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Earthen structures have an important representation among the UNESCO World
Heritage List sites as well as among the built environment in general.
Unfortunately, earthen heritage structures are also numerous within the
UNESCO List of World Heritage in Danger whereas other existing common
earthen structures are extremely vulnerable to seismic and climate change
events. Within the field of heritage conservation, structural analysis contributes
to the safety evaluation of the structure, the diagnosis of the causes of damage and
decay, and to the validation of interventions. Thus, the need to develop effective
and accurate computational methods suitable for the study of both monumental
and vernacular earthen structures becomes evident. This paper compiles,
summarizes, and highlights the latest developments and implementations of
computational methods for the study of such structure typologies. The
literature has been explored following the PRISMA-S checklist methodology
and a narrative synthesis was used for the presentation of results. Finally, future
trends, opportunities, and challenges are discussed.
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1 Introduction

The UNESCO World Heritage List (WHL) comprises 1157 sites in 167 countries (as of
April 2023). Additionally, there are 55 properties inscribed in the UNESCO List of World
Heritage in Danger (LWHD), which contains the sites that require major interventions to
ensure conservation (UNESCO, 2023). In 2001, UNESCO established the World Heritage
Earthen Architecture Programme (WHEAP) and published an inventory that identified the
presence of Earth materials in 150 buildings on theWHL (as of 2012) (see Figure 1). Earthen
architecture sites account for up to 25% of the enlisted sites on the LWHD, which indicates
their vulnerability (UNESCO, 2007). The main factors affecting earthen architecture include
floods and earthquakes, industrialization, urbanization, modern building technologies, the
disappearance of traditional conservation practices, and specific causes of decay and
structural failure (Jiménez Rios and O’Dwyer, 2018).

Adobe walls consist of an arrangement of pieces or blocks assembled and glued together
using clay mortars Teixeira et al. (2018). Different monolithic techniques implement the soil
in different consistency states: humid for rammed Earth construction and plastic for cob.
Rammed Earth requires the use of shuttering, whereas for cob, the earthen material is
directly placed and this fact allows for great shape flexibility. Cob wall’s cohesion is provided
mainly by the clay cementing properties and the added organic fibers such as straw or
heather (Miccoli et al., 2014).
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Regrettably, the state of conservation of the earthen-built
environment is inadequate mainly due to: 1) the lack of knowledge
and specialized personnel capable of implementing better-adapted
strategies and restoration techniques, 2) natural degradation
phenomena affecting 47% of the assets 3) negative climate change
effects that affect 37% of the earthen-built stock Gandreau and Delboy
(2012). Thus, the education and training of conservation stakeholders
and technical staff needs to be improved, in particular, on the topic of
computational methods implemented, as structural analysis contributes
to the safety assessment and evaluation of the structures, the diagnosis
of the causes of damage and decay, and the validation of conservation
interventions (Roca et al., 2021).

Due to the great number of uncertainties involved in the study of
existing earthen structures, the different numerical strategies
adopted for their study usually rely on experimental campaigns
(Jiménez Rios and O’Dwyer, 2020a; Jiménez Rios and O’Dwyer,
2020b; Jiménez Rios and O’Dwyer, 2020c) to determine the value of
the needed input parameters and to validate the numerical results
obtained. Within this context, an overview of the computational
methods currently used for structural analysis of historic earthen
buildings is presented. As only adobe, rammed Earth, and cob are
commonly used to build load-bearing structural elements, the scope
of this mini-review is limited to them.

2 Review methodology

The PRISMA-S checklist (Rethlefsen et al., 2021) was adopted in
this mini-review to adequately document and report the process, ensure
transparency, and facilitate reproducibility. Publications were searched
in Scopus (Elsevier, 2023) and focused only on the main sources found.
Relevant keywords were used and grouped into three different search
queries within “TITLE-ABS-KEY”, for the years 2019-2023:

1. (“earthen heritage” OR “earthen historical building*” OR
“earthen historical structure*” OR “earthen architect*” OR
“earthen monument*”).

2. (adobe OR “rammed Earth” OR cob) AND (“computational
method*” OR “numerical analy*”).

3. (adobe OR “rammed Earth” OR cob) AND (fem OR dem OR la
OR “finite element” OR “discrete element” OR “limit analysis”).

The search was conducted on April 7, 2023. The records found
were manually deduplicated, screened, and fully assessed to
determine their suitability to be included in the mini-review. A
narrative synthesis was adopted to summarize the information
found in the records. The data has been first divided into the
three main earthen construction typologies considered, namely,
adobe, rammed Earth, and cob. Within each subsection, the
information is presented and discussed based on the
computational method applied following the four categories
proposed by D’Altri et al. (2020): 1) Continuum Homogeneous
Models [CHM, i.e., (Petracca et al., 2017)], 2) Block-Based Models
[BBM, i.e., (D’Altri et al., 2018)], 3) Geometry-Based Models [GBM,
i.e., (Jiménez Rios et al., 2022a; Jiménez Rios et al., 2022b; Nela et al.,
2022, Nela et al., 2023)], and 4) Equivalent Frame Models [EFM,
i.e., (Rinaldin et al., 2016)].

3 Review results

293 works were found. After deduplication, 278 unique records
remained. The titles and abstracts were individually screened, from
which 61 were shortlisted. These papers were read in full to assess
their suitability to be included in this mini-review. 19 were removed
because they did not deal directly with historical earthen structures,
one more was removed since the numerical simulations presented
on it did not relate to earthen construction techniques, and finally,
one of them was removed as it did not present any numerical
simulations. In total, 40 records were included in this review. The
classification of the computational methods applied to the different
earthen typologies discussed is presented in Table 1.

3.1 Adobe

Chácara et al. (2019) studied adobe using an EFM approach.
They developed a novel 3D macro-element model capable of

FIGURE 1
Global distribution of earthen architecture and location of UNESCO WHL sites on earthen architecture [adapted from Mužíková et al. (2018)] and
percentage of use of the different earthen construction techniques on the listed sites included in the WHEAP inventory (Gandreau and Delboy, 2012).
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reproducing both the in-plane and out-of-plane response of adobe
walls while using fewer degrees of freedom in comparison with
conventional Finite Element Modeling (FEM). With this simplified
computational method, they adequately assessed the seismic
behavior of an existing adobe church and validated their results
against values obtained via detailed FEM models.

Aguilar et al. (2019) found good agreement between the results
using a Limit Analysis (LA) kinematic approach and a detailed FEM
model of a 16th-century adobe church in Peru. Furthermore, with the
LA evaluation performed, they concluded the safety of the church under
frequent and occasional earthquakes and its vulnerability in front of
more severe events. The same computational methods were applied by
Briceño et al. (2021) to the study of the San Pedro Apostol adobe
church, also in Peru, and by Misseri et al. (2020) to study the feasible
overturning mechanisms that could be activated on existing adobe
walls, both unreinforced and reinforced with timber elements.

Moreover, a simplified LA approach based upon conventional
Heyman assumptions was used by Greco and Lourenço (2021) as a
first approach analysis of Casa Arones in Peru, to inform the further
development of more detailed and computationally expensive FEM
simulations. Alternatively, Briceño et al. (2019) adopted a simplified
rapid screening method to determine the vulnerability of the Virgen
de la Asuncion adobe heritage church, where the geometry of the
building plays an important role in vulnerability assessment results
(5 out of the 14 considered parameters were directly related to the
geometry of the structure).

Damerji et al. (2019); Invernizzi (2019); Mendes et al. (2020)
studied adobe using a BBM approach either through a detailed
micro-modeling FEM or a Discrete Element Method (DEM)
analysis. By using a FEM micro-model in ABAQUS software,
Damerji et al. (2019) were capable of reproducing experimentally
observed damage patterns suffered by an adobe wall under a cyclic
loading scenario. On the other hand, their numerical model failed to
replicate the energy dissipation trend observed by the laboratory
specimen.

A sort of BBM numerical approach was implemented by
Invernizzi (2019) not by modeling interfaces between adobe

bricks and mortar, but by explicitly modeling the mortar and
assigning different mechanical properties to it. These simulations
were carried out in DIANA software to assess the effect of a
proposed geogrid reinforcement technique, which proved to
increase the strength and ductility of experimentally tested wallettes.

Contrary to FEM approaches, Mendes et al. (2020) adopted a
DEM methodology in 3DEC software to assess the seismic
performance of adobe historical buildings. Their results showed
the most vulnerable elements of the case study analyzed, the
Santiago Apostol church in Peru, and served to inform the
recommendation of suitable conservation intervention.

Aguilar et al. (2019) tested a novel integral methodology in the
adobe heritage church of San Juan Bautista de Huaro, Peru, and
Briceño et al. (2021) implemented it in the San Pedro Apostol
church. Their framework included the creation of a detailed FEM
macro-modeling (informed by a combination of Terrestrial Laser
Scanning (TLS) and photogrammetry) and calibration (aided by
Operational Modal Analysis (OMA) tests) of the earthen structure
in DIANA. The seismic assessment of the structure was carried out
through pushover analysis of the calibrated FEM model, as done by
Noel et al. (2019) in the San Sebastian church and by Briceño et al.
(2019) in the Sacsamarca church, and capacity curves comparison.

Also using DIANA, Vuoto et al. (2022) evaluated the safety
levels of Torre de la Vela, in the Alhambra, Spain. Through a non-
linear macro-modeling pushover analysis, they confirmed the
adequate resistance of the structure upon foreseeing seismic
events. Barontini and Lourenço (2021) assessed the condition of
Hotel El Comercio, an adobe historical structure in Peru, through
pushover analysis. Adobe walls were modeled with shell elements
and calibrated based on in-situ survey and test results. They
concluded that their results could adequately describe the global
behavior of the adobe structure if it could be reinforced to prevent
the formation of local mechanisms of collapse. Greco and Lourenço
(2021) also performed a detailed seismic assessment of Casa Arones.
Their model adopted the Total Strain Rotating Crack Model
(TSRCM) material and followed a macro-modeling approach.
Results showed how well-connected tie beams and timber

TABLE 1 Classification of computational methods applied to earthen historical structures.

Earthen construction
typology

Computational
method*

References

Adobe CHM Briceño et al. (2019); Aguilar et al. (2019); Noel et al. (2019); Parisi et al. (2019); Simou et al. (2020); Al
Aqtash and Bandini. (2020); Giordano et al. (2020); Briceño et al. (2021); Greco and Lourenço. (2021);
Wu et al. (2021); Henao et al. (2021); Ospina Henao et al. (2021); Barontini and Lourenço. (2021);
Tancredi et al. (2022); Fages et al. (2022); Xekalakis and Christou. (2022); Vuoto et al. (2022)

BBM Damerji et al. (2019); Invernizzi. (2019); Mendes et al. (2020)

GBM Aguilar et al. (2019); Briceño et al. (2019); Misseri et al. (2020); Briceño et al. (2021)

EFM Chácara et al. (2019)

Rammed Earth CHM Fagone et al. (2019); Allahvirdizadeh et al. (2019); Bui et al. (2020a); Shrestha et al. (2020); Villacreses
et al. (2021); Chettri et al. (2021); Allahvirdizadeh et al. (2021); Gil-Martín et al. (2022); García-Macías
et al. (2022)

BBM Wangmo et al. (2019); Bui et al. (2019a); Bui et al. (2019b); Bui and Bui. (2020); Bui et al. (2020b);
Wangmo et al. (2021)

Cob CHM Miccoli et al. (2019); Jiménez Rios and O’Dwyer. (2020d)

*CHM, continuum homogeneous models; BBM, Block-Based Models; GBM, Geometry-Based Models; EFM, equivalent frame models.
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diaphragms can significantly improve the capacity of the structure
against out-of-plane failure mechanisms. Finally, Giordano et al.
(2020) used a macro-modeling approach to simulate the structural
response of adobe arches, and to validate the replicability and
broader applicability of a proposed capability index for damage
detection in this kind of structure.

An interesting work on the dynamic characterization and
seismic response of traditional Chinese adobe structures was
done by Wu et al. (2021). To simulate the adobe walls, they
implemented a simplified diagonal spring element in ANSYS
software whose mechanical parameters were determined through
the calibration of a solid adobe wall model. Meanwhile, Simou et al.
(2020) aimed at reproducing the structural response of an adobe
specimen under the three-point bending test using ANSYS so that
their calibrated numerical model could be used in the study of whole
adobe structures in the Chellah site, Morocco.

Henao et al. (2021) and Ospina Henao et al. (2021) used
SAP2000 software to run a series of simplified linear elastic macro-
modeling FEM simulations of adobe walls. Also in SAP 2000, Xekalakis
and Christou (2022) implemented a linear elastic macro-modeling
approach to study the dynamic response of plain and reinforced
adobe walls with wooden ring beams, concluding that the
reinforcement elements altered not only the displacement magnitude
but also the stress distribution on the adobe structure. Similarly, linear
analyses of adobe structures were performed by Tancredi et al. (2022),
this time in ABAQUS. The dynamic analysis of a typical adobe building
in Cusco, Peru, allowed the authors to identify the feasible kinematic
collapse mechanisms of the studied building typology. Nevertheless, the
authors recognized the need of adopting non-linear constitutive models
to better describe the structural behavior of adobe walls. Also in
ABAQUS, Al Aqtash and Bandini. (2020) performed a parametric
non-linear analysis to assess the influence of wall thickness and water
content in the out-of-plane structural response of existing adobe walls.
Their approach consisted of decreasing themechanical properties of the
adobe in the moist areas using a macro-modeling strategy.

LS-DYNA software has also been employed to replicate the
structural response of adobe structures. Parisi et al. (2019)
implemented a macro-modeling approach to model and validate
adobe walls under simple and diagonal compression tests achieving
an accurate representation of load-displacement curves, crack
patterns, local stresses, and deformation in comparison to
experimentally observed results. Alternatively (Fages et al., 2022),
used the MIDAS FEA software to calibrate a total-strain crack
constitutive model capable of reproducing the structural behavior
of adobe walls under a 2D plane stress simplification assumption. A
further extension to 3D simulations would be required before this
model could be used on the seismic vulnerability assessment of full
heritage adobe structures, though.

3.2 Rammed Earth

Wangmo et al. (2019) performed both macro and micro FEM
analysis in DIANA of rammed Earth walls subjected to pull-down
forces, as an analogy to the lateral loads that walls may experience
during a seismic event. Wangmo et al. (2021) simulated the effect that a
metallic mesh reinforcement had in the retrofitting of existing rammed
Earth walls. Good agreement was found in terms of peak load and crack

location between both macro modeling and experimental results, but
only the micro model allowed reproduction of the sliding failure
mechanism observed on the laboratory specimens.

Bui et al. (2019b) implemented a 3D FEM model in ABAQUS to
study the structural response of rammed Earth L-shaped walls, Bui and
Bui (2020) simulated the dynamic in-plane behavior of rammed Earth
walls meanwhile Bui T. L. et al. (2020b) studied their dynamic out-of-
plane behavior. Their numerical approach considered the interfaces
between rammed Earth layers and their results clearly showed the
influence that these elements have on the numerical results.

Alternatively, Bui et al. (2019a) performed a DEM numerical
modeling approach in the 3DEC software to assess the efficiency of
a reinforcement approach of existing rammed Earth walls employing
prestressed metallic roads placed vertically at the ends of the wall. Their
simulations suggested a 25% increment for one-story walls and a 10%
increment for two-story walls in terms of maximum horizontal load.

Fagone et al. (2019) performed simplified simulations of a rammed
Earth arch using three different commercial software, namely, ANSYS,
ABAQUS, and DIANA. However, they found discrepancies in the
maximum load obtained with all tested software and also important
differences between the load-displacement curves of the numerical
simulations and the experimental results.

In DIANA, Allahvirdizadeh et al. (2019) found out the typical load
capacity and damage mechanisms of a plain and a Textile Reinforced
Mortar (TRM) reinforced u-shape wall through the macro modeling
simulation whereas Allahvirdizadeh et al. (2021) analyzed TRM
retrofitted rammed Earth walls under pushover and dynamic load
scenarios. They both concluded that the proposed reinforcement
technique studied would effectively increase the wall capacity and
delay damage occurrence. Moreover, the proposed technique was
judged as compatible with heritage structures and could be of great
value to better preserve rammed earth-built heritage. Shrestha et al.
(2020) used DIANA to simulate the strengthening technique applied in
a series of rammed Earth blocks through a reinforced concrete dowel.
Their computational models matched correctly the peak load of their
experimental counterparts. Nevertheless, important discrepancies were
observed between the force-displacement curves of the reported
laboratory and numerical results.

Other structural response scenarios of rammed Earth walls have
been simulated in ABAQUS, e.g., Bui Q. B. et al. (2020a) studied the
load capacity of nails in existing rammed Earth walls and Chettri et al.
(2021) assessed the seismic vulnerability of Pa Chim buildings
(Buthanese rammed Earth vernacular constructions). The results
from the former study led to suggesting the immediate
strengthening of the built earthen Buthanese heritage stock due to
its extreme vulnerability under futuremoderate and strong earthquakes.

Villacreses et al. (2021) assessed the influence of water content in
the dynamic performance of rammed Earth structures using the open-
source software OpenSees. They found an important effect in the
structural stiffness of the rammed Earth wall due to the presence of
water, thus confirming the well-known fact that the strength of earthen
materials is inversely proportional to their water content. Moreover,
Gil-Martín et al. (2022) applied ground motion displacement based on
probabilistic seismic hazard analysis to their macro-modeling FEM
models in ANSYS of the San Jeronimo Monastery, the Molino del
Marques de Rivas, and the Puerta Elvira in Granada, Spain, to
determine their fragility curves and the effectiveness of the
restoration works performed in these buildings.
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Alternatively, aside from the body of literature focused on CHM or
BBM methodologies applied to rammed Earth walls, Ruiz et al. (2022)
used a transformed section formulation, along with CHM FEM
modeling in ABAQUS to evaluate the out-of-plane influence of steel
plates added as reinforcement of existing rammed Earth walls. Their
results showed increments between 300% and up to 500% in the
ultimate load supported by the reinforced rammed Earth walls
based on the amount of reinforcement installed. Nevertheless, the
suitability of this reinforcing approach to heritage structures would
be deemed at least controversial and most probably ill-advised.

Regardless of the recent advances in the detailed non-linear
numerical modeling of rammed Earth structures, their
computational cost prevents their broader use, as
demonstrated by García-Macías et al. (2022). The authors had
to replace their high-fidelity 3D FEM model of the Muhammad
Tower in the Alhambra with a surrogate Kriging model to be able
to integrate it into their online damage identification framework.

3.3 Cob

Numerical modeling of cob has been undertaken by Miccoli et al.
(2019) using a FEM macro-modeling approach in DIANA. They
assumed plane stress, homogeneity, and continuity of material. A
TSRCM was used with a multi-linear definition of the stress/strain
relationship for the compressive behavior with an initial linear segment
of 0.3fc and a post-peak segment with a negative slope of 0.02 times the
Young’s modulus and an exponential relationship for tensile behavior.
Their calibrated model could replicate the development of the shear
stress/shear strain relationship. On the other hand, the numerical model
could not replicate the diagonal failure pattern observed in the
experiments due to the non-symmetric conditions in the samples
and the testing setup.

(Jiménez Rios and O’Dwyer, 2020d) presented a study on the
simulation of cob’s nonlinear monotonic behavior using ANSYS and
ABAQUS. The results were validated against the experimental
outcomes reported by Miccoli et al. (2019) and the pros and cons of
different available constitutive models were identified and discussed.
The results showed that Concrete and Concrete Damaged Plasticity
were the best constitutive material models to reproduce cob’s nonlinear
monotonic behavior in ANSYS and ABAQUS, respectively.

4 Discussion and future perspectives

All works found have the main objective either to determine the
causes of damage or to assess the safety level of the historical earthen
structure under study. Adobe is by far the most studied earthen
typology in the literature, thus, examples of all four different
computational methods (CHM, BBM, GBM, and EFM) were found.
The computational methods applied to the modeling of rammed Earth
historical structures can be broadly classified into two main groups,
namely, 1) those considering rammed Earth walls as monolithic
elements and 2) those taking into account the effect of compression
layers’ interfaces. As cob load-bearing structural walls are commonly
formed by monolithic elements and their structural behavior is highly
nonlinear, the preferred approaches adopted in the literature are the
macro-modeling FEM, also classified as CHM.

Different pros and cons in terms of complexity, computational cost,
fidelity of results, etc. are associated with the various numerical strategies
available. A common aspect to all of them though is the relatively high
level of uncertainties, both epistemic and aleatory, involved in the
modeling and simulation of historical earthen structures. Thus, the
combination of two ormore computationalmethods is advised for cross-
validation of results to overcome the uncertainty challenges.

Although many of the records found were not included because
they do not deal directly with heritage structures, the fact that there is
research being done on earthen structures presents a valuable
opportunity for historical ones also, as relevant results could be
extrapolated.

The key to adequate built heritage preservation lies in preventive
action towards possible hazards to decrease their vulnerability.
Therefore, the implementation of a Digital Twin paradigm
(Jiménez Rios et al., 2023b), which is a generalized trend in the
AEC industry, could greatly contribute to the improvement of
cultural heritage conservation. As digital twins aid asset managers
to take informed decisions about the optimal maintenance,
retrofitting, and repairing of the physical asset, this results in
extended life, operation costs reduction, as well as increased
resilience and sustainability of the built environment.
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