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This study established an inversion based on a fishbone model to estimate physical
parameters from the responses of elastic building structures subjected to an
earthquake. A fishbone model, which has rotational springs and dashpots in
addition to the elements in a lumped mass model, is effective for demonstrating
structural rotations that happen at the connections of columns and beams. This
model is commonly applied to computational calculations of seismic responses of
structures and is classified into a forward problem obtaining responses from known
systems and excitations. Although its effectiveness for the forward problem has been
well demonstrated, it has rarely been applied to the inverse problem, where structural
properties are estimated from known responses and excitations. First, this study
inverted multi/single-mass-system fishbone models. Then, the inversion was applied
to an elastic fishbone model of a 3-mass system, which was built based on an
E-Defense shaking table experiment, and its structural responses were numerically
simulated. This numerical simulation demonstrated its effectiveness for accurately
estimating parameters in the fishbone model of the 3-mass system, especially when
its structural responses are not contaminated by noises. Lastly, it was applied to
responses containing some noise to examine its influence on the estimation
accuracy. The estimation accuracy of damping elements was found to be
sensitive to noise, whereas that of stiffness was more insensitive than the damping
elements. The proposed inversion is particularly suitable for estimating rotational
stiffness, which is not obtainable from the inversion of lumped mass systems.
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1 Introduction

Structural health monitoring is an important subject for maintenance of systems in various
fields, such as aerospace and mechanical and civil engineering (Farrar and Worden 2006).
Monitoring is basically expected to find abnormalities (e.g., damage) within the systems, as well as
more detailed local information such as damage location and severity (Chang et al., 2003).
Although the location is fundamental information for damage restoration, the severity directly
affects the operation, because it is closely related to safety management.

Abnormalities are more frequently observed after natural disasters, such as earthquakes,
than during normal times (Sohn et al., 2001), (Brownjohn 2007). In fact, during the Great
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East Japan Earthquake of 2011, millions of buildings and structures
in distributed over a wide area were severely shaken by the huge
earthquake. Afterward, there was a significant demand for post-
earthquake condition assessments to ensure structural integrity
against subsequent aftershocks (Fujino et al., 2019).

Visual inspection by humans is a direct approach for assessment,
although its accuracy greatly relies on the capability of the inspectors as
well as the visibility and accessibility of the damage (Nagarajaiah and
Yang 2017). However, such inspections are problematic, especially in
post-earthquake situations, because they require inspectors to enter the
buildings or access structures whose safety is unsecured, sometimes with
a high possibility of similar or even larger earthquakes. On top of that,
after a large earthquake, inspections are difficult to obtain due to the
scarcity of labor and electricity, as well as the price increases caused by
the lack of various products (Lynch 2007). Thus, structural assessment
after disasters must be freed from the need for human effort and
performed in a systematic way to smoothly deal with a huge number of
structures. Therefore, structural health monitoring based on structural
vibration data is a promising approach (Nagarajaiah and Yang 2017),
(Balsamo andBetti 2015), because it uses data automatically acquired by
sensors attached to structures for the assessment. Currently, the
development of efficient structural monitoring techniques for the
seismic damage detection based on structural responses is active and
an important subject in earthquake engineering.

The modal information for structures (i.e., natural frequencies,
their corresponding damping ratios, and modal shapes) has been
commonly used as indices to find abnormalities (Brownjohn 2007);
(Hearn and Testa 1991); (Doebling et al., 1996); (Ji et al., 2011);
(Iiyama et al., 2015); (Fujiwara et al., 2021), and it is extensively used
for systems having time-varying parameters (Tobita 1996);
(Moaveni and Asgarieh 2012); (Astroza et al., 2018); (Li and Law
2009). However, the modal information of a structure is governed by
its entire condition and insensitive to local structural damage, such
as fractures or cracks in beams (Xie et al., 2018). Thus, assessments
based on the modal information in general have difficulties in
obtaining detailed local information.

In response to the need for local information from the assessment,
much attention has been recently paid to approaches that directly
estimate physical parameters of structures (i.e., mass, damping, and
stiffness) rather than the modal information (Kang et al., 2005), (Kuleli
and Nagayama 2019). In this regard, a time domain inversion (TDI),
which selects suitable parameters for an assumed model by the least
squares method and time history structural responses (i.e., acceleration,
velocity, and displacement), has been a useful approach, particularly for
linear systems or those with little parameter variation (Agbabian et al.,
1991); (Nakamura and Yasui 1999); (Shintani, Yoshitomi, and
Takewaki 2017). However, regarding nonlinear systems, TDI has
been mainly used for the estimation of the nonlinear restoring force
within a system (Toussi and Yao 1983); (Masri et al., 1987(a)); (Masri
et al., 1987(b)); (Shintani, Yoshitomi, and Takewaki 2020), rather than
those physical parameters. This is mainly attributed to a feature of TDI:
it requires enough sampling steps for the estimation, indicating its
unsuitability for the exact identification of time-varying parameters.

To address the issue of estimating physical parameters in a
nonlinear structure, we have developed simple piecewise
linearization in time series (SPLiTS) (Enokida and Kajiwara
2020), for use with TDI. It enables us to estimate the physical
parameters in a nonlinear structure by the piecewise linearization of

the structure based on half cyclic waves of its displacement
responses. Due to the linearization, SPLiTS describes the time-
varying stiffness and damping as time history data. The current
SPLiTS was specifically developed for a mass-spring-dashpot model
that allows only lateral movement. This model is particularly
suitable for evaluating structures whose floors, consisting of
beams and slabs, are rigid or much stiffer than the columns.
However, many actual structures do not satisfy the minimum
conditions for SPLiTS, and they require a model that considers
the influence of columns and floors separately for more precise
modeling. Parameter estimation based on such a detailed model
would allow more accurate assessments with more detailed local
information.

A fishbone model (Ogawa et al., 1999); (Nakashima et al., 2002),
which is constructed as an extension of the mass-spring-dashpot
model, has additional elements to simulate structural rotations,
which typically occur at connections of columns and beams. The
fishbone model was originally developed for numerical analysis of
structures to study the seismic response more elaborately than is
possible with the mass-spring-dashpot model. Although the model
has been occasionally used in system identification tests or damage
assessment of structures (Ji et al., 2011); (Soma et al., 2016), physical
parameter estimation based on its inversion has not yet been
established. This is mainly because the inversion requires the
structural rotation response, which has been rarely measured
even in laboratory experiments. However, due to advances in
measurement devices, such as micro-electromechanical systems,
structural dynamic rotation can be more easily measured than
before. This indicates the possibility of employing such data for
structural monitoring techniques.

Within this context, this study established an inversion based on
a fishbone model to estimate physical parameters of elastic building
structures subjected to earthquake excitations, aiming for its
application to SPLiTS in the future.

The remainder of this manuscript is as follows. Section 2
introduces the inverse problem of a multi-mass system fishbone
model. Numerical simulation of the E-Defense testing of a 3-story
steel structure and physical parameter estimation based on TDI
using an elastic fishbone model of a 3-mass system were conducted.
Section 3 introduces the inverse problem of an elastic fishbone
model of a single-mass system, and describes physical parameter
estimation based on TDI using the single-mass system model.
Section 4 introduces physical parameter estimation based on TDI
with noise using elastic fishbone models of the 3-mass system and
single-mass system. Section 5 compares physical parameter
estimation based on TDI using mass-spring-dashpot models of
the 3-mass system and single-mass system. Section 6 summarizes
the conclusions obtained in this study.

2 Fishbonemodel ofmulti-mass system

2.1 Inverse problem of multi-mass system
fishbone model

The equations of motion for an n-mass system fishbone
model with the foundation fixed, shown in Figure 1, are Eqs
2.1a and 2.1b solved simultaneously with damping neglected
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(Soma et al., 2016). The derivation process is shown in
Supplementary Appendix SA1.

H1M €x+ €u( ) � αkθ

5

h1 h1 +2h2 h1 +2h2 +2h3 / h1 +2h2 +2h3 +/+2hn−1 h1 +2h2 +2h3 +/+2hn−1 +2hn
0 h2 h2 +2h3 / h2 +2h3 +/+2hn−1 h2 +2h3 +/+2hn−1 +2hn
0 0 h3 / h3 +/+2hn−1 h3 +/+2hn−1 +2hn
..
. ..

. ..
.

1 ..
. ..

.

0 0 0 / hn−1 hn−1 +2hn
0 0 0 / 0 hn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

m1 €x1 + €u( )
m2 €x2 + €u( )
m3 €x3 + €u( )

..

.

mn−1 €xn−1 + €u( )
mn €xn + €u( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

2kB1 +d1 2kB2 2kB3 / 2kBn−1 2kBn
−d2 2kB2 +d2 2kB3 / 2kBn−1 2kBn
0 −d3 2kB3 +d3 / 2kBn−1 2kBn
..
. ..

. ..
.

1 ..
. ..

.

0 0 0 / 2kBn−1 +dn−1 2kBn
0 0 0 / −dn 2kBn +dn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

θ1
θ2
θ3
..
.

θn−1
θn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.1a)

H2M €x+ €u( ) � βkθ+EIx

5

h1 h1 +3h2 h1 +3h2 +3h3 /h1 +3h2 +3h3 +/+3hn−1 h1 +3h2 +3h3 +/+3hn−1 +3hn
0 h2 h2 +3h3 / h2 +3h3 +/+3hn−1 h2 +3h3 +/+3hn−1 +3hn
0 0 h3 / h3 +/+3hn−1 h3 +/+3hn−1 +3hn
..
. ..

. ..
.

1 ..
. ..

.

0 0 0 / hn−1 hn−1 +3hn
0 0 0 / 0 hn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

m1 €x1 + €u( )
m2 €x2 + €u( )
m3 €x3 + €u( )

..

.

mn−1 €xn−1 + €u( )
mn €xn + €u( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

3kB1 +3d1 3kB2 3kB3 / 3kBn−1 3kBn
0 3kB2 +3d2 3kB3 / 3kBn−1 3kBn
0 0 3kB3 +3d3 / 3kBn−1 3kBn
..
. ..

. ..
.

1 ..
. ..

.

0 0 0 / 3kBn−1 +3dn−1 3kBn
0 0 0 / 0 3kBn +3dn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

θ1
θ2
θ3
..
.

θn−1
θn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

e1 0 0 / 0 0
−e2 e2 0 / 0 0
0 −e3 e3 / 0 0
..
. ..

. ..
.
1 ..

. ..
.

0 0 0 / en−1 0
0 0 0 / −en en

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x1

x2

x3

..

.

xn−1
xn

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.1b)

Here, di � 2EIi
hi
, ei � 6EIi

h2i
, hi is the height of the i-th story,mi is the

mass of the i-th story, xi is the relative displacement of the i-th story,
€u is ground acceleration, kBi is the rotation stiffness of the i-th story,
θi is the rotation angle of the i-th story beam, and EIi is a coefficient
obtained by multiplying the Young’s modulus of the i-th story
column by the moment of inertia.

The inverse problem of an n-story fishbone model is formulated
by transforming Eq. 2.1b as follows:
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FIGURE 1
Fishbone model of the multi-mass system.
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If the mass and height (mi and hi) of the building and the
response values (xi and θi) are known, the dynamic characteristics of
the building (kBi and ei) can be evaluated.

2.2 Numerical simulation for E-Defense test
of 3-story steel structure

The 3-story steel test specimen used in the E-Defense test in
2013 (ASEBI 2013), (Hyogo Prefecture 2014) is modeled as a fish-
bone model. A view of the entire test specimen that was set on the
shaking table is shown in Figure 2 (Mizushima et al., 2018).

2.2.1 Evaluation of elastic stiffness of fishbone
column and beam

Elastic stiffness, which is the bending moment at one end of one
column and one beam in the i-th story divided by the member angle,
is expressed in Eqs 2.3a and 2.3b, respectively (Ogawa et al., 1999).

KCi � 1
hi
6EI + 2

GAShi

, (2.3a)

KBi � 1
l

6EI + 2
GASl

+ m
GVP

, (2.3b)

where E is Young’s modulus, I is the moment of inertia, hi is the
length of the column, G is the modulus of shear elasticity, AS is the
shear cross-sectional area, l is the length of the beam, m is the
number of the beams attached to the panel, and VP is the volume of
the panel.

In our model, a section list of columns and beams for each story
is shown in Table 1. The height and weight of each story are shown
in Table 2 (Mizushima et al., 2018). The elastic stiffness of the
columns in each story was calculated by Eq. 2.3a and tripled because
each story has three columns. The elastic stiffness of the beams in
each floor was calculated by Eq. 2.3b and I in Eq. 2.3b was doubled
because beams are restrained from both sides by the slab. The

evaluated elastic stiffness values are shown in Table 3. All the
evaluated values were calculated taking the panel size into account.

2.2.2 Comparison of E-Defense test results and
elastic fishbone analysis results

The program “fish.f Ver. 2.3” was used for fishbone analysis
(Ogawa 2015). The damping was assumed to be proportional to the
stiffness matrix, and the damping ratio was set to 2.5%. The beams
and columns were set to behave elastically. The base stiffness was set
to 1.2 × 105 kN m to match the result in the E-Defense test report
(Hyogo Prefecture 2014). The input acceleration was 40% of the
intensity of the observed earthquake acceleration at JR Takatori
station during the Hanshin-Awaji Earthquake of 1995 (Figure 3).
The stress values for members of the test specimen were almost
within the elastic range when 40% of the JR Takatori wave was
inputted (Mizushima et al., 2018).

The first and second natural frequencies of the specimen and
the fishbone analysis model are shown in Table 4. The maximum
absolute acceleration values of each floor from the E-Defense test
results and the fishbone analysis results are shown in Table 5. The
maximum interstory drift values of each story from the
E-Defense test results and the fishbone analysis results are
shown in Table 6.

Figure 4 shows a comparison of time history waves for each
story response in the E-Defense test results and fishbone analysis
results. Left panels show the time history waves of the absolute
acceleration, and right panels show those of the interstory drift.
The results show that the fishbone analysis approximately
simulates the E-Defense test results.

FIGURE 2
3-story steel test specimen.

TABLE 1 Section list.

Floor Columns Beams

RF H-350 × 175 × 7 × 11

3F B-350 × 350 × 9 H-400 × 200 × 8 × 13

2F B-350 × 350 × 12 H-450 × 200 × 9 × 14

1F B-350 × 350 × 12

TABLE 2 Heights and weights of specimen.

Story Height (m) Weight (kN)

3rd 3.475 402

2nd 3.475 431

1st 3.575 441

TABLE 3 Evaluated values of elastic stiffness of columns and beams in each
story (Unit: kN m).

Story Columns Beams

3rd 3.02 × 105 1.98 × 105

2nd 4.06 × 105 3.30 × 105

1st 3.38 × 105 4.40 × 105
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2.3 Physical parameter estimation for elastic
fishbone model of 3-mass system

The terms representing the shear stiffness in Eqs 2.3a and
2.3b, and also the panel term in Eq. 2.3b were neglected after

the analysis explained in Section 2.2 because we estimated ei in
Eq. 2.2 for the inverse analysis. The fishbone model of the 3-
mass system, including the mass weights and heights, was set
based on the test specimen in the 2013 E-Defense test, in the
same way as described in Section 2.2.1. The elastic stiffness of
the beams and the moment of inertia of all columns in
each story are shown in Table 7. The increase of the
moment of inertia due to the restraint by the slab was not
considered.

The damping coefficients for beams and columns were
calculated by Eqs 2.4a and 2.4b, respectively.

cBi � 2hcω1kBi, (2.4a)

cei � 2hcω1ei, (2.4b)

where hc is the damping factor of the superstructure and ω1 is the
first natural circular frequency.

These simulations employed the ground motion
acceleration recorded by the Japan Meteorological Agency
(JMA) during the Hyogo-ken Nanbu/Kobe Earthquake of
1995, and this motion is referred to as the JMA Kobe motion
in this study. Figure 5 shows a comparison of time history waves
for our forward fishbone analysis results using Eqs 2.1a and 2.1b
considering damping proportional to the stiffness and the
forward fishbone analysis results using the fish.f program
(Ogawa 2015), for each story response, when 10% of the
intensity of the JMA Kobe motion was inputted. Our forward
fishbone analysis can accurately follow the fish.f program
analysis. The damping factor of superstructure hc was
assumed to be 2.5%.

Eq. 2.2 for a fishbone model of a 3-mass system considering
damping proportional to the stiffness is expressed as

FIGURE 3
Time history wave of input acceleration for 40% of the JR Takatori wave.

TABLE 4 First and second natural frequencies of specimen and fishbone
analysis model (Unit: Hz).

Natural
frequency

E-Defense test
specimen

Fishbone analysis
model

1st 1.56 1.50

2nd 4.83 4.61

TABLE 5 Maximum absolute accelerations of each floor from E-Defense test
results and fishbone analysis results (Unit: cm/s2).

Floor E-Defense test Fishbone analysis

3rd 809.3 760.0

2nd 648.7 663.9

1st 556.5 518.4

TABLE 6 Maximum interstory drifts of each story from E-Defense test results
and fishbone analysis results (Unit: mm).

Story E-Defense test Fishbone analysis

3rd 27.0 20.0

2nd 39.0 27.6

1st 54.3 44.8
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, (2.5)

where cBi � αkBi, cei � βei, and α, β are proportional coefficients.
When the number of response data for the time history response

analysis is nd, Eq. 2.5 can be expressed by

R2

m1

m2

m3

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭ � R1

kB1
kB2
kB3
cB1
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e1
e2
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ce1
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, (2.6)

where

R1 �
3θ1 3θ2 3θ3 3 _θ1 3 _θ2 3 _θ3 h1θ1 + x1 0 0 h1 _θ1 + _x1 0 0
0 3θ2 3θ3 0 3 _θ2 3 _θ3 0 h2θ2 + x2 − x1 0 0 h2 _θ2 + _x2 − _x1 0
0 0 3θ3 0 0 3 _θ3 0 0 h3θ3 + x3 − x2 0 0 h3 _θ3 + _x3 − _x2

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦,
(2.7a)

R2 �
h1 €x1 + €u( ) h1 + 3h2( ) €x2 + €u( ) h1 + 3h2 + 3h3( ) €x3 + €u( )

0 h2 €x2 + €u( ) h2 + 3h3( ) €x3 + €u( )
0 0 h3 €x3 + €u( )

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦,
(2.7b)

in which

FIGURE 4
Comparison of time history waves from the E-Defense test results and fishbone analysis results for the response of each story.

TABLE 7 Elastic stiffness of beams andmoment of inertia of all columns in each
story for fishbone model.

Story Beam (kN m) Column (m4)

3rd 1.18 × 10 6.96 × 10−4

2nd 2.05 × 105 8.94 × 10−4

1st 2.86 × 105 8.94 × 10−4
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i � 1, 2, 3( )

When the number of steps is nd ≠ 4, R1 is not a regular matrix,
and its direct inversion is infeasible. Thus, instead of the direct
solution, the stiffnesses and damping coefficients of beams and
columns for the fishbone model of the 3-mass system can be
obtained by the pseudo-inversion expressed by

kB1
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� R1
TR1( )−1R1

TR2

m1

m2

m3

⎧⎪⎨⎪⎩
⎫⎪⎬⎪⎭. (2.8)

TDI, which is a commonly used least squares method for parameter
estimations (Toussi and Yao, 1983), is utilized to solve Eq. 2.8. The

FIGURE 5
Comparison of time history waveforms obtained by our forward fishbone analysis using Eqs 2.1a and 2.1b considering damping proportional to the
stiffness and time history waveforms obtained by the fish.f analysis for each story response: (A) absolute acceleration, (B) relative displacement, (C)
relative velocity, (D) rotation angle, (E) rotation angle velocity, and (F) rotation angle acceleration.
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evaluated values of kBi, cBi, ei, cei fromEq. 2.8 are exactly equal to the true
values of k̂Bi, ĉBi, êi, ĉei for all i = 1, 2, 3. When the number of steps is
nd < 4, the solutions are indeterminate. However, most cases are nd > 4.

3 Fishbone model of single-mass
system

3.1 Inverse problem of single-mass system
fishbone model

The equations of motion for the single-mass system fishbone
model with the foundation fixed, shown in Figure 6, are solved
simultaneously by Eqs 3.1a and 3.1b when damping proportional to
the stiffness is considered.

h1m1 €x1 + €u( ) � 2kB1 + d1( )θ1 + 2cB1 + cd1( ) _θ1, (3.1a)
h1m1 €x1 + €u( ) � 3kB1 + 3d1( )θ1 + e1x1 + 3cB1 + 3cd1( ) _θ1 + ce1 _x1,

(3.1b)
FIGURE 6
Fishbone model of the single-mass system.

FIGURE 7
Comparison of time history waveforms obtained by our forward fishbone analysis using Eqs 3.1a and 3.1b and time history waveforms obtained by
the fish.f analysis for the single-mass system fishbone model.
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where cdi � βdi.
The inverse problem of the single-mass system fishbonemodel is

formulated by transforming Eqs 3.1a and 3.1b as follows:

h1m1 €x1 + €u( ) � 2θ1kB1 + 2 _θ1cB1 + h1θ1
3

e1 + h1 _θ1
3

ce1, (3.2a)

h1m1 €x1 + €u( ) � 3θ1kB1 + 3 _θ1cB1 + h1θ1 + x1( )e1 + h1 _θ1 + _x1( )ce1.
(3.2b)

When the responses of absolute acceleration, relative
displacement, relative velocity, rotation angle, and rotation
velocity for the fishbone model of the single-mass system are
already known, the rotation stiffness and the rotation damping
coefficient of beams, and the stiffness and the damping
performances of columns are obtained by resolving the system of
Eqs 3.2a and 3.2b, respectively. Because the rotation angle θ1 is linear
with the relative displacement θ1, the system of equations needs to
be solved.

3.2 Physical parameter estimation for elastic
fishbone model of single-mass system

The Fishbone model of the single-mass system is assumed to
be the third story of the fishbone model of the 3-mass system
given in Section 2.2. Figure 7 shows a comparison of time history
waves for our forward fishbone analysis results using Eqs 3.1a and
3.1b and the forward fishbone analysis results using the fish.f

program for the fishbone model of the single-mass system when
10% of the intensity of the JMA Kobe motion was inputted. Our
forward fishbone analysis can accurately follow the fish.f program
analysis.

The system of Eqs 3.2a and 3.2b is rewritten as

h1 €x1 + €u( ) 0
0 h1 €x1 + €u( )[ ] m1

m1
{ } � 2θ1 2 _θ1

h1θ1
3

h1 _θ1
3

3θ1 3 _θ1 h1θ1 + x1 h1 _θ1 + _x1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×
kB1
cB1
e1
ce1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭

(3.3)

When the number of response data for the time history response
analysis is nd, Eq. 3.3 can be expressed by

R4
m1

m1
{ } � R3

kB1
cB1
e1
ce1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭, (3.4)

where

R3 � 2θ1 2 _θ1
h1θ1
3

h1 _θ1
3

3θ1 3 _θ1 h1θ1 + x1 h1 _θ1 + _x1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (3.5a)

R4 � h1 €x1 + €u( ) 0
0 h1 €x1 + €u( )[ ], (3.5b)

FIGURE 8
Influence of noise level on accuracy of the estimation in the 3-mass system fishbone model: (A) rotational stiffness, (B) rotational damping
coefficient, (C) column stiffness, and (D) column damping coefficient.
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When the number of steps is nd ≠ 2, R3 is not a regular matrix,
and the stiffnesses and damping coefficients of beams and columns
for the fishbone model of single mass system can be obtained by

kB1
cB1
e1
ce1

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭ � R3

TR3( )−1R3
TR4

m1

m1
{ }. (3.6)

The evaluated values of kB1, cB1, e1, ce1 from Eq. 3.6 utilizing TDI
are exactly equal to the true values of k̂B1, ĉB1, ê1, ĉe1. When the
number of steps is nd � 1, the solutions are indeterminate. However,
most cases are nd > 2.

4 Physical parameter estimation with
noise

4.1 Elastic fishbone model of 3-mass system

We investigated the effect of noise on the accuracy of TDI using the
elastic fishbonemodel.We considered the situationwhere all responses of
the 3-mass system fishbone model have random noise. The noise was
produced using uniform random numbers, and the maximum range of

FIGURE 9
Time history of the moments related to rotational stiffness, rotational damping, column stiffness, and column damping for the first to third rows of
Eq. 2.5: (A) first row, (B) second row, and (C) third row (left panels: overall view; right panels: enlarged view).
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each response was employed to quantify the noise. Different independent
noises were added to the original response data (acceleration, velocity,
displacement, rotational angle, and angular velocity) simulated without
noise. The data from 5 to 15 s were used for TDI.

Figure 8 plots the percentage errors of the rotational stiffness,
rotational damping coefficient, column stiffness, and column
damping coefficient with respect to the noise level in the
fishbone model of the 3-mass system. It can be observed that the
rotational stiffnesses of the first and second stories are evaluated as
approximately equal to the true values. The accuracy of the

rotational stiffness of the third story and rotational damping
coefficients of all stories degrade gradually as noise increases. The
order of accuracy degradation in column stiffness and column
damping coefficients is larger, and especially the column
stiffnesses of the first and second stories and the column
damping coefficients of the first story take negative values.

Figure 9 shows the time history of the moments related to
rotational stiffness, rotational damping, column stiffness, and
column damping for the first to third rows of Eq. 2.5 as the
equation of motion. It can be observed that the moment related

FIGURE 10
Influence of noise level on the accuracy of estimation in the single-mass system fishbone model: (A) rotational stiffness, (B) rotational damping
coefficient, (C) column stiffness, and (D) column damping coefficient.

FIGURE 11
Time history of moments related to rotational stiffness, rotational damping, column stiffness, and column damping for Eq. 3.2a (left panel: overall
view; right panel: enlarged view).

TABLE 8 Evaluated stiffnesses of the springs and damping coefficients of
dashpots.

Story Stiffness (kN/m) Damping coefficient (kN s/m)

3rd 1.21 × 104 59.2

2nd 1.73 × 104 88.1

1st 2.71 × 104 1.48 × 102

TABLE 9 Ratios of evaluated stiffness to 12EI/l3 and estimated damping
coefficient to 12EI/l3 multiplied by 2hcω1

Story Stiffness Damping coefficient

3rd 0.30 0.27

2nd 0.33 0.32

1st 0.56 0.58
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to rotational stiffness occupies a large portion of the whole moment,
while those related to damping and column stiffness of the first and
second stories are small. This shows that the rotational stiffness can
be estimated accurately.

As shown in Figure 9, the moments related to damping are small
and they are probably susceptible to noise when solving Eq. 2.5,

which is considered to be the reason for the negative damping in
Figure 8.

4.2 Elastic fishbone model of single-mass
system

We considered the situation in which all responses of the single-
mass system fishbone model have noise, similar to the situation
described in Section 4.1. It can be observed that the rotational
stiffness and rotational damping coefficient are evaluated as
approximately equal to the true values, while the accuracies of
the column stiffness and column damping coefficient degrade
gradually as noise increases.

Figure 10 plots the percentage errors of the rotational stiffness,
rotational damping coefficient, column stiffness, and column
damping coefficient with respect to the noise level in the
fishbone model of the single-mass system. It can be observed
that the rotational stiffness and damping coefficient are evaluated
as approximately equal to the true values. The accuracy of the
column stiffness and damping coefficient degrade gradually as noise
increases. Physical parameters of the fishbone model of the single-
mass system are estimated more accurately than those of the 3-mass
system fishbone model.

Figure 11 shows the time history of the moments related to the
rotational stiffness, rotational damping, column stiffness, and
column damping, with Eq. 3.2a as the equation of motion. It can
be observed that the moment related to rotational stiffness occupies
a large portion of the whole moment, while moments related to the
rotational and column damping are small.

FIGURE 12
Comparison of time history waveforms obtained by forward
analysis using the shear building model with the evaluated shear
stiffness and damping coefficient and time history waveforms
obtained by forward analysis using a fishbone model for the 3-
mass system model: (A) absolute acceleration, (B) relative
displacement, and (C) relative velocity.

FIGURE 13
Comparison of time history waveforms obtained by forward
analysis using the shear building model with the evaluated shear
stiffness and damping coefficient and time history waveforms
obtained by forward analysis using the fishbone model for the
single-mass system model.
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5 Comparison with mass-spring-
dashpot model

TDI was conducted using the mass-spring-dashpot model and
the forward analysis results (relative displacement and relative
velocity) obtained in Sections 2.3 and 3.2. The shear stiffness and
damping coefficient were obtained from the interstory displacement
and relative velocity in the inverse analysis using the mass-spring-
dashpot model.

5.1 Physical parameter estimation for mass-
spring-dashpot model of 3-mass system

TDI was conducted using the mass-spring-dashpot model of
a 3-mass system having masses the same as those given in Section
2.3. The evaluated stiffnesses of the springs and damping
coefficients of dashpots in each story are shown in Table 8.
The ratios of the evaluated stiffness to the column shear
stiffness evaluated from the expression 12EI/l3 and those of
the estimated damping coefficient to the damping coefficient
obtained by multiplying 12EI/l3 by 2hcω1 in Eq. 2.4b are shown in
Table 9.

Figure 12 compares the time history of waveforms obtained by
forward analysis using a mass-spring-dashpot model with the
evaluated stiffness of springs and damping coefficient of dashpots
and time history waveforms obtained by forward analysis using the
fishbone model. There are differences between the results of the
shear building model and the results of the fishbone model,
especially in the second and third stories.

5.2 Physical parameter estimation for mass-
spring-dashpot model of single-mass
system

TDI was conducted using the mass-spring-dashpot model of
a single-mass system having a mass the same as that given in
Section 3.2. The evaluated shear stiffness was 2.30 × 104 kN/m.
The evaluated damping coefficient was 48.5 kN s/m. The ratio of
the evaluated stiffness of spring to the column shear stiffness
evaluated from the expression 12EI/l3 was 0.56. The ratio of the
estimated damping coefficient of dashpot to the damping
coefficient obtained by multiplying 12EI/l3 by 2hcω1 in Eq.
2.4b was 0.56.

The estimated damping coefficient of the dashpot was equal
to the evaluated stiffness of spring multiplied by 2hcω1, in the case
of the single-mass system, because the damping was assumed to
be proportional to the stiffness. 12EI/l3 is the shear stiffness
when both ends are fixed. When the base is fixed and the other
end is free, then the shear stiffness is 3EI/l3. The evaluated
stiffness value lies between these values because the base is
fixed and the other end is supported by the spring in the
fishbone model.

Figure 13 compares the time history of waveforms obtained by
forward analysis using the shear building model with the
evaluated shear stiffness and damping coefficient and time
history waveforms obtained by forward analysis using the

fishbone model. The result of the shear building model agrees
well with the result of the fishbone model for the single-mass
system.

6 Conclusion

1) A fishbone model was used to simulate the “Experimental
research on seismic safety measures for steel-framed buildings
damaged by earthquakes” conducted by E-Defense in 2013. A
method of replacing a 3-story steel structure specimen with a
fishbone model was developed. Simulations using the
obtained fishbone model followed the experimental
results well.

2) We formulated the inverse problem for the fishbone model of a
multi-mass system. TDI using the forward analysis results
without noise in the linear fishbone model of the multi-mass
system gave accurate values for the column stiffness, column
damping coefficient, beam rotational stiffness, and beam
rotational damping coefficient in all 3 stories. When random
noise was added to all responses of the forward analysis results,
the rotational stiffness and damping coefficient of beams were
evaluated almost accurately, but when the noise level increased,
the differences between the evaluated values and the real values
increased. The stiffness and damping coefficient of columns were
not estimated accurately, and, in particular, some of them took
negative values.

3) We formulated the inverse problem for the fishbone model of
the single-mass system. In the case of a 1-mass model, it is
necessary to combine the equation regarding the load and the
rotational angle, and the equation regarding the load,
the rotational angle, and the relative displacement. TDI
using the forward analysis result without noise in the linear
fishbone model of the single-mass system gave accurate
values for the column stiffness, column damping
coefficient, beam rotational stiffness, and beam rotational
damping coefficient. When random noise was added to all
responses of the forward analysis result, the rotational
stiffness and damping coefficient of the beam were
evaluated accurately. However, the column stiffness and
damping coefficient deviated more from the true values as
the noise level increased.

4) TDI was conducted for a mass-spring-dashpot model using
forward analysis results for relative displacement, relative
velocity, and absolute acceleration for the fishbone model.
For the 3-mass system, using the column stiffness and
column damping of each story obtained from the
inversion analysis of the mass-spring-dashpot model, the
time history waveforms of the forward analysis results
with the mass-spring-dashpot model were attenuated more
than those of the forward analysis result with the fishbone
model. For the single-mass system, the results from using the
column stiffness and column damping coefficient obtained
from the inversion analysis of the mass-spring-dashpot
model and the time history waveforms of the forward
analysis with the mass-spring-dashpot model almost
matched those of the forward analysis results with the
fishbone model.
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