretical formulation. Int. J. Eng. Sci. 30 (9),
1089–1108. doi:10.1016/0020-7225(92)90059-p

Voyiadjis, G. Z., and Kattan, P. I. (2017d). A theory of damage and self-regenerating
materials. Acta Mech. 228, 4249–4268. doi:10.1007/s00707-017-1928-y

Voyiadjis, G. Z., and Kattan, P. I. (2006). Advances in damage mechanics: Metals and
metal matrix composites with an introduction to fabric tensors. Second. Amsterdam,
Netherlands: Elsevier.

Voyiadjis, G. Z., and Kattan, P. I., 2005, Damage mechanics, Taylor and Francis (CRC
Press).Boca Raton, FL, USA.

Voyiadjis, G. Z., and Kattan, P. I. (2017b). Decomposition of elastic stiffness
degradation in continuum damage mechanics. ASME, J. Eng. Mater. Technol. 139
(2). doi:10.1115/1.4035292

Voyiadjis, G. Z., and Kattan, P. I. (2014). Healing and super healing in continuum damage
mechanics. Int. J. Damage Mech. 23 (2), 245–260. doi:10.1177/1056789513491773

Voyiadjis, G. Z., and Kattan, P. I. (2013a). Introduction to the mechanics and design of
undamageablematerials. Int. J. DamageMech. 22 (3), 323–335. doi:10.1177/1056789512446518

Voyiadjis, G. Z., and Kattan, P. I. (2012a). Mechanics of damage processes in series
and in parallel: A conceptual framework. Acta Mech. 223 (9), 1863–1878. doi:10.1007/
s00707-012-0678-0

Voyiadjis, G. Z., and Kattan, P. I. (2017a). Mechanics of damage, healing,
damageability, and integrity of materials: A conceptual framework. Int. J. Damage
Mech. 26 (1), 50–103. doi:10.1177/1056789516635730

Voyiadjis, G. Z., and Kattan, P. I. (2013b). On the theory of elastic undamageable materials.
ASME J. Eng. Mater. Technol. 135 (2), 021002–021016. doi:10.1115/1.4023770

Voyiadjis, G. Z., Yousef, M. A., and Kattan, P. I. (2012c). New tensors for anisotropic
damage in continuum damage mechanics. ASME J. Eng. Mater. Technol. 134 (2). doi:10.
1115/1.4006067

Watson, T. (2003). Soft tissue healing. Touch 104, 2–9.

Watson, T. (2006). Tissue repair: The current state of the art. Touch 28, 8–12.

Frontiers in Built Environment frontiersin.org10

Voyiadjis and Kattan 10.3389/fbuil.2023.1066525

https://doi.org/10.1177/1056789508097546
https://doi.org/10.1177/1056789508097546
https://doi.org/10.1016/0020-7225(90)90053-l
https://doi.org/10.1115/1.4004422
https://doi.org/10.1115/1.4004422
https://doi.org/10.1016/0020-7225(92)90059-p
https://doi.org/10.1007/s00707-017-1928-y
https://doi.org/10.1115/1.4035292
https://doi.org/10.1177/1056789513491773
https://doi.org/10.1177/1056789512446518
https://doi.org/10.1007/s00707-012-0678-0
https://doi.org/10.1007/s00707-012-0678-0
https://doi.org/10.1177/1056789516635730
https://doi.org/10.1115/1.4023770
https://doi.org/10.1115/1.4006067
https://doi.org/10.1115/1.4006067
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1066525


Appendix: Explanation of the fourth
dimension

In this Appendix, the authors try to explain the fourth
dimension and what they mean by four-dimentional materials.

Consider a point. It has no extensions so the point is zero-
dimensional. Now consider a set of n such points arranged
horizontally on a straight line. Once the number of points n
increases, the points get closer together. They become closer and
closer with increasing n until n approaches infinity. When n
approaches infinity the points become stuck together and
effectively become a straight line. As n approached infinity, the
points are no longer zero-dimensional but become a one-
dimensional straight line. Thus a dimension is crossed when n
approached infinity.

Similarly consider a straight line. It is clearly one-dimensional.
Consider n such straight lines arranged in parallel. Let the number of
these straight lines be n. Once n increases, the straight lines become
closer together. This continues until n approaches infinity when the
straight lines become stuck together in a plane. Thus as n
approached infinity the straight lines are no longer one-
dimensional but become a two-dimensional plane. Thus again a
dimension is crossed as n approaches infinity.

The same thing happens when the crossing from a two-
dimensional plane to a three-dimensional cube occurs. Consider

a number n of two-dimensional planes arranged in parallel. As n
increases, the planes get closer together. Once n approaches infinity
the planes become stuck together and a three-dimensional cube is
formed. In this case, again, a dimension is crossed when n
approaches infinity. The planes are no longer two-dimensional
planes but have become a three-dimensional cube.

Finally consider a three-dimensional cube. Consider n such
three-dimensional cubes arranged in parallel. As the number of
cubes n increases, the cubes become closer together. As n approaches
infinity, the cubes become stuck into a fourth-dimensional
hypercube called a tesseract. Thus as n approached infinity the
cubes are no longer three-dimensional but have become a fourth-
dimensional hypercube. Again, one notices that a dimension is
crossed when n approaches ininity.

The same thing happens with materials. For normal three-
dimensional materials everthing is normal as the exponent n is
small. But when n becomes large and approaches infinity, a
dimension is crossed and one obtains four-dimensional materials.
Trying to explain this in terms of damage and healing, one can say
that microvoids (zero dimension), microcracks (one dimensional),
microflat spaces (two dimensional), microspherical spaces (three
dimensional), collapse of spherical spaces into other shapes are
fourth dimensional artifacts. Recovery in the same dimension
implies closure of microvoids, microcracks, et. (Watson, 2003;
Waston, 2006; Bower, 2009; Roizen, 2014).
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