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This paper discusses the role that structural stiffness plays in the context of
designing adaptive structures. The focus is on load-bearing structures with
adaptive displacement control. A design methodology is implemented to
minimize the control effort by making the structure as stiff as possible against
external loads and as flexible as possible against the effect of actuation. This
rationale is tested using simple analytical and numerical case studies.
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1 Introduction

The integration of load-bearing structures with active elements can improve the
performance of a certain amount of available material or, vice versa, reduce the material
required to achieve a target performance. When strategic changes in the geometry and
stiffness of parts of the structure are developed through actuation, it is possible to counteract
the effect of external loads by reducing and optimizing stress, deformation, and vibration
states. Early work in the design and application of adaptive structures was carried out by Zuk
and Clark (1970) and Domke (1992), showing the potential for material savings compared to
conventional passive structures. Early concepts of design and control methods for structures
equipped with active components, primarily for vibration control, are given by Soong (1988),
Wada (1990), Reinhorn et al. (1993), Utku (1998), and Adam and Smith (2008). A
comprehensive state-of-the-art review up to 2011 is provided in Korkmaz (2011). Recent
investigations are reviewed by Neuhäuser et al. (2013) and Schwegmann (2022).

For civil engineering applications, Sobek and Teuffel (2001), Senatore et al. (2011),
Geiger et al. (2020a), Reksowardojo et al. (2022), and Blandini et al. (2022), among others,
have shown that structural adaptation is particularly beneficial for stiffness-governed
structures such as high-rise buildings and long-span roof structures. The first adaptive
high-rise building, named D1244, is a 36.5-m tower equipped with 12 actuators that has been
realized within the framework of the Collaborative Research Center SFB 1244 “Adaptive
Skins and Structures for the Built Environment of Tomorrow” (Blandini et al., 2022).
Investigation on adaptive bridge structures has also been carried out. A lightweight and
flexible stress-ribbon footbridge equipped with pneumatic muscle actuators fitted in the
handrail was implemented by Bleicher et al. (2011). Experimental testing was carried out on
a small-scale model of a single-span beam bridge known as the Stuttgarter Träger (Teuffel,
2004). Displacements caused by a moving load were controlled through the action of a linear
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actuator that, by changing the orientation of the end support, caused
a counteracting bending moment. Recent studies on active vibration
control (Reksowardojo et al., 2022) have focused on retrofitting
high-speed railway bridges with adaptive tensioning systems,
showing that it is possible to reduce the acceleration peaks
caused by train crossings to acceptable limits without incurring a
weight penalty due to oversizing.

Generally, relying on stiffness generated through material
resistance to satisfy serviceability requirements results in
oversizing as most civil structures are subjected to strong but
rarely occurring loading events. Instead, structural adaptation
enables a significant reduction of material, carbon, and energy
requirements because deflection limits can be satisfied through
geometry and stiffness control when required, that is, upon the
occurrence of a strong loading event. The design philosophy
adopted in most studies on adaptive structures is to employ
active control to satisfy serviceability limit states (SLS). However,
active control is typically not required to satisfy ultimate limit states
(ULS), thus avoiding the risk of loss of load-bearing capacity in the
event of control system failure and concurrent occurrence of
extreme loading events. A holistic design and optimization
approach for adaptive structures was developed by Senatore et al.
(2019). The structural elements are sized to take the ULS without
requiring active control (i.e., passively) but ignoring geometric
compatibility and displacement limits (SLS), typically producing
very flexible and lightweight structures for stiffness-governed
problems. Then, actuators are optimally placed, and control
commands are obtained to satisfy SLS requirements using
minimum actuation energy. This approach was further developed
into an all-in-one (AIO) optimization formulation by mixed-integer
programming whereby cross-section sizing, actuator placement, and
control commands are obtained simultaneously (Wang and
Senatore, 2020; Wang and Senatore, 2021). In these studies,
adaptive structures are designed by simultaneously minimizing
the energy embodied in the material (sizing optimization) and
the energy required for adaptation during service (actuator
placement and control commands).

The work presented in this paper offers an alternative strategy to
design structures that use active displacement control to comply
with serviceability requirements. Basic design principles are
employed to minimize the actuation effort by strategically
tailoring the structural stiffness. Serviceability requirements
typically concern the deflection and acceleration limits of the
structural response under loading. For passive structures,
satisfying serviceability limits results in material strength and
element capacity being inefficiently exploited because stiffness
requirements lead to over-dimensioning the load-carrying
capacity. Alongside the amount of required material mass, an
important indicator of the efficiency of adaptive structures is the
required actuation effort. Reduction of material mass and deflections
are contrasting objectives because stiff structures that embody large
material mass undergo small deformations under loading. However,
flexible structures with smaller material embodiment typically
require smaller actuation energy for displacement control. As
discussed by Senatore et al. (2019) and Geiger et al. (2020b), the
design of adaptive structures requires a paradigm shift that accounts
for adaptation early in the design phase. The performance of passive
structures that are optimal with respect to a certain objective—for

example, limiting displacements by stiffness maximization—could
be further improved through adaptation. However, the resulting
adaptive structure would be suboptimal. For example, a structure
having low performance in the passive state in terms of stiffness but
purposefully designed to be adaptive could have significantly better
performance if strategically integrated with active components.
Generally, as shown by Senatore et al. (2019) and Geiger et al.
(2020b), a holistic design of the adaptive system leads to higher
quality solutions than those obtained by first designing an (optimal)
passive structure and subsequently improving its performance
through adaptation. This paper discusses basic principles for
designing adaptive structures using simple problems that can be
solved analytically. The main contribution of this work is to show
how optimal solutions can be obtained to fulfill the conflicting
objectives of a structure to be as stiff as possible against external
loads and as flexible as possible to minimize actuation energy for
displacement control. The working hypotheses derived from
analytical studies are tested through numerical examples.While
referring to typical structural configurations, such as beams, floor
slabs, and trusses, the analytical and numerical studies formulated in
this work are mainly intended to illustrate the advantages of active
displacement control in different scenarios.

The paper is structured as follows: in Section 2, strategies for
designing adaptive structures are discussed using simple
configurations for which it is possible to obtain analytical
solutions. Section 3 presents numerical studies in which the
analytically derived solutions are verified through finite
element analyses, including an adaptive ribbed slab
configuration. Finally, the results are summarized and
discussed in Section 4.

2 Analytical case studies

2.1 General concept

In the following subsections, conceptual case studies show the
interaction between load, structural stiffness, and actuation effort for
structures with active displacement control. The structural
configurations under examination are designed so that response
analysis and optimization of design parameters are obtained
through exact analytical solutions. This allows for a rigorous
assessment of the basic concepts proposed herein.

FIGURE 1
Tapered beam: problem setup and definition of geometry. Refer
to Eq. 1 for the definition of h(x) as a function of the mean thickness h0

and parameter α.
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2.2 Tapered beam with single force
actuation

2.2.1 Problem setup
An elastic beam of length 2l is pinned at both ends and subjected

to a uniformly distributed load q. The cross section is symmetrically
tapered along the beam’s length, defined by a constant width b, mean
height (i.e., thickness) h0, and a tapering constant α, as indicated in
Figure 1. A single vertical actuation force Fact is applied at the center
of the beam. Fact could be applied by a hydraulic actuator (Kelleter
et al., 2020), and it is assumed that it is slack in the passive state; that
is, it does not contribute to the (passive) structural stiffness.
Applying symmetry boundary conditions at mid-span, only the
left half of the system is modeled. The cross-sectional height of the
symmetric structure is defined by the function

h x( ) � h0
l

1 − α( )l + 2αx[ ],
with 0≤ x≤ l.

(1)

For α = 0, the height is constant, h = h0, while for α = 1, it is zero at
the supports and h = 2h0 at mid-span. Vice versa, for α = −1, the
height is h(0) = 2h0 at the supports and h(l) = 0 at mid-span. In the
following, α is restricted to

−3
4
≤ α≤

3
4

(2)

to exclude impractical small cross sections. An exemplary evaluation
of h(x) for a few values of α is shown in Supplementary Material S1.
The volume of the beam is

V � 2h0bl, (3)
which is independent of α. The structure is modeled as a straight
beam, neglecting the small inclination of its axis resulting from the
tapering. Bernoulli beam theory is employed for a linear elastic
analysis. One load case q is considered. The observed system
response is the mid-span deflection wl, subject to the constraint

wl ≤ ŵ (4)
where ŵ can be set to a specific deflection limit. Minimizing the volume
V (and thus the mass) and the actuation force Fact can be conflicting
objectives, which might require a multi-objective optimization. This,
however, is not considered in this work. Instead, the focus is on
minimizing the actuation force for a target mass reduction compared
to a passive system and satisfying the displacement limits (Eq. 4).

2.2.2 Passive system
Consider the passive system (Fact = 0). Because the structure is

statically determinate, the bending moment can be obtained directly
from equilibrium and boundary conditions as

M x( ) � 1
2
qx 2l − x( ), (5)

which is independent of the cross section. The bending stiffness is

EI x( ) � Ebh30 1 − α( )l − 2αx[ ]3
12l3

. (6)

Inserting the curvature equation κ � M
EI, integrating twice, and

applying the required boundary conditions gives the exact
solution for the deflection w(x). The deflection at mid-span is

wl �
3ql4 α + 3( ) α + 1( )2 ln 1+α

1−α( ) − 12α3 − 14α2 − 6α( )
8 α + 1( )2Ebh30α4

. (7)

The deflection as a function of the position along the beam is given
in Supplementary Material S2. The passive system is optimized
through volume (mass) minimization, ensuring that the deflection
limit is satisfied without actuation. The problem formulation is

As the objective function is linear, the constraint is active at the
optimum, wl � ŵ. Because the analytic expressions are rather
elaborate, a numerical example sets q = 5 kN/m, l = 5 m, b =
2.5 m, and E = 3 × 107 kN/m2. Solutions are obtained for
different values of ŵ.

The tapering coefficient α is identical for all solutions, ensuring
maximum stiffness for a given volume determined by the average
cross-section height h0.

When α is positive, more material is placed in the beam mid-
span, increasing the stiffness in the region of significant bending
moment. The average cross-section height h0 increases as ŵ is
reduced because larger stiffness is required to satisfy tighter
deflection limits. In the limit of ŵ → 0, the required h0 and thus
the volume—tends to infinity. Reducing the deflection to zero would
require an infinite stiffness, which can only be satisfied by the active
system through displacement control (e.g., Fact ≠ 0).

2.2.3 Adaptive system, design for minimum
actuation effort

The adaptive system is equipped with a single actuator applying
a vertical force Fact. Taking the values from Section 2.2.2 as a
reference, the volume of the beam is restricted to V = 1.0 m3

(i.e., h0 = 0.2 m). Considering the benchmark solutions for the
passive system, it is clear that this leads to a displacement wl > ŵ for
all cases, such that actuation is required.

The average cross-section height h0 is fixed in this study;
therefore, the tapering coefficient α is the only design variable.
Different strategies are tested to minimize the actuation force.

Strategy n1 is to optimize the passive system for stiffness to
minimize the difference displacement

Δw � wpas − ŵ (8)
that must be compensated by actuation. In Eq. 8, wpas is the
displacement of the passive system (i.e., uncontrolled
displacement). From previous results (Section 2.2.2), optimizing

Objective function V(h0)

Design variables h0 and α

Constraints wl ≤ ŵ

ŵ h0 α V

0.04 m 0.2082 m 0.5374 1.0412 m3

0.03 m 0.2292 m 0.5374 1.1460 m3

0.02 m 0.2624 m 0.5374 1.3118 m3

0.01 m 0.3306 m 0.5374 1.6528 m3
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the passive stiffness yields a value of α = 0.5374. The corresponding
non-controlled displacement (i.e., without actuation) is wpas =
0.0452 m. The actuation forces required to meet different
deflection requirements and the mass reductions compared to the
benchmark passive system are

A mass reduction of 100% is theoretically possible because the
passive system would need an infinite stiffness to satisfy a zero
deflection limit. It has been pointed out by Geiger et al. (2020b) and
proved numerically through the formulations given in Senatore et al.
(2019) andWang and Senatore (2020) that a holistic optimization of
the adaptive system leads to better quality solutions than fitting
actuation to an optimized (stiffness maximized) passive structure.

Following these approaches, strategy n2 and the corresponding
optimization problem can be formalized as follows.

Analytic expressions of the problem solution are derived as
mentioned previously. In particular, the objective function is
given as

Fact α( ) � 2Ebh30ŵα
3 α2 + 2α + 1( )

3l3 4α2 + Λ + 2α( ) + ql 12α3 + 2α 7α + 3( ) + Λ α + 3( )( )
4α 4α2 + Λ + 2α( ) ,

with Λ � α + 1( )2 ln 1 − α

1 + α
.

(9)
The formula of Fact is reported in Supplementary Material S3.
Minimization for different deflection limits ŵ yields the following results.

Mass reduction is the same as strategy n1 because the volume
has been prescribed. Instead, the displacements wpass obtained
for the passive case (Fact = 0 kN) are given. The actuation forces
Fact are smaller than those required to control the mass-

optimized structure in the passive state (i.e., strategy n1).
That being said, the difference in the required actuation
forces is marginal because, given a certain volume, the load-
carrying behavior of this simple statically determinate system is
only marginally affected by α. The differences are more
pronounced for the underslung beam structure investigated in
Section 2.3.

The reduction of the actuation force becomes more important as
the deflection limit becomes tighter. The uncontrolled displacement
of the optimal structure gradually increases as ŵ is reduced. For the
case ŵ � 0.00 m, the optimal structure has an uncontrolled
displacement of almost 70 cm. The optimum is a local minimum
at the boundary of the admissible domain as the constraint α ≤ −0.75
becomes active. The corresponding structure has a very small cross
section in mid-span (for α = −1, it would essentially be a hinge) and
is, therefore, quite flexible. That being said, the actuation effort is
smaller than that required for the stiffer system produced from
strategy n1 due to the flexibility of the structure.

Strategy n3 is derived from these observations. To minimize the
displacement to be compensated, the difference Δw � wpass − ŵ
should be as small as possible. On the other hand, the
displacement wact produced by a unit actuation Fact = 1 should
be as large as possible. In other words, the structure must be stiff

against the external load q and flexible against actuation. This can be
achieved by minimizing the ratio between Δw and wact. The
corresponding optimization problem is

The analytical computation shows that the objective function is
identical to the expression for Fact in Eq. (9) and that optimization
strategy n3 gives the same solution as strategy n2, which minimizes
the required actuation force. This observation can be explained by
computing the actuation force from the displacement wact caused by
a unit actuation and the required displacement compensation Δw,

Factwact � Δw � wpass − ŵ 0 Fact � wpass − ŵ

wact
. (10)

In this case, the solutions are identical owing to the simple problem
setup that considers a single displacement variable. However, a more
general statement can be formulated:

“To minimize the actuation effort for displacement control, the
structural design should maximize stiffness against the external
loads and minimize stiffness against actuation.”

An overview of the results (for Δw = 0.01 m) of the different
optimization strategies is shown in Table 1. Strategy n2 and strategy
n3 produce identical solutions. Strategy n1 gives a different solution
requiring a slightly higher actuation force.

Generally, because the effect of external loads and actuation
forces lead to different deformation modes, there is a certain
potential to realize both apparently contrasting objectives. This is
demonstrated in the following section by a simple example structure
with two different load-carrying mechanisms.

ŵ Fact mass reduction

0.04 m 1.9867 kN 4.0%

0.03 m 5.8440 kN 12.7%

0.02 m 9.7012 kN 23.8%

0.01 m 13.5584 kN 39.5%

0.00 m 17.4156 kN (100%)

Objective function Fact

Design variable α and Fact

Constraints wl ≤ ŵ and h0 = 0.2 m

ŵ α Fact wpass

0.04 m 0.5274 1.9868 kN 0.0452 m

0.03 m 0.4980 5.8164 kN 0.0452 m

0.02 m 0.4374 9.5887 kN 0.0458 m

0.01 m 0.2197 13.1221 kN 0.0516 m

0.00 m −0.75 13.5175 kN 0.6982 m

Objective function O(α) � wpass−ŵ
wact

Design variable α

Constraints h0 = 0.2 m
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2.3 Underslung beam

2.3.1 Problem setup
An underslung beam, shown in Figure 2 is subjected to a uniform

load q0. In addition, the self-weight g of the beam is considered. The
displacements wA and wB at locations A and B indicated in Figure 2
are observed. The stiffness of the structure comprises the bending
stiffness of the beam, which depends on the cross-section height, h,
and the stiffness of the underslung cable, which depends on the
diameter, d. The geometry is chosen to balance the stiffness provided
by the cable and the bending stiffness of the beam. As only linear
analyses are performed in this study, the effects of prestress and
geometric stiffness in the cable are neglected.

The displacements are limited to wmax = 2 cm. In addition, the
mid-span displacement wB should be as small as possible. For
example, the vertical member is equipped with a linear actuator
that can change its length as a hydraulic actuator. Thus, wB can be
controlled to be exactly zero, and, as in the previous section, the
actuation effort is minimized to achieve this objective. The objective
to completely reduce the mid-span displacement is motivated by the
aim to showcase the interplay between (passive) structural stiffness
and the contribution of actuation, in this case, realizing an
apparently infinite stiffness at the midpoint for the adaptive
system. The total reduction of displacements through actuation
has been experimentally verified in previous work (Senatore
et al., 2017). In the following, N denotes the total normal force
in the actuator. Nact is the actuation contribution to the total force.
While the element force N is caused only by elastic deformation in
the uncontrolled state, in the controlled state, the force is the sum of
the elastic deformation of the element and the inelastic deformation
caused by the actuator length change. The actuation contribution to
the total force is denoted as Nact. Nact is used as a simple measure to
quantify actuation effort. The passive case is considered first for the
benchmark.

2.3.2 Passive system
The minimum mass required to satisfy the displacement limit is

obtained by solving the following optimization problem.

The problem can be solved analytically, and the following values
are obtained.

The normal force in the (passive) vertical member is
N = −330.84 kN.

2.3.3 Adaptive system
The vertical actuator can reduce the mid-span displacement wB to

zero. Using the passive configuration obtained in the previous section,
an elongation Δl = 0.71 cm is required. The value is marginally larger
than wB because of the resulting vertical downward displacement
caused by the flexibility of the cable. The corresponding actuation
force contribution is Nact = −3.85 kN (the negative sign indicates a
compression force). The total force in the actuator isN = −300.84 kN −
3.85 kN = −334.69 kN.

After actuation, the displacement is reduced to wA = 1.52 cm.
This is not optimal because the actuator has performed more work
than necessary to satisfy the deflection limit wA ≤ wmax.

The remaining potential in the structure for the given massM =
9400.9 kg can be used to reduce the actuation force contribution
Nact. As mentioned previously, two different strategies are employed.
Strategy n1 seeks to obtain a system with maximum stiffness with
respect towA andwB. This gives the following optimization problem.

TABLE 1 Tapered beam, optimization results.

Strategy n1 Strategy n2 Strategy n3

α 0.5373 0.2197 0.2197

wpas 0.0452 m 0.0516 m 0.0516 m

Fact 13.558 kN 13.122 kN 13.122 kN

FIGURE 2
Underslung beam, system data.

Objective function M(h, d) � 2ρsπ(d2)2
�������
( l
2)2 + h2

√
+ ρcbhl

Design variables h and d

Constraints wA ≤ wmax and wB ≤ wmax

Item Value

Beam height h = 23.2 cm

Cable diameter d = 11.3 cm

Total mass M = 9400.9 kg

Displacement A wA = 2.00 cm

Displacement B wB = 0.70 cm
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The analytical solution yields the following values.

Compared to the previous solution, more material is distributed
in the underslung cable, whose stiffness is important to limit wB. The
uncontrolled displacements are

which do not satisfy the deflection limits. This is expected
because the mass has been kept constant. The previous
configuration is the only solution that satisfies the deflection
limits without active control. However, the displacement wB has
been reduced by 21%. Therefore, the actuation required to eliminate
the mid-span displacement, Δl = 0.56 cm, is also smaller. The
resulting controlled displacements are

and the actuation force contribution is Nact = −2.73 kN, which is
smaller than that required for the previous solution. Nevertheless,
this solution is also suboptimal because the displacement wA is over-
compensated. The solution can be further improved by explicitly
minimizing the actuation force and including the actuator length
change in the design variables (strategy n2).

The resulting design is

Compared to the previous designs, the diameter of the underslung
cable is significantly increased, while the beam becomes more flexible.
This has two effects. First, as the underslung structure is stiffer, the
displacement wB becomes smaller. Second, as the beam becomes more
flexible, the force required for displacement control also becomes
smaller. These observations align with the hypothesis formulated at
the end of Section 2.2.3. The resulting uncontrolled displacements are

Because the beam is more flexible, the displacement at point A is
significantly larger than in previous cases. However, through
actuation, the mid-span displacement is eliminated, and point A
is also controlled into the target position.

The required actuator length change is Δl = 0.44 cm, and the
actuation force contribution is Nact = −1.81 kN. The actuation force is
less than half of that required for controlling the mass-optimized passive
solution and 24% smaller than that required in the solution produced by
strategy n1. The total force in the actuatorN = −329.8 kN is also reduced
than the other solutions, albeit only marginally. This value cannot
change significantly due to the structural configuration of a double-
span continuous beam. Section 2.2.3 showed thatminimizing the ratio of
uncontrolled displacement over the displacement caused by a unit
actuation, that is, the flexibility against actuation, gives the same
solution as minimizing the actuation force. This is also true for the
example discussed in this section. Table 2 gives the results obtained by
the two optimization strategies. Strategy n3 results are not given because
they are identical to those produced by strategy n2, as shown in
Section 2.2.

3 Numerical investigation of an
adaptive ribbed slab

3.1 Problem setup

A square ribbed slab with side length L = 10 m and thickness d,
simply supported along all four edges, is considered (Figure 3). There
are main and secondary ribs (Figure 4). The height H of the main ribs
differs by Δh from the height h of the secondary ribs. All ribs have
identical width drib.

The two central main ribs divide the plate into four subsections.
Each of these subsections is equipped with a pair of secondary ribs.
Individual actuation of the secondary ribs is implemented through
horizontal forces parallel to the rib axes. These forces can be thought

Objective function O(h, d) = wA + wB

Design variables h and d

Constraints M = 9400.9 kg

Item Value

Beam height h = 22.4 cm

Cable diameter d = 13.7 cm

Item Value

Displacement A (passive) wA = 2.06 cm

Displacement B (passive) wB = 0.55 cm

Item Value

Displacement A (active) wA = 1.68 cm

Displacement B (active) wB = 0.00 cm

Objective function O(h, d) = Nact

Design variables h, d and Δl

Constraints M = 9400.9 kg, wA ≤ wmax and wB = 0

Item Value

Beam height h = 21.1 cm

Cable diameter d = 17.0 cm

Item Value

Displacement A (passive) wA = 2.30 cm

Displacement B (passive) wB = 0.44 cm

Item Value

Displacement A (active) wA = 2.00 cm

Displacement B (active) wB = 0.00 cm
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of as generated by an actuator that pulls on a cable embedded in each
rib (no bonding) via a duct, as carried out in Reksowardojo et al.
(2022). For simplicity, the contribution of the cables to the (passive)
stiffness of the structure is neglected. The height h of the secondary
ribs equals the eccentricity of the actuation forces Fact (with respect
to the plate axis) as they are modeled at the bottom of the secondary
ribs. Figure 3 indicates the location of the actuation forces in the plan
view for the case of actuation of the upper left and lower right
subsections of the slab.

In the following optimization problems, the design variables are
the geometry parameters d, h, and Δh, and the actuation force Fact.

Two load cases are considered. Load case 1 is a distributed load on the
entire slab (Figure 5). In case 2, only two quarter subsections are loaded
(Figure 6). This setup is inspired by a checkerboard-type load case that is
considered in building codes for certain scenarios. For example, if the
main ribs are relatively stiff, the deflections near the centers of the loaded
subsections of the plate are larger for load case 2 than for load case 1.

The uncontrolled displacements are constrained to satisfy deflection
limits under load case 1. The rationale of this strategy is to have the
adaptive system react against only “exceptional” load cases and, second, to
work in a design scenario with contrasting stiffness and flexibility
requirements. The deflection limit is wlc1 < ŵ with ŵ � 0.02 m. In
contrast, under load case 2, deflection limits wlc2 < ŵ are satisfied
through active control. The locations of the actuation forces applied to
counteract the effect of load case 2 are indicated in Figure 3.

3.2 Passive system

A benchmark passive configuration is first obtained that satisfies
displacement limits under both load cases without actuation. The
optimization has been implemented using the Python package
PyAnsys, which enables communication between Python and the
commercial finite element software Ansys. A shell element type
SHELL181 is employed for the ribs and the slab using a regular mesh
of 10 elements along the length L. SHELL181 is a four-node element
based on Reissner–Mindlin shell theory (shear deformable). It has
been verified through a convergence analysis that the chosen mesh

TABLE 2 Underslung beam, optimization results.

Strategy n1 Strategy n2

h 22.4 cm 21.1 cm

d 13.7 cm 17.0 cm

Nact −2.73 kN −1.81 kN

wA (passive) 2.06 cm 2.30 cm

wA (active) 1.68 cm 2.00 cm

wB (passive) 0.55 cm 0.44 cm

wB (active) 0.00 cm 0.00 cm

FIGURE 3
Ribbed slab, plan view.

FIGURE 4
Ribbed slab, cross-sectional data.

FIGURE 5
Load case 1.

FIGURE 6
Load case 2.
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density, in conjunction with reduced integration with hourglass
stabilization, provides sufficiently accurate results. The following
constrained optimization problems have been solved using
sequential least squares programming.

The passive configuration is obtained through volume
minimization. Therefore, the objective function is the volume of
the entire ribbed slab structure. Constraints include deflection limits
for both load cases: wlc1 and wlc2; these values refer to the largest
deflections occurring anywhere on the slab for the corresponding
load case. The geometric dimensions of the ribs are limited within a
certain range for practical applications. The formulation of this
optimization problem is

The optimization process yields the following solution.

With this configuration of the ribbed slab, it is possible to satisfy
the displacement limits under load case 1 and load case 2 without
actuation. The thin plate and ribs can be realized using fiber
reinforcement. Potential stability issues are not considered in this
simplified linear study.

3.3 Adaptive system

3.3.1 Verification of the above hypothesis on the
relation of actuation effort and stiffness

Referring to Section 2.2.3, an analysis is carried out to
confirm that minimizing the actuation force is equivalent to
minimizing the ratio of the amount by which the
displacement limit is violated in the uncontrolled (i.e., passive)
state to the displacement caused by a unit actuation, wpass−ŵ

wact
. The

direct transfer to a problem for which the location of the critical
displacement is initially unknown is relatively complex;
therefore, as a proof of concept, the deflection at point A is
considered, as indicated in Figure 3. Point A is located at X =
6.25 m and Y = 3.75 m. This is near the maximum displacement
location that occurs in most cases.

The objective is to obtain a solution whose volume is reduced to
V = 3.0 m3. The displacement limit at point A under load case 1 must
be satisfied without actuation. Under load case 2, there is no limit for
the uncontrolled state, that is, the displacement limit will be satisfied
through actuation.

Strategy n3 (Section 2.2.3), in this case, is formulated as

In the objective function, wpass is the uncontrolled displacement
under load case 2, ŵ is the displacement limit, and wact is the
displacement caused by a unit actuation (Fact = 1). The following
solution is obtained.

For this configuration, an actuation force Fact = 220.8 kN is
required to satisfy the displacement limit wlc2,A ≤ ŵ under load
case 2.

The solution global optimality cannot be guaranteed because
the optimization problem has been formulated using a nested
analysis and design approach (NAND). However, different
starting configurations have been tested, resulting in an
identical solution.

Direct minimization of the actuation force has been denoted as
strategy n2, which, in this case, is formulated as

Compared to strategy n3, this approach explicitly accounts for
both load cases and the actuation force that is the objective
function and a design variable simultaneously. The obtained
solutions are

Objective function V(h, Δh, d) = dL2 + 2LHdrib + 4Lhdrib

Design variables h, Δh, d

Constraints wlc1 ≤ ŵ and wlc2 ≤ ŵ

0.01 m≤ h
Δh{ }≤ 1.0 m

0.01 m ≤ d ≤ 0.1 m

Item Value

Slab thickness d = 0.02417 m

Height of secondary ribs h = 0.2847 m

Height difference to main ribs Δh = 0.41012 m

Overall volume V V = 3.68 m3

Objective function wpass−ŵ
wact

Design variables h, Δh, d

Constraints V = 3.0 m3

wlc1 ≤ ŵ

0.01 m≤ h
Δh

{ }≤ 1.0 m

0.01 m ≤ d ≤ 0.1 m

Item Value

Slab thickness d = 0.0198 m

Height of secondary ribs h = 0.161 m

Height difference to main ribs Δh = 0.532 m

Objective function Fact

Design variables h, Δh, d, Fact

Constraints V = 3.0 m3

wlc1 ≤ ŵ and wlc2 ≤ ŵ

0.01 m≤ h
Δh

{ }≤ 1.0 m

0.01 m ≤ d ≤ 0.1 m
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Results are identical to those obtained with strategy n3,
including the actuation force, confirming the statement given in
Section 2.2.

3.3.2 Minimizing compliance vs. minimizing
actuation effort

In this section, further analysis is carried out to compare the
minimization of the displacement difference Δw � wpass − ŵ,
denoted as strategy n1, with the direct minimization of the
actuation force, denoted as strategy n2. Strategy n1, which
minimizes the largest displacement and actively compensates
the difference to satisfy the displacement limit, is
reformulated as

Both load cases are considered; no active control is employed for
displacement compensation. As explained in Section 3.2, the
maximum displacement is considered, not only the one at point
A. The obtained solution is

The value of the objective function is wlc2 = 0.0366 m. As
expected, this violates the deflection limit of 0.02 m. Satisfying
the deflection limit under load case 2 requires an actuation force
Fact = 367.9 kN.

For strategy n2, formally, the same optimization problem is
obtained as in the previous subsection, repeated here for
convenience.

The main difference to the problem stated in Section 3.3.1 is
that the maximum displacement is considered and not only that
at point A. This is the reason the solution is marginally
different.

The slab thickness d is almost identical to the one obtained
from strategy n1, but the height of the secondary ribs is smaller,
while more material is distributed into the main ribs. This causes a
larger uncontrolled displacement under load case 2 wlc2 =
0.0464 m. However, it significantly reduces the actuation effort
requiring a 36% smaller actuation force. Table 3 gives an overview
of the two optimization strategies. Strategy n3 results are not given
because, as shown in Section 3.3.1, it produces the same solution as
strategy n2.

4 Conclusion

The hypothesis that it is an effective strategy to design an
adaptive load-bearing structure to be as stiff as possible against
external loads and as flexible as possible against actuation actions
has been confirmed. Analytical solutions have verified that

TABLE 3 Ribbed slab, optimization results.

Strategy n1 Strategy n2

d 0.0198 m 0.0209 m

h 0.232 m 0.151 m

Δh 0.329 m 0.454 m

Fact 367.9 kN 233.9 kN

wlc2 (passive) 0.0366 m 0.0464 m

Objective function wlc2

Design variables h, Δh, d

Constraints V = 3.0 m3

wlc1 ≤ ŵ

0.01 m≤ h
Δh

{ }≤ 1.0 m

0.01 m ≤ d ≤ 0.1 m

Item Value

Slab thickness d = 0.0198 m

Height of secondary ribs h = 0.161 m

Height difference to main ribs Δh = 0.532 m

Actuation force Fact = 220.8 kN

Item Value

Slab thickness d = 0.0198 m

Height of secondary ribs h = 0.232 m

Height difference to main ribs Δh = 0.329 m

Objective function Fact

Design variables h, Δh, d, Fact

Constraints V = 3.0 m3

wlc1 ≤ ŵ and wlc2 ≤ ŵ

0.01 m≤ h
Δh

{ }≤ 1.0 m

0.01 m ≤ d ≤ 0.1 m

Item Value

Slab thickness d = 0.0209 m

Height of secondary ribs h = 0.151 m

Height difference to main ribs Δh = 0.454 m

Actuation force Fact = 233.9 kN
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minimizing the ratio of the amount by which the displacement
limit is violated in the uncontrolled state to the displacement
caused by a unitary actuation force is identical to minimizing the
actuation force. This means that, as an alternative to formally
solving a mathematical optimization problem to minimize
actuation effort, which is a complex task, some combination
of stiffness versus load and flexibility versus actuation can be
pursued as the engineering rationale for designing adaptive
structures.

The value of the numerical examples formulated in this work lies
not in providing feasible designs that can be fabricated but in
providing intuitive yet analytically verified evidence that a trade-
off between stiffness and flexibility is the key to efficient adaptive
structure design. When designing adaptive versus conventional
passive structures, the goals are different. This study confirms
previous findings that designing adaptive structures requires a
holistic, systemic approach as opposed to maximizing the
stiffness and then reducing displacements actively under strong
loading.
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