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This review focuses on the solar irradiance model chain for horizontal-to-tilted
irradiance conversion at high latitudes. The main goals of the work are 1) to assess
the extent to which the literature accounts for decomposition and transposition
models specifically developed for high-latitude application; 2) to evaluate existing
validation studies for these particular conditions; 3) to identify research gaps in the
optimal solar irradiance model chain for high-latitude application
(i.e., latitude ≥60°). In total, 112 publications are reviewed according to their
publication year, country, climate, method, and keywords: 78 publications deal
with decomposition models and 34 deal with transposition models. Only a few
models (6) have been parameterized using data from Nordic countries. Here, we
compare 57 decomposition models in terms of their performance in Nordic
climate zones and analyze the geographical distribution of the data used to
parametrize these models. By comparing the Normalized Root Mean Square
Deviation coefficients for direct normal irradiation, the decomposition models
Skartveit1 and Mondol1 are most effective on one-hour scale and Yang4 on one-
minute scale. Recent studies on the empirical transposition models estimating the
global tilted irradiation on vertical surfaces show the best performance for
Perez4 and Muneer models. In addition, innovative methods such as artificial
neural networks have been identified to further enhance the model chain. This
review reveals that a validatedmodel chain for estimating global tilted irradiation at
high latitudes is missing from the literature. Moreover, there is a need for a
universal validation protocol to ease the comparison of different studies.
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Highlights

• In total, 47 one-hour and 10 one-minute decomposition models are parametrized for
high latitudes.

• Skartveit1 and Yang4 are the most effective one-hour and one-minute models.
• Perez4 and Muneer can assess east-west vertical bifacial photovoltaics.
• Decomposition models can achieve sub-hour resolution, transposition models cannot.
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• Validated model chains are lacking for east-west vertical
surfaces at high latitudes.

1 Introduction

Achieving net-zero emissions by 2050 represents a milestone for
the low-carbon built environment. However, reaching this target is
hindered by continuously rising global energy consumption
(International Energy Agency, 2021). In response, different
governments have proposed increasing the share of energy
production from renewables and enhancing the efficiency of new
energy power plants (Gielen et al., 2019).

To achieve climate targets, monofacial photovoltaics (MPV) and
bifacial photovoltaics (BPV) have been exploited in recent decades.
While MPV produces electricity by collecting sunlight only from the
front side (i.e., the backside is covered with an opaque sheet), BPV
collects sunlight from both sides of the panel. Using two active sides
(i.e., the front and the rear side) increases overall energy production
because the backside of the panel can harvest sunlight scattered by
the atmosphere and reflected by the ground or other surfaces behind
the panel. When not integrated into the building envelope, MPV and
BPV are generally south oriented (in the Northern Hemisphere) and
tilted at an optimal angle, which maximizes annual energy
production, depending on the location. Therefore, the peak in
energy production is usually observed at around solar noon.
However, there is a mismatch between typical solar production
and the average consumption profile of a residential sector which
peaks in the early morning (around 7–8a.m.) and late afternoon
(around 5–6p.m.) (International Energy Agency, 2022). Such a
temporal mismatch between solar power production and
electricity load can be reduced by adopting east-west (E-W)
vertically mounted BPV systems (VBPV) (Khan et al., 2017;
Jouttijärvi et al., 2022), whose production peaks are specifically in
the morning and in the afternoon or evening. Furthermore, the
electricity spot price typically peaks during the evening, and
therefore increasing the self-consumption of PV electricity should
be prioritized. Increasing self-consumption and avoiding electricity
use during peak price represent the main drivers for E-W VBPV.

E-W VBPV have the greatest potential at high latitudes
(Jouttijärvi et al., 2022) based on the low average Sun elevation,
wide azimuth range, and long periods of high ground albedo due to
snowfalls (Guo et al., 2013; Khan et al., 2017). In these conditions, an
E-W VBPV can outperform a south-facing photovoltaic (PV)
system (Stein, 2018; Pike et al., 2021). Rodríguez-Gallegos et al.,
(2018) investigated the advantages and disadvantages of MPV and
BPV installations from an economic perspective. Their analysis
highlighted the importance of different parameters, such as
latitude, weather data, albedo, and the applied model chain,
when calculating global tilted irradiance (Egt) (Perez et al., 1990a;
Hofmann and Seckmeyer, 2017a). Knowing the Egt is a key factor for
determining the potential energy production of a new PV plant
(Prasad et al., 2020; Ramadhan et al., 2021). To estimate the Egt, the
amount of direct normal irradiance (Ebn) and diffuse horizontal
irradiance (Edh) must be known. However, ground measurements of
Ebn and Edh are uncommon, and these quantities are usually
estimated from global horizontal irradiance (Egh) using empirical
decomposition models (Hassan et al., 2021). Although the scientific

community has improved and developed new decomposition
models since they were first introduced in 1961, they continue to
be strongly influenced by the selected location, as they are empirical
models based on site-specific data (Gueymard and Ruiz-Arias, 2016;
Li et al., 2017). The number of locations considered in the model
parametrization has been increasing in the recent years by
permitting to implement a group of quasi-universal models
(i.e., decomposition models for global application) in contrast to
local models (i.e., decomposition models for regional application).
However, local models can outperform models presented as quasi-
universal when applied to the location where the data originates
(Starke et al., 2021).

In contrast to decomposition models, transposition models
allow Egt to be estimated based on solar irradiance (i.e., Ebn, Edh),
Sun geometry (i.e., solar zenith angle, solar azimuth angle), and
surface geometry (i.e., tilt angle, azimuth angle). These models
have used different assumptions about the spatial distribution of
sky radiance over the hemisphere, ranging from isotropic (Liu
and Jordan, 1961) to anisotropic (Perez et al., 1987a). Nowadays,
the anisotropic assumption is used the most, as it accounts for
the circumsolar and horizon brightening contribution beyond
the isotropic sky radiance and the direct beam irradiance
(Figure 1).

Within this framework, E-W VBPV systems in high-latitude
application pose different challenges compared to south-facing PV
systems. In particular, during the early and late hours of the day,
when energy production peaks for E-W VBPV systems, the
atmospheric thickness is high, which is a major source of error
in many transpositionmodels (Toledo et al., 2020). In addition, solar
elevations less than five degrees are often omitted in the
decomposition models because data quality check routines tend
to filter them out as low-reliable datapoints (Utrillas and Martinez-
Lozano, 1994; Hofmann and Seckmeyer, 2017b). This is only a
minor drawback when modelling conventionally mounted PV
systems. However, when modelling vertical E-W mounted
systems at high latitudes, a significant part of the production is
cut when solar elevations below five degrees are excluded (Figure 2).
During 2021 in Trondheim (Norway), a direct solar irradiance of
approximately 120 kWh/m2 reached the ground throughout the year
(around 15% of the total yearly direct normal irradiance) when the
Sun elevation angle was lower than five degrees. Moreover, another

FIGURE 1
Different solar contributions to global tilted irradiance.
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source of error is related to the estimation of the horizon brightness
component of diffuse irradiance, which has a greater influence on
E-W VBPV than on south-facing MPV systems.

1.1 Aims and structure of the study

The ability to accurately predict PV energy production is based
on implementing a solar irradiance model chain which comprises
suitable decomposition and transposition models. Knowing which
combination of decomposition and transposition models should be
used to estimate Egt in a new PV system is of primary importance. In
fact, the accuracy of the model used for estimating the available solar
energy is tied to uncertainty in the predicted energy production of
the system. However, such models are usually created and validated
for a specific geographical area (i.e., local, regional, global).
Therefore, their accuracy can vary depending on where they are
exploited.

Although a significant number of publications have validated
decomposition and transposition models, the extent to which the
literature covers the use of decomposition models in the Nordic
geographical area is unclear. Moving from the extensive worldwide
validation studies carried out by Ramadhan et al. (2021), and Yang
(2022), the aim of this review is to explore decomposition models
which can adequately estimate the Edh and Ebn at high latitudes. In
addition, transposition model validation studies are investigated to
provide a complete theoretical framework for a model chain for Egt
estimation of E-W VBPV in Nordic setting. The paper is structured
as follows: the materials and methods (Section 2) defines the
literature search workflow, the statistical indicators, and the
investigated location; the theory section (Section 3) outlines the
theoretical framework behind themodel chain for Egt estimation; the
results section (Section 4) provides an overview of decomposition
and transposition models; the discussion section (Section 5)
comments on the results and analyses the strengths, weaknesses,
opportunities, and threats (SWOT), literature gaps, and study

limitations. The review concludes by considering future
developments and summarises the most important findings and
the implications for future advancements in model development and
application to high-latitude locations (Section 6).

2 Material and methods

2.1 Literature search

A systematic review approach was followed to investigate
decomposition and transposition models for predicting Egt on
E-W VBPV in high-latitude locations. Relevant literature was
identified using a keyword-based search on the Web of Science
(WoS) and Scopus databases. Among the existing databases, these
were selected as they return literature from highly reliable sources
and provide wide geographic coverage. Identical search terms were
used in both databases. Scientific journal articles that focused on the
development and validation of methodologies for estimating Egt
were selected through a three-step screening process similar to
(Manni and Nicolini, 2022). The first and the limited to selecting
the best combination of search terms. Although using numerous
search termsmay be considered best, it can result in an unnecessarily
high number of database hits which require longer and more
extensive screening. In the third step, the eligibility of each
database hit was “manually” assessed. The abstracts were
screened to identify and exclude review articles and comparative
studies which did not introduce new models.

Initially, all the possible combinations of three groups of terms
were searched for in the titles, abstracts and keywords of the papers
selected from both databases. The Boolean Operator “AND” was
used to connect the three groups (A, B, and C) which included the
following terms:

• Group A: “decomposition” and “transposition”;
• Group B: “*radia*“, and “solar”;
• Group C: “tilted”, “photovoltaic”, and “surface”.

Terms within the same group were mainly connected with the
Boolean Operator “OR”. In particular, the query which was entered
in both databases was: (“decomposition” OR “transposition”) AND
(“*radia*” W/3 “solar”) AND (“tilted” OR “surface” OR
“photovoltaic”). The operator W/3 (NEAR/3 in WoS) indicated
that the search should only identify articles where the connected
words appear within a range of 3 words in the selected search fields,
while the asterisks were used to consider all the words including
“radia” such as “irradiation”, “radiation”, “radiative”, and
“irradiance”. The search was conducted in March 2022. The
chosen search terms were found in more than 500 articles in
Scopus and WoS. The order of the terms within the group and
the order of the groups did not alter the returned literature: for
example, (“decomposition”OR “transposition”) AND (“*radia*" W/
3 “solar”) AND (“tilted” OR “surface” OR “photovoltaic”) and
(“solar” W/3“*radia*”) AND (“photovoltaic” OR “tilted” OR
“surface”) AND (“transposition” OR “decomposition”) returned
the same publications. However, this search was deemed
ineffective, as it returned a wide range of literature with topics
beyond the scope of decomposition and transposition models. The

FIGURE 2
Angular distribution of direct normal irradiance depending on
sun elevation angle. Data refers to 2021 in Trondheim.

Frontiers in Built Environment frontiersin.org03

Manni et al. 10.3389/fbuil.2023.1245223

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1245223


search terms used in step two were refined with the help of the VOS
Visualizer tool. This machine learning-based tool ranks the words
contained in authors’ keywords from database hits and then applies
clustering models to classify the most used words in groups. The
resulting density visualization provided a quick overview of the main
areas in the bibliometric network, highlighting the presence of
journal articles about chemical photodegradation, photocatalysis,
and x-ray diffraction. The density visualization in Figure 3 shows
how the database hits belong to two different research areas that only
share the “solar energy” term. Probably, using “decomposition”
without “model” as well as including “photovoltaic” in the
entered query led to such undesirable results.

In step two, the entered query was modified into:
[(“decomposition” OR “transposition”) W/5 “model”] AND
(“*radia*” W/3 “solar”). The density visualization map (Figure 4)
highlights the exclusion of the unwanted scientific journal articles
which appeared in step one. The chosen search terms were found in
around 150 articles in Scopus and WoS. Finally, the screening
process in the third step permitted the results to be further
narrowed. Around 110 database hits were selected for a detailed
review in this study. Among these, 78 research studies describe
decomposition models, while 34 research studies focus on
transposition models.

2.2 Climate zones

Studies related to Norway, Sweden and Finland were
investigated in this work. According to the Köppen-Geiger
climate classification (Köppen, 1900) updated by Peel et al.
(2007), these countries mainly belong to subtypes of cold climate
which begin with the letter D (Table 1). Alongside these, areas
classified as subzones from polar climate (E) and mild temperate
climate (C) are also present (Figure 5).

Most Norwegian, Swedish, and Finnish regions belong to the
“Dfc” sub-climate which corresponds to subarctic climates with the
coldest month averaging below 0°C and up to 3 months averaging
above 10°C. No significant precipitation difference is observed
throughout the year. However, since only one weather station
from the Dfc subzone is considered in the most relevant
validation studies about decomposition models (Gueymard and
Ruiz-Arias, 2016; Yang, 2022), the other climate zones present in
Norway, Sweden, and Finland (i.e., Cfb, Cfc, Dfb, and ET) are also
included in this study.

3 Theory

3.1 Global tilted irradiance calculation

This section outlines the theory behind decomposition and
transposition models used to estimate Egt. Regarding the
taxonomy applied to decomposition and transposition models,
these are named after the main author’s name with the addition
of a number in case more models from the same author exist. In this
article, the only exception to this is represented by the BRL
decomposition model which is named after the initial of the
three scientists who developed this: Boland, Ridley et al. (2010).

The total solar irradiance outside the Earth`s atmosphere (E0) is
almost constant at 1,361.1 W/m2 (Gueymard, 2018). Absorption,
scattering, and reflection phenomena occur within the atmosphere
due to the presence of O2, O3, CO2, and H2O molecules (Calvin and
WR, 2012). Therefore, the Ebn reaching the Earth’s surface is
reduced by approximately 30% on a clear day and when the Sun
is directly overhead (Calvin and WR, 2012), while Edh is generated
because of scattering events. Sunrays travel through the air mass
(AM) following a path whose length is variable and depends on the
position of the Sun. The AM length is the distance covered by sunray

FIGURE 3
Density visualization of words in the authors’ keywords from the journal articles selected during step one. The words included in the search were
excluded from the figure.
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through the atmosphere and normalized by the shortest
possible path.

As reported in Eq. 1, the sum of direct and diffuse irradiance
incident to a horizontal plane is defined as Egh.

Egh � Ebn cos θz + Edh (1)
where θz is the solar zenith angle (the angle between the direct line to
the Sun and a vertical line).

The Egh is used to calculate the clearness index (kt) which is
equal to the Egh to E0cosθz ratio. The diffuse fraction (kd) is the share
of the diffuse horizontal irradiance from the global horizontal
irradiance (Edh/Egh). Due to the atmosphere inhomogeneity, the
kt and kd indices vary with space and time.

The Edh can be split into isotropic (Ed;iso), circumsolar (Ed;circ)
and horizon brightening (Ed;hor) components. The Ed;iso is emanated
uniformly from every point in the sky dome, while the Ed;circ
originates from forward scattering rays near the path of sunrays.

Finally, the Ed;hor consists of the brightness near the horizon and
occurs when rays are scattered multiple times in the atmosphere in a
band just above the horizon. Positive values for Ed;hor correspond to
clear sky days (and they increase with the θz), while negative values
are calculated for overcast days when the sky is not visible and the
clouds near the horizon are darker than the rest of the hemisphere
(Perez et al., 1990b). Cloud coverage influences irradiance scattering.
Egh can be reduced by more than 50% with a kd close to one (heavy
cloud cover day). However, some changes in the cloud pattern can
increase Egh above the clear sky conditions and the kt index is
consequently greater than one. Such a phenomenon is known as
cloud enhancement (CE) (Inman et al., 2016; Gueymard., 2017a).

Determining the position of the Sun in relation to the
investigated PV system is necessary to quantify the Egt. The
position of the Sun can be easily estimated for a specific
combination of date, time, latitude, longitude, and elevation.
Numerous algorithms determine the Sun position with high

FIGURE 4
Density visualization of words in the authors’ keywords from the journal articles selected during step two. The words included in the search were
excluded from the figure.
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accuracy (Michalsky, 1988; Reda and Andreas, 2004; Blanc and
Wald, 2012). Among these, the one proposed by Reda and Andreas
(2004), which is used in the open-source pvlib-python tool
(Holmgren et al., 2018) and National Renewable Energy
Laboratory (2014), enables predicting the θz and solar azimuth
angle (αz) with an accuracy of 0.0003°. The θz and αz as well as
the tilt angle of the investigated PV surface (β) and its azimuth (α)
allows calculating the angle of incidence of the sunrays (Φ)
(Gueymard, 2022).

Following this, Egt can be calculated with the following
equation:

Egt � fbEbn cosΦ + fdEdt + Er;gr (2)

where Edt is the calculated diffuse irradiance on the tilted surface and
Er;gr is the incident irradiance from ground reflections. The fb and fd
factors account for the shading phenomena of direct and diffuse
irradiance, respectively. To calculate Egr, the View Factor (VF) from
a specific ground area to the sky, the Edh for that ground area, the
ground albedo (ρ), and the VF from the tilted surface to the ground
area must be known.

Egr � VFsrf→grρgr VFgr→skyEdh + fbEbn cos θz( ) (3)

The ground area is assumed as horizontal in Eq. 3.

3.2 Decomposition modeling

To estimate the solar irradiance collected by an oriented surface,
Edh and Ebn in the chosen location, the surface geometry
configuration, and the characteristics of the surroundings
(i.e., buildings, vegetation) in terms of horizon profile and albedo
must be known. Quantifying Edh and Ebn represents an issue due to
the lack of measured data. Although it is feasible from a
technological point of view, only Egh is usually monitored for
economic reasons (Gueymard, 2022). Therefore, implementing
numerical models for decomposing Egh into Edh and Ebn are a
topic largely debated by the scientific community.

Decomposition models enable Edh and Ebn to be estimated by
knowing Egh. The first decomposition models to be developed
exploited experimental data to identify empirical correlations
between kd and kt. The reliability of these models was limited to
climate conditions similar to the one used in the model
parametrization. Therefore, more complex models have been
developed which correlate kd to more than one predictor. In
general, such models calculate the kd index through the Eq. 4
that was originally proposed by Yang and Boland (2019):

FIGURE 5
Worldwide distribution of the Köppen-Geiger climate zones which are present in Norway, Sweden, and Finland (i.e., Cfb, Cfc, Dfb, Dfc, ET). The map
was created by re-elaborating the original version in Beck et al. (2018).

TABLE 1 Description of Köppen-Geiger climate symbols and defining criteria
for the cold climate.

1st 2nd 3rd Description Criteria

D Cold Thot>10 & Tcold≤0

s - Dry summer Psdry<40 & Psdry < Pwwet/3

w - Dry winter Pwdry < Pswet/10

f - Without dry season Not (Ds) or (Dw)

a - Hot summer Thot≥22

b - Warm summer Not (a) & Tmon10 ≥ 4

c - Cold summer Not (a,b, or d)

d - Very cold summer Not (a or b) & Tcold < −38

Thot is the temperature of the hottest month, Tcold is the temperature of the coldest month,

Tmon10 is the number of months where the temperature is above 10, Psdry is the precipitation

of the driest month in summer, Pwdry is the precipitation of the driest month in winter, Pswet
is the precipitation of the wettest month in summer, Pwwet is the precipitation of the wettest

month in winter.
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kd � μ X( ) + g°f X( ) + ε (4)
where X is a vector of predictors, μ(X) describes a trend (constant or
linear combination of X), g is the model function (typically
exponential or logarithmic), f (X) is a linear function which can
be a step function, and ε is the error estimation. Predictors are input
parameters which can be based on measurements or deterministic
calculations. The most popular predictors are the kt, the θz, and the
variability index (V). A decomposition model using only kt as a
predictor will probably result in less accurate results than a model
using multiple predictors (Figure 6) (Gueymard and Ruiz-Arias,
2016).

Several databases provide solar radiation datasets based on
satellite monitoring or reanalysis models from Numerical
Weather Prediction (NWP). Alongside these, Typical
Meteorological Year (TMY) datasets are commonly used to
evaluate building energy performance. Nonetheless, the use of
solar irradiation data from statistic-based weather data files may
result in the incorrect computing of diffuse fractions as well as in
systematic error within the evaluation of the potential benefits.
Databases from satellite observation are characterized by a
specific spatial resolution and are not available for each time-
period and for each latitude. Moreover, they present limitations
regarding the assessed solar radiation components and land cover.
The major issue related to the use of satellite images is distinguishing
between snow and cloud coverage because they usually have the
same pixel values and spatial distribution patterns. Conversely,
reanalysis databases are created by running modern NWP
models on previous data before correcting the outcomes with
ground-measured meteorological data. The main advantage is
that the datasets usually cover the whole Earth, although with a
low accuracy and spatial resolution compared to satellite
observations. Since large parts of Norway, Sweden, and Finland
lack coverage of satellite-derived datasets, reanalysis databases have
potential if they are more accurate than using empirical
decomposition models with ground-measured Egh. In this regard,
the Copernicus Arctic Regional Reanalysis (CARRA) system, which
is the first regional atmospheric reanalysis targeted for European
parts of the Arctic areas, have been implemented in 2022 to
specifically investigate the climate at high-latitude locations.

Databases providing Egh and another radiative component for the
Nordic zone are listed in Table 2.

3.3 Transposition modeling

Once Edh and Ebn have been determined, Egt can be estimated by
applying the transposition models in the next step of the model
chain. Numerous transposition models have been implemented for
quantifying Egt on south-oriented MPV (Gueymard, 2009;
Gueymard, 2022). Nonetheless, this calculation is still prone to
significant errors when it comes to estimating Egt characterized
by a low angle of incidence or impinging on faces away from direct
sunlight (i.e., rear of a BPV) (Riedel-Lyngskær et al., 2020). The
Perez4 model (Perez et al., 1990b) is shown in Eq. 5 as an example:

Edt � Edh 1 − F1( ) 1 + cos β
2

( )[ ] + F1
a

b
( ) + F2 sin β

a � max 0, cos θ( )
b � max cos 85°, cos θz( )

F1 � max 0, f11 + f12Δ + πθz
180°

f13( )[ ]
F2 � f21 + f21Δ + πθz

180°
f23

Δ � EdhAM

E0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

where fnm varied according to sky conditions. However, empirical
transposition models are often incorporated into software tools
which perform VF or raytracing analyses.

Such tools usually assess the VF from the ground to the sky and
from the tilted surface to the ground. The view factor describes the
ratio of radiant energy emitted by a surface which is incident on
another surface. This is calculated with Eq. 6:

VF1→2 � 1
A1

∫
A1
∫

A2

cos θ1 cos θ2
πS2

dA1dA2 (6)

When it comes to PV systems, the VF can be estimated by
considering only two dimensions.

FIGURE 6
Measured and modelled kd vs. kt at Trondheim (Norway). Measurements are retrieved from the NTNU-SINTEF SolarNet in Trondheim (Manni et al.,
2023).
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Raytracing assessment can be applied as an alternative to the VF
evaluation to estimate shading. Raytracing is a method to
mathematically determine the ray’s path within a tridimensional
environment (Negi et al., 1986). The Monte Carlo simulation can be
applied to track rays from the PV surface backwards to the light
source as well (Hansen et al., 2016; Manni et al., 2020). If compared
to the VF calculation, both raytracing assessment and the
probabilistic approach require greater computational time
(Berrian and Libal, 2020).

4 Results

4.1 Decomposition models in the Nordic
climate zone

4.1.1 Bibliometric analysis
Figure 7 shows the number of articles published per year along

with the time resolution adopted for the model outputs. More than
half of the studies were published in the last two decades, even
though the first study about decomposition modeling was published
in 1961. A turning point in this research topic occurred in the year
2015. In fact, decomposition models characterized by sub-hour time
resolution, which first appeared in 1988, became increasingly
frequent between 2013 and 2015, when they finally outnumbered
one-hour models.

After 2015, all the decomposition models included in this review
had sub-hour resolution. This represents a significant improvement
because it allows some instantaneous events to be investigated such
as the CE and albedo enhancement (AE) effects, which cannot be
detected when aggregating data hourly.

The analysis of weather stations whose data were used for the
model validations in the reviewed studies highlighted the scarcity of
decomposition models that are specifically developed for high
latitudes. In fact, around three quarters of these models were
implemented for dry climates (B) and temperate climates (C),
while the rest were divided into tropical climates (A), continental
climates (D), and polar climates (E). Figure 8 highlights that the
most investigated climate zones were the humid sub-tropical
climates (Cfa), the oceanic climate (Cfb), and the Mediterranean
hot summer climates (Csa). Moreover, the tropical savanna climates
with dry-winter characteristics (Aw), the cold semi-arid climates
(Bsk), the warm summer continental climates (Dfb), and the tundra

climate (ET) were the most common from the other main climate
zones. Data from the sub-artic climates (Dfc), which is most
common in the territories of Norway, Sweden, and Finland, were
used in the validation of only five decomposition models.

The geographical distribution of the studies is reported in
Figure 9. Among the investigated countries, up to six
decomposition models were proposed for Norway, while none
was found for Sweden or Finland.

Decomposition model inputs were chosen from a wide group of
predictors. The number of predictors varied and ranged from one to
seven in the reviewed studies. A unique predictor was used by
71 decomposition models (kt in 70), while in 27 studies another
predictor such as θz or V was added to kt. The number of
publications per quantity of predictors is reported in Table 3
along with the number of publications for each predictor.

In total, around 20 different predictors were considered in the
reviewed decomposition models. The analysis highlighted that the
θz, the V, and the time of the day (t) are the three most used
parameters after the clearness index (Figure 10).

A frequency analysis of the keywords associated with the
reviewed scientific journal articles was carried out (Figure 11).
On the one hand, the “diffuse solar radiation” and “clearness
index” keywords were the most used and were found in 59 and
30 articles, respectively. On the other hand, the “clouds” and
“statistical models” keywords were less frequent with only seven
and six articles, respectively. The “other” category includes up to
26 different keywords that occurred less than five times.

4.1.2 Meta-analysis
This section presents the decomposition models existing in the

literature that were parameterized by considering solar radiation
datasets from at least one of the climate zones characteristic of
Norway, Sweden, and Finland (see Figure 5) (Tables 4, 5).
Decomposition models which are characterized by an hourly
time resolution are shown in the first part, while those having a
one-minute time resolution are described in the second part.

TABLE 2 List of modelled databases which provide at least two irradiance components for a significant part of Norway, Sweden, and Finland. Metric conversion of
1° longitude is around 110 km, while 1° latitude can range between 63 km (at 55° latitude) and 36 km (at 71° latitude).

Database Source Type Spatial resolution Availability Estimated components Latitude range

CAMS-RAD SoDa Satellite ≈ 4 km 2004-present Egh, Ebn, Edh From −66 to 66

CERES NASA Satellite 1° by 1° 2000-present Egh, Ebn, Edh All

ERA5-Land ECMWF Reanalysis 0.1° by 0.1° 1979-present Egh, Ebn All

CARRA-East domain ECMWF Reanalysis ≈ 2.5 km 1990-2022 Egh, Ebn From 62 to 70

PVGIS-ERA5 PVGIS Reanalysis 0.25° by 0.25° 2005-2016 Egh, Edh, Egt, TMY From −31 to 73

PVGIS-SARAH PVGIS Satellite ≈ 5 km 2005-2016 Egh, Edh, Egt, TMY From −35 to 63

PVGIS-SARAH-2 PVGIS Satellite 0.05° by 0.05° 2005-2020 Egh, Edh, Egt, TMY From −37 to 72

TABLE 3 Number of publications by number of predictors used as
decomposition model input.

Number of predictors used 1 2 3 4 5 6 7

Number of publications 71 27 9 5 15 5 1

Frontiers in Built Environment frontiersin.org08

Manni et al. 10.3389/fbuil.2023.1245223

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1245223


FIGURE 7
Number and distribution of time resolution of publications by year. The black and red dashed lines indicate, respectively, the yearly percentage of the
study adopting a sub-hour and an hour time resolution.

FIGURE 8
Number of publications by Köppen-Geiger main climate zones (A) and sub-climate zones (B). The red crosses represent the percentage of studies
for each bin with respect to the totality.

FIGURE 9
Number of studies by countries.
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Their performances were evaluated based on the extensive
validation work carried out by Gueymard and Ruiz-Arias (2016)
in the case of one-hour decomposition models, and on the novel
study from Yang (2022) in the case of one-minute decomposition
models. Moreover, the Ebn quantities predicted for locations
classified as Cfb, Cfc, Dfb, Dfc, or ET in the Köppen Geiger
climate map were considered to estimate the normalized Root
Mean Square Deviation (nRMSD) values used to compare the
models.

One-hour models which might be suitable for high-latitude
locations were mostly climate-specific models. In fact, only one
fourth of them were found to consider more than one location
during the parametrization process. In this regard, the Skartveit
model family was established in (Skartveit and Olseth, 1987) based
on data collected over 32 years in Bergen (Norway). Later, the
models were improved by introducing the hourly variability index
(Vhour) and the ground albedo predictor (Skartveit et al., 1998). The
possibility of using ρ as an input parameter and exploiting climate
data from Bergen make the Skartveit3 model suitable for high-
latitude locations.

The Reindl model family was also parametrized with a solar
radiation dataset from Norway, although it was used alongside
datasets from the United States, Germany, Denmark, and Spain
(Reindl et al., 1990). However, solar irradiation values from
1979 were used which cannot be considered as completely
representative of the current scenario.

In addition, other decomposition models such as the ones from
Hollands, Perez, Boland, and Ridley model families are evaluated in
this section since they were developed for high-latitude climate
zones. It is worth highlighting that the Yao model family (Yao et al.,
2014) was included in the analysis even if it was parametrized with
data from the Cfa climate zone. The reason is that these models were
specifically developed for high albedo climate zones.

The analysis of the nRMSD index is reported in Table 6 and
visualized in Figure 12. The Skartveit1 model was identified as the
most effective model at high latitudes, although it was outperformed
by Spencer in the E zone. In addition to this, Mondol1, which was

parametrized with solar radiation data from Northern Ireland,
exhibited high performance levels being the second in the global
ranking and the third in the D zone ranking.

Regarding the analysis of one-minute models, those reviewed
in the extensive validation study carried out by Yang (2022) and
suitable for the high-latitude locations have been considered.
Unlike one-hour models, one-minute models are usually
developed to be globally applied. Therefore, datasets from
different locations are exploited in their parameterization.
Among these, the Engerer2 (Engerer, 2015) was considered to
perform best, but recently the Yang4 was demonstrated to be able
to replace it as the new quasi-universal model (Yang, 2022).

Alongside this, the one-minute model from Paulescu and Blaga
(Paulescu and Blaga, 2019) was assessed since it proved to be as valid
as the Engerer2 in all the locations considered in their study. The
Paulescu was established for the Cfb climate and then validated
against measured values from 35 locations, but none from the D
climate zone. The authors argued that the irradiance (particularly
the diffuse irradiance) showed odd features in these zones, as already
stated by Gueymard, (2017a), Gueymard, (2017b).

In Yang and Boland (2019), two enhanced versions of Engerer2
(YANG1 and YANG2) were developed by adding the satellite derived
diffuse fraction predictor (kd,s). The kd,s predictor consists of a one-
minute interpolation between 30-min datapoints from satellite
databases and is used to describe low frequency variability
patterns. In fact, satellite observations can be exploited in the
decomposition process by providing information about
temperature and wind speed (Urraca et al., 2018), as well as about
the ground irradiance which can be determined though specific
methods (i.e., Heliosat-4) (Qu et al., 2017). However, Babar et al.
(2020) demonstrated that satellite-based models are worse than
empirical decomposition models despite the higher accuracy of
their input datasets. Recently, Yang has introduced a new
modeling strategy named temporal-resolution cascade (Yang,
2021). Such a strategy was incorporated into Yang3 (15-min
model) and Yang4 (1-min model). Since Yang1, Yang2 and
Yang3 are not as accessible nor as accurate as Yang4 (Yang, 2022),
they were overlooked in the present performance assessment.

In 2019, Bright et al., (2019) updated the Engerer2 model by
recalculating the parameters with datasets from 75 different stations

FIGURE 10
Number of publications by used predictor.

FIGURE 11
Number of publications by authors’ keywords.
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TABLE 4 Distribution of the climate zones used in the parametrization of the reviewed one-hour decomposition models. Multiple models presented in the same
publication are clustered in the same row.

Model Reference Year Climate zones NSFa

A B C D E

Tapakis1,2,3 Tapakis et al. (2016) 2015 - 1 - - - -

PerezBurgos Pérez-Burgos et al. (2014) 2014 - 1 2 - - 1

Kuo1,2,3,4 Kuo et al. (2014) 2014 1 - - - - -

Magarreiro Magarreiro et al. (2014) 2014 - - 1 - - -

Lee Lee et al. (2013) 2013 - - 1 - - -

Yao1,2,3,4,5 Yao et al. (2014) 2013 - - 1 - - -

Boland5 Boland et al. (2013) 2013 1 - 2 - - -

Lauret Lauret et al. (2013) 2013 1 - 3 - - -

Chikh1,2 Chikh et al. (2012) 2012 - 1 - - - -

Chikh3 Chikh et al. (2012) 2012 - - 1 - - -

Janjai Janjai et al. (2010) 2010 2 - - - - -

Karatasou Karatasou et al. (2003) 2010 - - 1 - - -

RuizArias1 Ruiz-Arias et al. (2010) 2010 1 2 4 2 - 3

Torres1,2,3,4 Torres et al. (2010) 2010 - - 1 - - 1

Helbig Helbig et al. (2010) 2010 - - - - 1 1

Posadillo4,5,6 Posadillo and López Luque (2010) 2010 - - 1 - - -

RuizArias2 Posadillo and López Luque (2010) 2010 1 2 4 2 - 3

Ridley2 Ridley et al. (2010) 2010 1 - 3 - - 1

Pagola1,2,3,4 Pagola et al. (2009) 2009 - 1 1 - - -

Posadillo1,2,3,7 Posadillo and López Luque (2009) 2009 - - 1 - - -

Boland3,4 Boland et al. (2008) 2008 1 - 3 - - 1

Furlan Furlan and de Oliveira (2008) 2008 - - 1 - - -

Mondol2 Mondol et al. (2008) 2008 - - 1 - - -

Elminir1,2,3 Elminir et al. (2007) 2007 - 1 - - - -

Jacovides Jacovides et al. (2006) 2006 - 1 - - - -

Mondol1 Mondol et al. (2005) 2005 - - 1 - - -

Soares Soares et al. (2004) 2004 - - 1 - - -

Ridley1 Ridley et al. (2004) 2004 1 - 3 - - 1

Tsubo1,2,3 Tsubo and Walker (2003) 2003 - 3 4 - - 1

Tamura Tamura et al. (2003) 2003 - - 1 - - -

Oliveira Oliveira et al. (2002) 2002 - - 1 - - -

Ulgen Ulgen and Hepbasli (2002) 2002 - - 1 - - -

Perez2 Perez et al. (2002) 2002 - 2 3 3 - 1

Boland1 Boland et al. (2001) 2001 - - 1 - - 1

DeMiguel De Miguel et al. (2001) 2001 - - 2 - - 1

Li Li and Lam (2001) 2001 - - 1 - - -

Lopez1,2,3 López et al. (2000) 2000 1 1 1 - - 1

(Continued on following page)
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worldwide and by removing inputs such as the Sun elevation angle and
the clear sky irradiance (Ecs) (Engerer4).Whendatasets from theAustralia
region were used, the RootMean Square Deviation was reduced by 17.9%
from the original model. Conversely, in the cold climate zone, the authors
reported an overall worsening in model performance.

In 2021, Starke et al. (2021) reviewed and updated their previous
work (Starke18A and Starke18B) (Starke et al., 2018) by proposing
new climate specific models based on BRL1M (Starke21). A new
predictor, the hourly clearness index (kt,hour), was added. A model
for each climate zone and sub-zone defined in Köppen-Geiger

TABLE 4 (Continued) Distribution of the climate zones used in the parametrization of the reviewed one-hour decompositionmodels. Multiple models presented in
the same publication are clustered in the same row.

Model Reference Year Climate zones NSFa

A B C D E

Gonzalez1,2,3,4,5,6,7,8 González and Calbó (1999) 1999 - - 1 - - -

Remund Remund et al. (1998) 1998 - - 2 2 - 3

Skartveit2,3 Skartveit et al. (1998) 1998 - - 1 - - -

Hijazin Hijazin (1998) 1997 - 1 - - - -

Maduekwe1,2,3 Maduekwe and Chendo (1997) 1997 1 - - - - -

Muneer3 Muneer Kambezidis (1997) 1997 - - - - - -

Lam1,2 Lam and Li (1996) 1996 - - 1 - - -

Rerhrhaye Rerhrhaye et al. (1995) 1995 - - 1 - - -

Chandrasekaran Chandrasekaran and Kumar (1994) 1994 - - 1 - - -

Chendo1,2,3 Chendo and Maduekwe (1994) 1994 1 - - - - -

Macagnan Macagnan et al. (1994) 1994 - 1 - - - -

Alriahi Al-Riahi et al. (1992) 1992 - 1 - - - -

Perez1 Perez et al. (1992) 1992 - 2 3 2 - 2

Louche1,2 Louche et al. (1991) 1991 - - 1 - - -

Reindl1,2,3 Reindl et al. (1990) 1990 1 - 3 1 - 2

Perez3 Perez et al. (1990a) 1990 - 2 3 2 - 2

Maxwell Maxwell (1987) 1987 - 1 1 1 - -

Skartveit1 Skartveit and Olseth (1987) 1987 - - 1 - - 1

Jeter Jeter and Balaras (1986) 1986 - - - 1 - -

Muneer2 Muneer and Saluja (1986) 1986 - - - 1 - 1

Bakhsh Bakhsh et al. (1985) 1985 - 1 - - - -

Hollands1,2 Hollands (1985) 1985 - - - 1 - 1

Hawlader Hawlader (1984) 1984 1 - - - - -

Muneer1 Muneer et al. (1984) 1984 - 1 - - - -

Turner Turn et al. (1984) 1984 - - 1 - - -

Erbs Erbs et al. (1982) 1982 - 1 3 1 - 1

Spencer Spencer (1982) 1982 - 2 3 - - 1

Bruno Bruno (1978) 1978 - - 1 - - 1

Orgill Orgill and Hollands (1977) 1977 - - - 1 - 1

Bugler Bugler (1977) 1977 - - 1 - - 1

Hay Hay (1976) 1976 - - - 1 - 1

Liu Liu and Jordan (1961) 1961 1 2 4 3 - 3

aNSF stands for “sub-climate zones from Norway, Sweden, and Finland territories”.
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climate classification was proposed and then verified against
Engerer2, Skartveit3, Perez2, and BRL. The study revealed that
the new models were the most accurate. It is worth highlighting
that only the Starke family’s models developed for climate zones
characteristic of the Norway, Sweden, and Finland regions were
considered in this work.

In Figure 13, the comparative analysis on models’ performance
levels in the high-latitude locations confirmed that Yang4 is the best
one-minute model. Alongside this, the Starke family model can

represent an effective solution particularly when applied to C and D
zones (Table 7).

4.2 Transposition models

4.2.1 Bibliometric analysis
Figure 14 shows a timeline in which the reviewed studies about

transposition modeling are distributed and clustered according to

TABLE 5 Distribution of the climate zones used in the parametrization of the reviewed one-minute decomposition models. Multiple models presented in the same
publication are clustered in the same row.

Model Reference Year Climate zones NSFa

A B C D E

Yang3,4 Yang (2021) 2021 - 2 4 2 - 2

Starke21 Starke et al. (2021) 2021 2 4 3 1 2 3

Every1,2 Every et al. (2020) 2020 2 3 4 - - 1

Yang1,2 Yang and Boland (2019) 2019 - 2 4 2 - 2

Paulescu Paulescu and Blaga (2019) 2019 3 3 3 3 - 2

Abreu Abreu et al. (2019) 2019 2 4 3 1 2 3

Engerer4 Bright et al. (2019) 2019 - 1 4 - - 1

BRL1M Starke et al. (2018) 2018 1 2 2 - - -

Hofmann Hofmann and Seckmeyer (2017b) 2017 2 2 3 2 - 2

Engerer1,2,3 Engerer (2015) 2015 - 1 4 - - 1

Erusiafe Erusiafe and Chendo (2014) 2014 1 - - - - -

Oumbe Oumbe et al. (2012) 2013 - 1 1 - - -

Boland2 Boland et al. (2001) 2001 - - 1 - - 1

Suehrke Suehrcke and McCormick (1988) 1988 - - 1 - - -

aNSF stands for “sub-climate zones from Norway, Sweden, and Finland territories”.

TABLE 6 Error statistics about Ebn calculated for the high-latitude locations from Supplementary Material by Gueymard and Ruiz-Arias (2016). The best ten
performing models are shown, with statistics averaged over the selected sites.

C zone D zone E zone Global

Model nRMSD [%] Model nRMSD [%] Model nRMSD [%] Model nRMSD [%]

Skartveit1 12.70 Skartveit1 9.39 Spencer 12.70 Skartveit1 11.32

Perez2 13.16 Perez3 9.62 Muneer2 12.82 Mondol1 11.76

Skartveit3 13.26 Mondol1 9.77 Mondol2 12.87 Muneer2 11.76

Muneer2 13.35 Perez1 9.88 Mondol1 13.03 Perez3 11.80

Perez3 13.36 Reindl2 9.90 Skartveit1 13.05 Reindl2 12.00

Mondol1 13.44 Muneer2 9.95 Reindl3 13.23 Skartveit3 12.01

Reindl2 13.44 Skartveit3 10.12 Perez3 13.76 Mondol2 12.12

Mondol2 13.73 Perez2 10.13 Orgill 13.79 Perez1 12.35

Perez1 13.91 Orgill 10.20 Erbs 13.85 Orgill 12.40

Reindl3 14.15 DeMiguel 10.21 DeMiguel 13.85 DeMiguel 12.43
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the model typology. Four model typologies were found in the
literature: isotropic models, anisotropic models, artificial neural
network (ANN) models, and probabilistic models. Isotropic
models were the first model typology to be implemented in 1961;
then, anisotropic models were developed (1977). ANN (e.g., multi-
inputs convolutional neural networks, generalized regression neural
networks, gradient-boosting frameworks for machine learning) and
probabilistic models have been introduced recently in this research
field (from 2013), but they are considered so promising that around
70% of the transposition models published since 2013 belong to
these two groups. Conversely, the isotropic models have been
investigated increasingly less over the last two decades.
Nonetheless, ANN and probabilistic models have been presented
in around 20% of the reviewed studies, while the isotropic and
anisotropic models have occurred in 63% and 16% of the studies,
respectively (Figure 15).

When it comes to the simulated sky conditions, half of the
reviewed transposition models were found to be validated in both
clear and overcast sky conditions (Figure 15). Conversely, 18% of
the models performed exclusively for overcast skies, while 16% of
the models can operate only in case of a clear sky. Furthermore,
most of the transposition models were found to provide hourly
outputs (87%), and only three models could work with a sub-
hour time resolution (8%). Contrary to decomposition modeling,
there is a lack of trend in transposition modeling towards the
reduction of the time resolution. Such a discrepancy might
represent an issue and reduce the impacts of the

decomposition model’s enhancement on the overall model
chain. However, the hourly transposition models reviewed in
(Gueymard, 2009) appear to be equally applicable to one-minute
data. The tabular review (Table 8) provides information about the
approach to modeling solar diffuse radiation (i.e., isotropic,
circumsolar, horizontal bright). It is worth highlighting that
recent ANN and probabilistic models based on machine-
learning methods, can directly estimate the Egt without
considering the anisotropic sky dome.

4.2.2 Research evaluation
The review study about transposition models from Yang, (2016)

highlighted that no universal model exists. However, the Perez4,
Gueymard, Muneer, and Hay models showed high performance
levels, locally. The analysis performed for locations in Switzerland
(Loutzenhiser et al., 2007) and Poland (Nowak and Włodarczyk,
2009) revealed that Perez4 and Muneer perform the best for E-W
vertical surfaces, with Perez4 performing slightly better. The
nRMSD coefficients estimated for Perez and Muneer were
around 32% and 34%, respectively (Nowak and Włodarczyk,
2009). This outcome was questioned in Toledo et al., (2020)
where the Muneer model turned out to be more accurate than
Perez4. The reason can be attributed to the location and datasets
used to test the two models: data from North America, Germany,
and Singapore was used in the first, whereas data from Spain was
used in the second. Moreover, the Perez4 has been parameterized
with data from nine locations in the United States of America and

FIGURE 12
Error statistics about Ebn calculated for the high-latitude locations from Supplementary Material by Gueymard and Ruiz-Arias (2016). Values for each
weather station are reported on the top, while on the bottom the average value is reported for each climate zone (dots) and globally (red line). Light green,
orange, and dark blue dots correspond to a weather station in C, D, and E climate zone.
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three locations in Europe, while Muneer is parameterized with data
from five locations in Europe. Models are typically characterized by
better error statistics when applied to a location where data exploited
for the parameterization were measured. However, these climate
conditions are different from Norway, Sweden, and Finland;

therefore, it is not possible to express a preference with this
information.

An innovative sky-radiance model was conceptualized in Yang
(2016) and then implemented by Westb and rook, (2015), but the
outcomes demonstrated that Perez4 was still superior for east- or

FIGURE 13
Error statistics about Ebn calculated for the high-latitude locations from Supplementary Material by Yang (2022). Values for each weather station are
reported on the (A), while on the (B) the average value is reported for each climate zone (dots) and globally (red line). Light green, orange, and dark blue
dots correspond to a weather station in C, D, E climate zone.

TABLE 7 Error statistics about Ebn calculated for the high-latitude locations from Supplementary Material by Yang (2022). The best ten performing models are
shown, with statistics averaged over the selected sites.

C zone D zone E zone Global

Model nRMSD [%] Model nRMSD [%] Model nRMSD [%] Model nRMSD [%]

Yang4 19.44 Yang4 23.41 Yang4 28.33 Yang4 22.02

Starke21 20.19 Starke18A 24.05 Engerer2 29.68 Starke18A 23.05

Starke18A 20.44 Starke21 24.18 Starke18A 30.07 Engerer2 24.33

Engerer2 21.94 Engerer2 25.96 Paulescu 31.68 Starke21 24.75

Starke18B 22.55 Paulescu 26.69 Engerer4 32.07 Paulescu 25.71

Paulescu 23.43 Starke18B 26.89 Starke18B 34.92 Starke18B 25.83

Engerer4 25.21 Engerer4 28.93 Abreu 37.79 Engerer4 27.37

Abreu 27.02 Abreu 31.01 Every2 39.45 Abreu 29.93

Every1 31.15 Every2 33.57 Starke21 40.42 Every2 33.45

Every2 31.56 Every1 36.65 Every1 42.05 Every1 34.48

FIGURE 14
Number of publications and distribution of model typologies by year.
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west-facing vertical surfaces. Nonetheless, significant issues such as
overestimating diffuse solar radiation were reported for the
Perez4 model when assessing hours with high kt due to CE or
AE (Gueymard, 2017b). In fact, calculations during these hours of
the day are critical for all the reviewed models, which showed
systematic errors and an incapacity to simulate CE and AE
effects. Therefore, exploiting empirical models which consider
short time-enhancement effects are recommended. In particular,
combining different transposition models as a function of the
clearness index (i.e., Muneer for kt<0.85 and Gueymard for
0.85 kt) enables achieving a higher accuracy level (Gueymard,
2017a).

Appelbaum et al., (2019) proposed various enhancements to
anisotropic radiance models for single rows of PV panels by
neglecting sky obstructions. These corrections such as
incorporating the sky VF (SVF) were applied to the KLUCHER
model to account for adjacent rows and temporal deviations in Ed;circ
and Ed;hor. The proposed approach is valuable for analyses
performed in an urban environment characterized by an SVF
lower than 0.9. The modified version of Klucher was found to be
more accurate for the locations considered in the study. Similarly,
Gu et al., (2020) established an optical model in which irradiance
and VF are coupled for assessing single row irradiance.

Up to 26 parametric models (isotropic and anisotropic) were
designed through Artificial Neural Networks (ANNs) and machine
learning techniques in (de Simón-Martín et al., 2017). They
developed a re-parameterized version of Perez4 based on a
training dataset from Spain. Such a local version of
Perez4 performed the best for East- and West-oriented facades.
The outcomes prove that transposition models fitted with local data
usually outperform models based on global data or data from other
locations.

5 Discussion

5.1 Inconsistencies in the decomposition
modeling

The literature on decomposition modelling is evolving rapidly
with new innovative models being presented and more validation
studies carried out. The methodology and standards used are well
documented in most cases, but not consistent among the studies.
New methods are frequently being developed, and an overview of

recent development as well as historical works are presented inmany
recent review studies (Gueymard and Ruiz-Arias, 2016; Paulescu
and Blaga, 2019; Starke et al., 2021; Gueymard, 2022; Yang, 2022).
Up to six aspects such as the estimated value (i.e., Ebn, kd), the
statistic indicators, the benchmark dataset, the data time resolution,
the quality control routine, and the method of input calculations
were found to be inconsistent in the validation studies. Each of these
aspects reduces the scientific validity of a comparative analysis
between the models. Various qualitative and quantitative
performance indicators were assessed in the reviewed validation
studies, making it difficult to compare the outcomes. When it comes
to the decomposition models, validation studies typically provide a
graphical comparison between the estimated and the measured kd
values. Sometimes, the deviation of the estimated kd from the
measured quantity is also plotted against the kt depending on the
author’s preferences.

Conversely, almost all of the reviewed studies assessed
quantitative performance indicators such as nMBD and nRMSD.
However, features of the used datasets such as time interval, quality
control, and model implementation are not homogeneous
throughout the studies, making it difficult to compare them. A
nonparametric statistical procedure, based on the sum of ranks, is
presented in Stone, (1994) as a solution to the problem of ranking
the overall performance of solar radiation estimation models at
multiple locations. In addition, the use of large datasets is preferable
since it reduces the influence of rare weather phenomena and
improves the reliability of the validation process. Several studies
used data collected by the Baseline Solar Radiation Network (BSRN)
meteorological stations which were provided with a one-minute
time step in the early 2000s with a high quality and time resolution
(Gueymard and Ruiz-Arias, 2016). Nonetheless, the climate
alteration due to solar cycles, human influence, and global
climate change make it necessary to use only the most recent
data. Authors of the reviewed studies considered data from a few
years back and up to a few days before. Yang and Boland, (2019)
exploited data from 2016 by providing the number of datapoints
from each meteorological station, while Starke et al., (2021) stated
that data after 2,000 was considered. Conversely, Bright et al., (2019)
exploited datasets from the previous 5 years. To highlight
inconsistency in the methodology, Table 9 illustrates the variance
in inputs and outputs of three recent model validation studies, as an
example.

Validation studies also differ in the models exploited to predict
Ebn and the kd. Eq. 1 was applied by some authors to validate the

FIGURE 15
From the left: percentage distribution of model typologies, percentage distribution of sky conditions in the model validation, percent distribution of
time resolution values. Percentage is calculated over all the reviewed transposition models.
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TABLE 8 Tabular review of the reviewed transposition models according to the typology, the evaluated diffuse radiation sources, and the time resolution. For the time resolution:M stands for “month”, h stands for “hour”, and
m stands for “minute”.

Model Reference Year Model typology Diffuse radiation source(s) Time resolution

Isotropic Anisotropic ANN Probabilistic Isotropic Circumsolar Horizontal bright Ground reflection Egt

Liu1:22 Liu et al. (2022) 2022 C C C C 30 m

Pierce Pierce et al. (2022) 2021 C C n.d.

Quan1 Quan and Yang (2020) 2020 C C h

Quan2 Quan and Yang (2020) 2020 C C h

Li Li et al. (2020) 2020 C C h

Manni Manni et al. (2020) 2020 C C h

Vàzquez Ascencio-Vásquez et al. (2020) 2020 C C M

Pierro Pierro et al. (2016) 2016 C C h

Westbrook Westb and rook (2015) 2015 C C C C C h

Yang Yang et al. (2014) 2014 C C C C h

Celik Celik and Muneer (2013) 2013 C C h

Olmo2 Evseev and Kudish (2009) 2009 C C h

Bugler2 Hay and McKay (1985) 2007 C C C h

Igawa Igawa et al. (2004) 2004 C C C C h

Badescu Badescu (2002) 2002 C C C h

Tian Tian et al. (2001) 2001 C C h

Olmo1 Olmo et al. (1999) 1999 C C h

Hay2 Hay (1993) 1993 C C C h

Brunger Brunger and Hooper (1993) 1993 C C C C m

Perez4 Perez et al. (1990c) 1990 C C C C 15m

Muneer1 Muneer (1990) 1990 C C C C h

Muneer2 Muneer (1990) 1990 C C C C h

Reindl Reindl et al. (1990) 1990 C C C C h

Perez3 Perez et al. (1988) 1988 C C C C h

Perez2 Perez et al. (1987b) 1987 C C C C h

(Continued on following page)
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TABLE 8 (Continued) Tabular review of the reviewed transposition models according to the typology, the evaluated diffuse radiation sources, and the time resolution. For the time resolution:M stands for “month”, h stands for
“hour”, and m stands for “minute”.

Model Reference Year Model typology Diffuse radiation source(s) Time resolution

Isotropic Anisotropic ANN Probabilistic Isotropic Circumsolar Horizontal bright Ground reflection Egt

Gueymard Gueymard (1987) 1987 C C C C h

Koronakis Koronakis (1986) 1986 C C h

Perez1 Perez et al. (1986) 1986 C C C C h

Skartveit Skartveit and Asle Olseth (1986) 1986 C C C C C h

Willmott Willmott (1982) 1982 C C C C h

Steven3 Steven and Unsworth (1980) 1980 C C C h

Hooper Hooper and Brunger (1980) 1980 C C C C h

Klucher Klucher (1979) 1979 C C C C h

Steven1 Steven and Unsworth (1979) 1979 C C C h

Steven2 Steven and Unsworth (1979) 1979 C C C h

Temps Temps and Coulson (1977) 1977 C C C C h

Bugler1 Bugler (1977) 1977 C C C h

Liu Liu and Jordan (1961) 1961 C C h
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models for calculating Ebn (Gueymard and Ruiz-Arias, 2016), while
some others exploited such equations to validate only kd (Starke
et al., 2021) or both Ebn and kd (Paulescu and Blaga, 2019).
Furthermore, the quality control routine which was applied to
filter impossible or unlikely data from the datasets is not always
the same. Despite the guidelines identified in (Sengupta et al., 2017),
there is not one universally accepted way to perform quality control
on irradiance data. In this regard, Paulescu and Blaga, (2019)
replicated the dataset [D FIT 1 in (Paulescu and Blaga, 2019)]
used by Gueymard and Ruiz-Arias, (2016), to validate Paulescu
against the Engerer2. Also, the same quality control filters were
applied to make outcomes comparable. Nonetheless, negative solar
irradiance values were obtained in (Paulescu and Blaga, 2019) at the
end of the quality control since Gueymard and Ruiz-Arias, (2016)
manually modified data by changing all kt values greater than one to
one. Finally, the calculation of model inputs differs. When
estimating the kt index, the E0 is required, but some authors did
not provide the E0 values (Yang and Boland, 2019), some used an
equation based on the day of the year (Bright et al., 2019), and some
applied a constant of either 1,366.1 W/m2 or 1,361.1 W/m2

(Gueymard and Ruiz-Arias, 2016). Such an inconsistency might
represent an issue when using a model to estimate the kd based on kt
values which are calculated with a different method from the one
used for its training. Moreover, many models used the clear sky
clearness index (ktcs) as a predictor (Engerer, 2015; Yang and
Boland, 2019), which requires the use of a clear sky
decomposition model. The accuracy of such all-weather models
depends on the chosen clear sky model. Gueymard and Ruiz-Arias,
(2016) used the Perez–Ineichen clear sky model, while Starke et al.,
(2021) applied Solis clear sky model. Data sources were also
different: the first used Solar radiation Data (SoDa), while CAMS
Reanalysis was exploited in the second. An important step towards
identifying a shared methodology to validate and compare different
models was done by Yang, (2022). Yang introduced a universal
benchmarking dataset that permits testing the generalization ability
of decomposition models. This will enable the resolving of
inconsistencies about the meteorological station, the data time
interval, and the quality control routine by proposing a database
with data from up to 126 sites, over a 5-year period from 2016 to
2020 which result from a very stringent quality control sequence.

5.2 Inconsistencies of the transposition
modeling

As observed for decomposition models, the existing literature
about transposition models is characterized by some
inconsistencies in the applied methodologies. In fact, there is a
lack of shared protocols for the implementation of transposition
models as well as in their validation. However, some
methodologies such as the Taylor diagrams (Taylor, 2001)
exist in the Literature that might represent a potential and
effective solution to harmonize the presentation of the results
from different studies and make simpler the comparison of the
calculated statistical indicators. Alongside those aspects which
were found to be inconsistent in decomposition modeling
(i.e., the statistic indicators, the data time interval, the quality
control routine, and the method of input calculations), others

related to the experimental apparatus used for the validation were
found to be inconsistent in transposition modeling. Validation
studies differ for the geometry configuration of the tilted surface.
The tilt angle as well as the orientation changed depending on the
experimental setup implemented by the authors. The validation
study carried out by Nassar et al., (2020) on 24 models considered
only horizontal and 30° south-facing planes, while Mahachi and
Rix, (2016) focused exclusively on the geometry configuration of
the investigated PV plant. A wider range of orientations was
assessed in Toledo et al., (2020) where vertical surfaces facing the
four main cardinal points were evaluated. Similarly, Mubarak
et al., (2017) presented an articulated apparatus coupling
pyranometers and crystalline silicon PV devices with
individual temperature sensors to monitor the Egt at various
orientations (i.e., north, south, east, west, south-East, south-west)
and tilt angles (from 0° to 70° with a 10° angular step).
Furthermore, the experimental facility exploited in the
validation of transposition models changes among the studies.
Different equipment such as pyranometers or crystalline silicon
PV devices were used to monitor Egt, and uncertainties from
measurements were often neglected. In this regard, applying the
quality standards defined by the World Meteorological
Organization and the National Renewable Energy Laboratory
(Sengupta et al., 2021) for the measuring instruments could
enhance the accuracy of the datasets and ease the comparison
of results from different studies.

5.3 SWOT analysis

Even though the decomposition models require many inputs,
the kt is commonly used since it can be measured. Alongside this,
other parameters are used such as θz, V, and AM which are
deterministic and can be easily calculated. In particular, the θz
and the AM can be calculated from dataset timestamps, while
the V is typically determined from a moving window of the kt
values. As observed in Engerer2, decomposition models are usually
comprised of a single function which makes them easy to implement
in the Python environment. In this regard, the pvlib-python consists
of a library of decomposition model implementations and
supporting functions which can be used to calculate model
parameters such as apparent solar time (AST), θz, and AM. This
Python library is continuously developed andmaintained and can be
edited, so that new models can be implemented. Moreover, the kt
can be used to combine different decomposition models by either
choosing the output of a single model depending on the kt, or by
summing the weighted outputs of multiple models, where the weight
of each model depends again on the kt. Different approaches exist,
and combining models is still a developing topic. Exploiting a
combination of decomposition models which are defined through
ANNs and machine learning-based models depending on the kt and
time of year is also a solution. Model parameters can be re-fitted for
local datasets to produce location tailored models. Major issues
currently concern data availability and data quality-control routines.
These have yet to be sufficiently discussed in the literature although
this would improve the comparability of outcomes from different
validation studies. Recent models such as the one presented in Starke
et al., (2021) use data from the last two decades to calculate model
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parameters. Using as much data as possible for creating a model
typically increases its accuracy, but since weather patterns and global
temperature are changing, measurements from the early 2000s may
not be representative of current climates. Climate change is also a
threat to old models, as their accuracy is assumed to decrease for the
climate they are intended to be used in, which means new studies
will be required to assess their performance (Table 10). In fact,
modifications of the atmosphere composition can alter the
scattering phenomena of sunrays or cloud properties, by reducing
the model capability to simulate such events. When it comes to a
quality control routine, there are several methods which are
documented in the literature for solar irradiance applications
(Muneer et al., 2007; Lee et al., 2013). Nonetheless, all of them
undergo the same limitations (Urraca et al., 2020). Solar irradiance
can significantly change with cloud cover; therefore, all these
methods cannot detect low magnitude measuring errors such as
shadows, calibration drifts, soiling, and snow accumulation. The six-
step quality control procedure which was proposed in Yang et al.,
(2018) for the BSRN data might represent best practice in this topic.
The study concluded that measurements of Egh, Ebn, and Edh are
needed to ensure reasonably good quality control. Otherwise,
satellite-derived irradiance should be used to contrast the on-site
irradiance measurements.

Empirical transposition models are usually less user-friendly
than decomposition models. The pvlib-python tool includes the
most common transposition models by allowing model chains to
be built in Python. It is worth highlighting that transposition
models such as Perez4 struggle with the hours of the day
characterized by low solar elevation angles, making
uncertainties high when the power production of the E-W
VBPV system peaks. This issue is not addressed in the
literature, as almost all the validation studies exclude the hours
of low solar elevation (Table 11).

As mentioned in the above paragraph for decomposition
models, numerous approaches exist that enable combining
different transposition models to increase the model accuracy.
Furthermore, machine learning-based methods can contribute to
ANN-created transposition models and have shown improvements
over empirical transposition models due to lower computation times
(faster routines and faster hardware).

5.4 Literature gaps

The main literature gaps that were found in this review study are
highlighted in this section. Firstly, the difference in temporal
resolution of data between decomposition and transposition
models is addressed. The former can provide one-minute
estimations and validations, while the latter usually deals with
hourly predictions which is also the same time resolution used
when assessing PV energy production. Indeed, PV simulations
tools aim to estimate the economic prospects of different system
configurations, and if the system is contracted with a set price per
kWh electricity produced, the hourly or sub hourlymismatch between
production and load profiles is not a factor in the calculations. For this
study, however, the penetration potential of E-W VBPV systems is
investigated at a sub-hour temporal resolution for more accurate
results enabling user to account for CE and AE effects.

Secondly, the numerical models implemented for assessing BPV
systems mainly focuses on south-oriented cells with a tilt angle that can
range between 30° and 45°. In such optimally exposed configurations, the
diffuse fraction of solar radiation and the solar radiation reflected by the
ground play a secondary role. Conversely, these factors are relevant in
E-WVBPV, particularly when simulating solar irradiation with low Sun
elevation angles (i.e., significant contribution from horizontal
brightening). Being the reviewed models mostly empirical, their
performances can reasonably worsen when applied to conditions

TABLE 9 List of weather stations, time period, model outputs, and statistical indicators used by Yang and Boland (2019), Starke et al. (2021), and Bright et al.
(2019).

Study SON TOR ALE EUR NYA LER PSUa REG TIK SAP Db

Yang and Boland (2019) C

Bright et al., (2019) C C C C C C C C C

Starke et al., (2021) C C C C C C C C C C

Study Time period Ebn kd nMBD nRMSD R2

Yang and Boland, (2019) 2016 C C C C

Bright et al., (2019) 2013–2018 C C C C C

Starke et al., (2021) After 2000c C C C

aYang and Boland (2019) lists PSU as part of the SURFRAD network, while BSRN’s website and other publications list it as part of BSRN.
bD datasets depend on which stations within the major climate zone D are used in a study.
cData availability varies between stations. E.g., PSU lacks 1-min data available before 2009.

TABLE 10 SWOT analysis of decomposition modeling.

Strengths Weaknesses

1-2 measured inputs Specific temporal resolution

Easy to implement Deterministic predictions

Developing machine learning methods Lack of transportability

Opportunities Threats

Open-source libraries Climate change

Combining models can improve accuracy Limited data availability

New and improved models are frequent
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different from the one considered for the model parametrization.
Therefore, the use of models particularly accurate in the estimation
of the horizontal brightening as well as with the ground albedo as input
parameter should be recommended for E-WVBPV systems. Among the
reviewedmodels, the transpositionmodel fromOlmo et al., (1999) is the
only having the ground albedo as an input. Despite of this, whether
higher or lower accuracy is expected is difficult to say a priori, and it has
to be demonstrated through a comparison of different combinations of
decomposition and transposition models.

Thirdly, there is an evident gap with high-latitude conditions.
Decomposition models are mostly parametrized with datasets from
climate zones which are not representative of the territories of
Norway, Sweden, and Finland. In particular, only one weather
station was considered from the Dfc climate in Gueymard and
Ruiz-Arias, (2016), and none in Yang, (2022) by making it difficult
to univocally identify an accurate model chain to be exploited in these
countries. In this regard, additional efforts are needed to collect data
from these countries as well as to perform experimental validations
which can contribute to identify room for improvement of
decomposition and transposition models. For example, a
decomposition model developed for mostly clear sky locations will
probably fail in accurately estimating kd in locations mostly
characterized by overcast sky conditions. Similarly, a transposition
model which cannot estimate properly the scattering of sunrays near
the horizon will luckily provide estimations of Egt with low accuracy in
a location where the Sun is low in the sky for most of the time.

5.5 Limitations of the study

The evaluation of decomposition models based on outcomes
from Gueymard and Ruiz-Arias, (2016) and Yang, (2022) focused
on a performance average over all stations in the same climate zone
of Norway, Sweden, and Finland, and performance was not assessed
in a specific station from the Dfc zone. A more detailed investigation
may have revealed the potential of additional decomposition models
for high-latitude locations.

The data provided as Supplementary Material from Gueymard
and Ruiz-Arias, (2016) and Yang, (2022) usually do not include daily
or monthly or seasonal error statistics since the results are averaged
over the full time period of the dataset. A one-minute dataset for each
station including irradiance measurements and model estimations is
provided by Starke et al., (2021). However, such results are only

available for the models presented in the publication and it is not
possible to conduct an inter-comparison of seasonal model
performance. Following this, it has not been possible to assess how
the performance of decomposition or transposition models varies
with clearness index kt, which is required for a discussion on how
multiple models can be combined to reduce the overall uncertainty of
the decomposition step in the modeling chain.

Finally, ensemble model output statistics such as the one
described in Yang and Gueymard, (2020) were excluded from the
comparative analysis presented in this work, although they seem to
be promising. The authors preferred to limit the field of investigation
to individual decomposition models and their match with
transposition models within the model chain. The potential for
combining various decomposition models to assess solar radiation
in high-latitude locations is worth exploring in specific validation
work. Note also that the ensemble model output statistics from Yang
and Gueymard, (2020) was found to outperform some reliable
stand-alone models such as Yang2 and Engerer2.

6 Conclusion

This systematic review investigated the solar irradiance model
chain for horizontal-to-tilted irradiance conversion at high-latitude
locations. Although a considerable number of publications exist on
this topic, it is a scarcity of examples in the literature about the use of
decomposition models at these latitudes. Moving from Gueymard
and Ruiz-Arias, (2016) and Yang, (2022), a list of decomposition
models suitable for high-latitude locations was provided. Moreover,
validation studies concerning transposition models were reviewed
based on the aim to identify transposition models which can be used
in the model chain for estimating Egt on E-W VBPV.

This work demonstrates that validation studies lack in terms of their
inter-comparability and relevance to E-W VBPV in Norway, Sweden,
and Finland. The major issues are the variety in the applied
methodologies in recent decomposition model validation studies, the
lack of validation studies for empirical transposition models for E-W
VBPV, and the absence of one-minute transposition models. While the
newest decomposition models (i.e., Yang4, Engerer4, Starke21) show
promising results, more data and climate-specific validation of these
models are required. The development of a common and shared
validation protocol should be prioritized to ease the inter-comparison
of the numerous decomposition models. Such a gap has been partially
covered by the recent work from Yang, (2022). Regarding transposition
models, the Perez4 was found to locally perform best for E-W oriented
surfaces and vertically mounted surfaces, but it is preferable to combine
different transposition models depending on the kt.

The main findings from the present review can be summarized
as follows:

• Skartveit1 and Mondol1 are the most effective one-hour
model at high latitudes, although they are outperformed by
Spencer in the E zone;

• Yang4 is the best one-minute model followed by the Starke
family model which represents an effective solution
particularly when applied to C and D zones;

• Perez4 and Muneer transposition models perform best for
East- and West-facing vertical surfaces;

TABLE 11 SWOT analysis of transposition modeling.

Strengths Weaknesses

Varying degrees of complexity Large uncertainties at low solar elevations

Open-source software tools Raytracing simulations are time
consuming

Developing machine learningmethods Tools have limited empirical transposition

Opportunities Threats

Satellite derived inputs are improving Climate change to a lesser degree

Rapidly increasing computation
power

Often relies on a modelled input
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• Hour time resolution is mostly adopted in transposition
models, while decomposition models can already perform
one-minute analyses;

• A validated model chain for Egt estimation on E-W VBPV in
Norway, Sweden, and Finland was not found in the literature.

Therefore, the model chain resulting from the matching of
Yang4 and Perez4 models could be recommended for performing
one-minute analysis of E-W VBPV at high-latitude locations.
Nonetheless, further insight into the best model choice for
optical modelling is necessary. This includes:

• Validating the best performing decomposition models (see
Table 5) with data from Norway, Sweden, and Finland by
assessing decomposition model performance both on a
seasonal level, and as a function of kt;

• Evaluating how well the model validation with other D-type
climate zone data works for Dfc-zone;

• Validating transposition models with irradiance measurements
from an E-W VBPV system;

• Assessing the potential of novel methods within the field such
as ANN and probabilistic models.
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Nomenclature

Variables

E Irradiance [W/m2]

MBD Mean Bias Deviation

RMSD Root Mean Square Deviation

R2 Coefficient of determination

nMBD Normalized Mean Bias Deviation [0-1]

nRMSD Normalized Root Mean Square Deviation [0-1]

kt Clearness Index [dimensionless]

kd Diffuse Fraction [dimensionless]

ρ Surface albedo [0-1]

V Variability index [dimensionless]

t Time of the day [0-24]

ktcs Clear sky clearness index [dimensionless]

Greek letters

θ Zenith angle [degree]

α Azimuth angle [degree]

β Surface tilt angle [degree]

Φ Angle of incidence [degree]

Subscripts

g Global

t Tilted

b Direct

n Normal

d Diffuse

h Horizontal

0 Out of the atmosphere

z Solar

iso Isotropic

circ Circumsolar

hor Horizontal bright

r Reflected

gr Ground

s Satellite-derived

cs Clear sky

hour Hourly

Acronyms

MPV Monofacial Photovoltaic

BPV Bifacial Photovoltaic

E-W East-West

VBPV Vertical Bifacial Photovoltaic

PV Photovoltaic

SWOT Strengths, weaknesses, opportunities, and threats

WoS Web of Science

AM Air Mass

CE Cloud Enhancement

NREL National Renewable Energy Laboratory

VF View Factor

NWP Numerical Weather Prediction

TMY Typical Meteorological Year

AE Albedo Enhancement

ANN Artificial Neural Network

SVF Sky View Factor

BSRN Baseline Solar Radiation Network

AST Apparent solar time [0–24]
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