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The majority of built heritage covering large spans are built with curved masonry
components, such as multi-ring arches, to attain greater overall thickness. Their
ultimate structural capacity when subjected to external loads is significantly
influenced by the various construction techniques utilized. Such structures are
made up of independent rings that communicate with one another through
interface contacts, and the geometrical features, like size, orientation, and the
arrangement of units, play a significant role, as do the mechanical characteristics,
like friction. Multi-ring arches subjected to a vertical load at quarter span are
assessed utilizing an in-house code implementing the upper bound approach of
the limit analysis for masonry structures. The formulation of a script for geometry
generation has been given and used for the input to the code. A discretemodel has
been adopted accounting for a combination of size and disposition of blocks,
friction angle, number of rings and the span length are taken into account.
Following their combination of impacts in terms of collapse multipliers, which
are classified as per respective influencing parameters, each one’s importancewas
demonstrated by classifying them into two major groups as per unit size. The
outcomes showed that all the parameters were key influencing factors in the
performance of such structures. Using relatively larger units enhanced the impact
of interlocking and provided larger collapsemultipliers. While interlocking played a
more significant role when span was considered, it together with friction had a
larger impact when ring number was varied, such that better interlocking and
larger friction values provided higher collapse multipliers.
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1 Introduction

Masonry as a building material has significant geometrical and mechanical variety in its
components. Approximately 70% of the world’s building inventory is made of masonry
(Matthys and Noland, 1989), which is typically represented by assemblies of blocks (stone,
bricks, or adobes) with or without the use of mortar made of cement, lime, or clay-based
(Lourenço, 1998). This material has been used extensively all over the world, including in
earthquake-prone areas, to build both new and historic buildings. Small adjustments to these
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factors result in significant variations in their structural behavior. It
is one of the reasons why historical existent masonry constructions
cannot be standardized.

Unreinforced masonry (URM), which is mostly found in ancient
masonry buildings and heritage sites, encompasses quite poor structural
responses to seismic actions (Choudhury et al., 2020; Tabrizikahou
et al., 2021) and shows a non-linear response at very low stress levels,
making numerical simulation of this material difficult and far from a
standard resolution. A substantial part of the scientific community in
this area is always in search of appropriate modeling methods (D’Altri
et al., 2020) for the numerical simulation of the intricate structural
response of masonry. These simulations have taken into account a
broad spectrum of approaches and methods for masonry modeling,
from simplified ones (Block et al., 2006; Pantò et al., 2016; Bruggi et al.,
2021) to homogenous (Masiani and Trovalusci, 1996; Lourenço and
Rots, 1997; Bruggi, 2014) and discrete ones (Orduña and Lourenço,
2005; Gilbert et al., 2006; Sarhosis and Lemos, 2018).

A major part of the built heritage in masonry consisting of curved
structures is built usingmultiple rings of masonry arches to reach larger
thickness. There are many examples of masonry structures constructed
using multi-ring arches, such as those shown in Figure 1. Although this
type of construction is mainly related to masonry bridges (Figures
1C,D), a lot of masonry buildings include multi-ring arches as well
(Figures 1A,B). A modern challenge remains the assessment of such
structures that withstood time for many years. Multi-ring arches have a
different structural behavior compared to the standard one-ring arches
due to the inter-ring planes present. In most of the cases, the joints
between the blocks are with very weak mortar, damaged one or non-
existent. As such, they represent potential planes of weakness for the
structure, leading to premature collapse due to ring separation.

The discussion on the assessment of multi-ring arches is not a
recent topic but dates back to the late 19th century. On the recorded
Minutes of the Institution of Civil Engineers 1846, Barlow (1846), a
disagreement between two ingenious engineering minds, Robert
Stephenson and Isambard Kingdom Brunei, follows over the
treatment of rings as separate or homogeneous for the
representation and assessment of multi-ring arches. The former
suggested a discrete approach while the latter continued on the idea
of a homogenized media without accounting for the separate rings.
Despite the advancement of knowledge and the improvement of
computational tools and skills, in many structural analyses, such
structures are still simplified as homogeneous media and the
separate rings are not taken into consideration. This approach
completely neglects the fundamental behavior of masonry where the
contact surfaces between each ring present planes of weakness and, as is
common especially in historical structures, mortar layers are weaker in
respect to the units and as such form the planes of damage.

Gilbert and Melbourne (1995) performed a series of tests on 3 m
and 5 m span multi-ring bridges and then compared the results with a
discrete rigid-block mechanism method. The formulated method
(Gilbert and Melbourne, 1994) assumes the non-Heyman approach,
thus taking into account the ring separation for the study of such
structural systems made of multiple rings. Later, the addition of
crushing failure was introduced (Gilbert, 1998), which does not
prove to be affecting majorly in the case of multi-ring arches.
Friction between the rings is included in the form of a separation
coefficient. As for the tests, seven 3 m and 5 m span masonry arch
bridges were evaluated, each having been constructed with or without
known flaws, together with four model arch ribs, each with a 3 m span.
Nevertheless, the ring separation was introduced as a flaw in

FIGURE 1
Examples ofmulti-ring arched structures: (A)Basilica in Albania, (B) Vaults ofMatera in Italy, (C)Masonry bridge in France and (D)Masonry bridge in Slovenia.
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construction. Load was applied at quarter span by considering the infill
of the bridge as well. The study shows the efficiency of discrete
approaches compared to the more complex ones due to the
involvement of many parameters that are not justifiable, and the
analysis becomes sensitive. Moreover, they stress that multi-ring
arches should not be assessed using methods that are not able to
consider ring separation as it proves to be crucial to the outcome.

Similar experiments were conducted on several other multi-ring
masonry arches (Sarhosis et al., 2016), such as the ones by
Melbourne et al. (1995b), Melbourne et al. (1995a) and
Melbourne and Tao (1995). All the tests show the importance of
ring separation which causes failure in the majority of the cases.
Furthermore, Melbourne et al. (2007), in a research report
containing an exhaustive number of tested multi-ring arches,
provide empirical insight into the behavior of such structures. It
is further highlighted that the main failure mechanisms obtained are
ring separation, four-hinged mechanisms, and sliding, with ring
separation being the most common. This further emphasized that
multi-ring arches, in this case for bridges, present a very sensitive
case to the phenomena of ring separation. In particular, Melbourne
et al. (1995b) point out the importance of the bond patterns of the
units as a key factor for the prevention of ring separation. In a recent
parametric study, Rios et al. (2023) show the importance of texture
on the behavior of masonry arches. They highlight the significance
of the interlocking effect provided by a proper arrangement of
masonry units.

A discrete approach using the discrete element method (DEM)
was used by Kassotakis et al. (2017) to perform a parametric study of
multi-ring arches. They investigated the impact of the number of
rings (2–5) using different span lengths (3, 5, 7, and 9 m) on the
structural capacity of the arches. Tensile resistance and cohesion was
introduced on all of the joints. During their study, they achieved
only four-hinged mechanism and no ring separation. They further
found out that for fewer rings, the hinges were more concentrated
while for more rings the hinges were more diffused with more radial
cracks. On the contrary, Pantò et al. (2022) propose a hybrid
continuum and discrete strategy following macro-modeling and
the simulation of internal structure by multiscale calibration.
They model ring separation using zero thickness interfaces
between the rings and also between the arch and backfill as they
take the latter into consideration. From the comparative studies
performed, they stress the sensitivity of continuum finite element
models to the calibration of parameters. Even then, these models can
lead to inaccurate results especially when dealing with ring
separation which were obtained using the strategy proposed.

Additionally, Cangi (2023) demonstrates how the construction
method of multi-ring arches has an impact on the stress distribution
of each ring where clear distinguishment is observed. Construction of
such arches can be done by following a consecutive order of ring
construction, where the first one serves as a formwork for the rest.
The other construction technique is by arranging the units up to the
intended thickness of the arch, all rings at once. Using the former
technique, it is not possible to achieve different internal texture of units
other than the running bond while, using the latter, any type of texture
can be introduced. Nonetheless, the interlocking of units between the
rings can be achieved in both. On top of this, Cangi (2023) shows how, at
the key arch, the first construction technique yields in a maximum
compressive stress at the intrados while for the second on the extrados.

This intensifies how the discrete treatment of each ring has an influence
on the overall behavior and the capacity of multi-ring arches.

Furthermore, discrete models are computationally expensive,
thus making it very difficult to perform parametric studies.
Nevertheless, this study intends to use an upper bound limit
analysis approach that is able to account for the finite friction of
the joints implemented in an in-house code. Taking advantage of the
full description of the internal structure, the code enables the
detection of the collapse mechanisms exploiting the interlocking
effect within the units. With the help of rapid tools for the input and
the efficiency of the in-house code for the processing of such
complex structures, a large number of simulations is performed
under the influence of the most influencing parameters. The set of
parameters for this study involve.

• The size of the blocks grouped into two general categories of
big and small;

• the variation of the span to consider small, medium, and large
spans;

• The number of rings composing the arch;
• The interlocking of the units between the rings;
• The friction angle levels.

Even though cohesion is also possible to be input for mortared
joints, here it is omitted to avoid factorial designs of high orders that
create difficulties in result presentation.

The article is organized as follows; in Section 2, the above-
mentioned approach for the study of the multi-ring arches is
described. Section 3 illustrates the parametric study performed
on such structures to analyze the most influencing parameters
and, further, a script that automatically generates the geometry of
multi-ring arches is given for amore rapid parametric assessment. In
Section 5, the results achieved are provided, and a discussion on the
collapse mechanisms and multipliers is given with the conclusive
remarks of this study in Section 6.

2 Methodology: Limit analysis with the
in-house ALMA code

An in-house code entitled ALMA (Analisi Limite Murature
Attritive) (Baggio and Trovalusci, 1998) has been implemented in
order to study masonry structures accounting for frictional joints.
The code is implemented entirely in a PythonTM environment that
uses a CAD interface for the geometry input of the structure while
numerical parameters are given and processed separately from a xml file.
The results are achieved after processing within PythonTM and solving of
the linear programming problem using the optimization library
MOSEK® (ApS, 2022). The obtained output is the collapse multiplier
and the corresponding collapse mechanism that is visually plotted using
the open source software Paraview (Ahrens et al., 2005). The core of the
ALMA code is based on the works of Baggio and Trovalusci, (1998),
Baggio and Trovalusci, (2000) and recently improved to account for
more parameters and for increased efficiency (Pepe et al., 2020). As
stated above, the implementation of the new version of the code in a
PythonTM environment and utilizing fast optimization tools such as
MOSEK® enables the study of muchmore complex structures, including
large numbers of joints, with a very detailed discretization without
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compromising the computational cost. Additionally, in the new version,
among others, it is able to study settlements (Pepe et al., 2020) and joint
reinforcements (Nela et al., 2022; Nela et al., 2023a), and with the
improved pre-processor, the user can easily generate various shapes and
complex geometries that can be also scripted (shown in the upcoming
sections) for easiness, especially when dealing with parametric studies.

Within the framework of limit analysis, the masonry structures
are described as a system of n rigid blocks and m joints unable to
carry tension and resistant to sliding by a friction coefficient, tan(ϕ),
where ϕ is the friction angle. Considering the in-plane problem, the
blocks can translate and rotate about the edges of the contact blocks
(hinging) as well as slide along the joints as shown in Figures 2A,B,
respectively, in which a two-block mechanism is depicted. It is
important to state that, for the case of sliding, a dilatant behavior
(Figure 2C) is assumed, such that the block slides with an uplift due
to dilatancy as the equivalent of the friction angle, ϕ.Considering a
system of n parallelepiped blocks in two-dimensional space, the
orthonormal basis is e � e1, e2{ }T. Loads are applied in the respective
centroid of mass of each ith rigid block:

f i � f i0 + αf iL , with i � 1, . . . , n, (1)
where f i0 � fi

01, f
i
02, m

i
0{ }T and f iL � fi

L1, f
i
L2, m

i
L{ }T are the

constant ‘dead’ and ‘live’ generalized loads vectors, respectively.

As usual in limit analysis, the load vector in Eq. (1) is split into two
parts in which live loads are proportional to the dead loads through a
non-negative coefficient α, called the load multiplier, as shown in
Figure 3A. The global load vector f is obtained by collecting the
single load vectors f i.

The vector ui � ui1, u
i
2, θ

i{ }T, that contains the displacement
components u1, u2, and the rotation θ (Figure 3C), represents the
generalized displacement of the center of the block. Similarly, all the
single vectors of generalized displacements are collected in a global vector
u, that in a virtual work sense corresponds to the global load vector f.

Additionally, over each jth joint, which is the contact surface
between the blocks, generalized stress σj and strain measures
(relative displacements) j are introduced (Figures 3B,C). The
collection of the local generalized stress vector containing the static
variables σj � Nj,Tj,Mj{ }T forms the global generalized stress vector
σ. Nj, T j, and Mj are the components of the normal force, shear force,
and moment, respectively, acting at each jth joint. The kinematic
variables, or generalized strain, are the relative displacement rates at
joints, that is, normal displacement ξj, tangential displacement γj, and
rotation χj, and are collected in the vector j � ξj, γj, χj{ }T. In a similar
manner, these vectors are collected in a global vector of the generalized
strains  and correspond in a virtual work sense to the vector of static
variables σ.

FIGURE 2
Schematic representation of possible failure modes for a two-block structure.

FIGURE 3
Schematic representation of a joint for a two-block structure.
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Herein, the relations that govern the problem of a non-standard
rigid–plastic discrete material as framework of the holonomic
perfect plasticity. The kinematic compatibility for the whole
system is expressed as follows:

 � B u, (2)
where B represents the compatibility matrix. The equilibrium
equation of the system is formulated as:

BTσ + f � 0. (3)
The generalized yield domain of the system can be written as:

y � NTσ ≤ 0, (4)
where N is the block-diagonal gradient matrix referred to the
adopted failure surface. The flow rule for the non-associative case
expresses the vector  as a linear combination of non-negative
coefficients ordered in the vector λ, called plastic multiplier
vector, and it can be written as:

 � M λ, (5)
where M is the block-diagonal matrix of the modes of failures that
for a two-dimensional framework consist of two rotations and two
slidings of the ith block in both positive and negative directions. For
systems with non-associated flow rules, the solution is not unique as
the Drucker stability postulate no longer holds. In this case, only the
lower/upper bounds of the collapse multipliers can be found
(Drucker, 1953; Radenkovic, 1961). The solution, if found, of a
non-linear and non-convex programming (NLNCP), that in this
case constitutes the mathematical problem, usually converges to a
local minimum rather than the global one (Kirsch, 1993; Baggio and
Trovalusci, 2000) replaced the friction angle with dilatancy and in
this manner the direction of the flow is associated with the yield
surface and the problem is linearized. As such, the normality rule
holds and the static and kinematic theorems of limit analysis provide
a unique solution for the collapse multiplier. The approach followed
within the code is the upper bound kinematic theorem and can be
solved using the linear programming for the optimization problem.
After considering the complementarity condition and the condition
of non-negative work of the live loads, herein normalized, as
expressed in the following Eqs 6, 7.

λTy � 0, (6)
f TLu � 1, (7)

and after some algebraic operations, the minimization problem is
formulated in Eq. (8) as:

αc �min λT c − A0N1( )T[ ] f 0{ } subjected to :

AN1 − N2( )λ � 0, compatibility condition( )
λT A0N1( )Tf L − 1 � 0, positive live loads( )

(8)

with the bounds on the unknowns λ ≥0. In the objective function, αC
is the collapse multiplier, while the compatibility matrix B is
decomposed into B1 as the kinematical submatrix of maximum
rank and the remainder of it as B2. Inverting matrix B1 gives A0,
while matrix A is obtained as A � B2B−1

1 . Similarly, N1 and N2 are
two submatrices of N. On the other hand, due to the associative flow
rule, matrices N and M are identical and M vanishes in Eq. (8).

Vector c is the joint cohesion which is formulated in Nela et al.
(2023a) and can be applied to account for mortared joints or joint
reinforcement.

3 Description of the parametric study

This study intends to perform a parametric analysis on a large
domain of data set with the most influential parameters that
characterize multi-ring arches. It must be noted that the backfill
is not considered in this research since the influence of arch
parameters are solely the focus. Nonetheless, backfill is able to be
considered and such analysis using the ALMA code has been done
by Nela et al. (2022). The main structural layout of the arch under
consideration is shown in Figure 4. Arches are subjected to their own
self-weight and to an additional live load applied at the quarter span.
The live load is proportional to the self-weight of the block where the
load is applied onto and factorized with the collapse multiplier αc. A
rigidly connected support has been placed under the arch springing
(shown in the collapse mechanism figures) to ensure the mechanism
development within the arch.

The parametric study is divided between two main categories
that are split as per consideration of unit size. Small and big sizes of
units are idealized into dimensions of 3.6 by 10.25 cm and 11.0 by
10.25 cm, respectively, as given in Figure 5A. The dimension of
10.25 cm is kept constant to ensure the same ring thickness for the
arches. Springing angle is also the kept same for all the arches at an
angle of 30o. Both the thickness of rings and the springing angle are
taken as reference from Kassotakis et al. (2017) that also resulted in
the size of the small blocks. On the other hand, the size of the big
blocks is taken as reference from the Matera vaults as shown in
Figure 1B, where the blocks appear almost square sized with the
radial dimension restricted to 10.25 cm for consistency in ring
thickness. Regarding the third dimension, as it is strictly confined
to a two-dimensional planar problem, it does not influence the
solution in this case. Different sizes of units were chosen to
understand which one performs better and especially where
interlocking plays a more significant role as, for the small blocks,
the interlocking percentage may be the same but the physical surface
of contact differs.

For dry-joint masonry, considering different bond textures which
incorporate different levels of interlocking, various crosswise tensile
resistances are achieved (Chen and Bagi, 2020). In this aspect,
although interlocking is a geometrical parameter, it provides
mechanical resistance to the assemblage due to the contact surface
friction. The general texture for the disposition of voussoirs consists of
stack and running bonds with a parametrization of the interlocking
between blocks. Interlocking is represented with a coefficient of
interlock (β - in percentage) relative to the thickness of the block
(b) that varies from 0% (no interlock; stack), 15% and 35% (medium
interlock; running), up to a maximum of 50% (complete interlock;
running), as schematically shown in Figure 5B.

Another mechanical parameter is friction, which is related to the
surface contact of the units and, as stated before, in combination
with interlock, it provides a tensile strength, while alone, it gives
shear strength and resistance to sliding. In the case of multi-ring
arches, it is also important for ring separation and it highly
influences the response of the assembly. Friction between the
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surfaces is described by the angle of friction (ϕ) with practical values
ranging between 15o and 63o (Rahman and Ueda, 2014). However,
more closely spaced values are taken into account that are more
realistic for multi-ring arches. In this study, three different levels of
friction such as 25o, 30o, and 35o are adopted.

As for geometrical parameters, three spans (S) are
considered, that is, the short, middle, and large spans in
relative terms that vary from 3.0 m, 5.0 m, and 7.0 m,
respectively. For the constitution of multi-ring arches, a
minimum number of two rings is necessary and then three
additional rings are added to account for a total of five rings.
Therefore, four different types of rings are generated, namely,
two-, three-, four-, and five-ringed arches. As mentioned above,
the thickness (t) of each ring is kept constant, constructing in this
way different overall arch thicknesses (T) that are based on the
considered number of rings. For each type of arch in terms of
rings, an equivalent (EQ) thickness of a one-ringed arch is
analyzed as well. The equivalent arches differ in span and
overall thickness (T), but not in interlock coefficient.

A full composite factorial design has been carried out where all
parameter levels have been combined among each other resulting in a
large number of simulations to be performed. Considering the main
parameter of Size with two levels, Span with three levels, Ring number
with four levels (excluding the equivalent ring arches), Interlocking effect
with four levels, and Friction angle with three levels, a total of 288 runs
were yielded from the full combination. An additional 72 runs resulted
from considering the one-ring equivalent arches. Exploiting the
advantage of the in-house code of being able to run the simulations
in a very rapid manner, accounting for the fact that this is a discrete
approach, it was possible to have all the results efficiently for further
processing. The simulations were run on the same personal computer
with Intel® Core™ i7-10750H CPU 2.60 GHz and 32 GB of RAM. The
average time necessary for running all the simulations was 24 min with a
minimum of 1.65 s for fewer joints considered (i.e., the equivalent
arches) and a maximum of 355 min for the structures with larger
numbers of joints (i.e., the largest span with the biggest ring number).

In order to simplify references to figures, an acronym system is used
and it follows a sequence of “size_span_ring_interlock_ friction”. Size

FIGURE 4
General parametric scheme of the multi-ring arch under study.

FIGURE 5
Parameter descriptions.
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takes the attributes S-small and B-big while span takes the number
attributes based on the span, such as S3, S5, and S7 for spans of 3, 5, and
7 m, respectively. Ring number similarly is based on the number of rings
as R2, R3, R4, and R5, and interlock takes the following attributes, I00,
I15, I35, and I50 for the interlocking percentage considered such that 00-
stacked, 15%, 35%, and 50%, respectively. Finally, friction takes the
attributes following the angle of friction such as F25—low level,
F30—medium level, and F35—high level. The acronym used for the
equivalent one-ring arches used is simply EQ. For example, the acronym
“S_S7_R4_I35_F30” refers to the arch with small blocks, a span of 7 m,
consisting of 4 rings, and with blocks interlocked at 35% with a joint
friction of 30o. All the parameters studied and corresponding labels are
summarized in the following Table 1.

4 AutoGeom script for geometry
generation

The processing speed of the code has been proven to be
convenient for such studies. Nevertheless, the input file requires a

drawing of the discrete structure in a CAD environment where each
joint and block are specified accordingly. Taking into account also
the differences of the considered parameters that have to be placed
accurately in each ring and on curved structures, it provides a
challenge for the user. For this reason, a script that generates the
input file for any type of circular arch has been developed that is also
able to account for different internal structures (texture) of the
masonry and also the above mentioned factors intended for the
parametric study. Herein, the mathematical formulations for the
implementation of this script are given and they can be used in any
programming language or CAD software.

A general schematic drawing of the arch is provided in
Figure 6 (left), which is a reference regarding any internal
texture that the arch may have. The arch consists of n blocks
andm rings and, based on the given springing angle θs, it can be a
segmental one (for θs > 0) or a complete semi-circular one (for
θs = 0). Based on this generalized scheme, each block ij
represents a possible placement of a periodic texture inside,
and each of these blocks can be shifted at a certain percentage
radially to create an interlock. Given a number of radial blocks n,

TABLE 1 Description and labeling of the parameters used in the study.

Size Span Ring Interlocking Friction

[ ] [m] [no.] [%] [°]

Label Value Label Value Label Value Label Value Label Value

B big S3 3 R2 2 I00 0.0 F25 25

S small S5 5 R3 3 I15 15.0 F30 30

S7 7 R4 4 I35 35.0 F35 35

R5 5 I50 50.0

FIGURE 6
Generalized parametric scheme of the arch and Type_1 bond.
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the angle θ that runs tangentially across the arch is achieved and,
given the number of ringsm, the overall thickness of the arch T is
divided tangentially into small ring thickness t.Concerning each
block (see Figure 6 on the right), the radial distance (arc length)
between two consecutive coordinates is given as the general arc
length of the specific ring Sj divided by the number of blocks n.
The general arc length of each ring Sj can be found as the
multiplication of each ring radius Rj and the total segmental
angle of the arch θ, whereas each ring radius Rj is obtained by
adding the thickness of each ring to it in a sequential way. A
summary of these formulations are reported below in Eq. 9:

rj � Sj/n; rj+δ � Sj+δ/n; rj+1 � Sj+1/n,
Sj � Rj θ; Sj+δ � Rj+δ θ; Sj+1 � Rj+1 θ,
Rj � R + j − 1( )t; Rj+δ � R + j + δ − 1( )t; Rj+1 � R + jt,
θi � θ i − 1( )/n + θs; θi+β � θ i + β − 1( )/n + θs; θi+1 � θ i/n + θs,

(9)
where β ∈ (0, 0.5) and δ ∈ (0, 1) are coefficients of interlock and
texture, respectively, and they determine in percentage the
location of an intermediate node. For β = 0 and δ = 0, are
obtained exactly the coordinates (xi,j, yi,j) of the block i, j, and for
β = 0.5 and δ = 1, the intersection point between blocks i, j and i,
j + 1 for full interlock of 50% is obtained. For the former case,
i.e., β = 0 and δ = 0, all the blocks are stacked radially due to β and
no internal texture has been considered due to δ.Among many
types of bonds (textures) that can be formed for the arch, the
bond of “Type_1” has been chosen in this case. Here, each block
ij stands as one, and only the staggering effect, i.e., the interlock,
can be considered with the help of the β coefficient and that is
why the nodes are only located tangentially at each ring with
corresponding coordinates as shown in Figure 6.In this case, a
convention is adopted that assumes the global origin of the
coordinate system on the bottom left-side of the geometry.
Furthermore, to be in line with our code for limit analysis,
the nodes are drawn counterclockwise. Therefore, in this order,
the node coordinates are obtained using the following equations:

ax, ay[ ]
O

ij
� −Rj cos θi( ), Rj sin θi( )[ ],

bx, by[ ]
O

ij
� −Rj cosθi+β( ), Rj sinθi+β( )[ ],

cx, cy[ ]
O

ij
� −Rj cosθi+1( ), Rj sinθi+1( )[ ],

dx, dy[ ]
O

ij
� −Rj+1 cosθi+1( ), Rj+1 sinθi+1( )[ ],

ex, ey[ ]
O

ij
� −Rj+1 cosθi+β( ), Rj+1 sinθi+β( )[ ],

fx, fy[ ]
O

ij
� −Rj+1 cos θi( ), Rj+1 sin θi( )[ ],

ax, ay[ ]
E

ij
� −Rj cosθi+β( ), Rj sinθi+β( )[ ],

bx, by[ ]
E

ij
� −Rj cosθi+1( ), Rj sinθi+1( )[ ],

cx, cy[ ]
E

ij
� −Rj cosθi+1+β( ), Rj sinθi+1+β( )[ ],

dx, dy[ ]
E

ij
� −Rj+1 cosθi+1+β( ), Rj+1 sinθi+1β( )[ ],

ex, ey[ ]
E

ij
� −Rj+1 cosθi+1( ), Rj+1 sinθi+1( )[ ],

fx, fy[ ]
E

ij
� −Rj+1 cosθi+β( ), Rj+1 sinθi+β( )[ ],

(10)

where the superscript O and E denote an odd ring or an even
ring, respectively. In the case of large geometries, in terms of
blocks number, to decrease the computational cost, a switch can
be added to skip the nodes bij and eij when a stack bond is
intended.

5 Results and discussion

A total of 360 simulations have been run, where 72 are regarding
the equivalent one-ring arches and 288 are the multi-ring ones. The
outcomes from these results are grouped into the collapse
mechanisms as qualitative results and then the collapse
multipliers as quantitative. Finally, a statistical assessment is
carried out to better understand the impact of the factors in a
mathematical aspect and relate them to the physical meaning. Raw
results extracted from all the simulations can be found in Nela et al.
(2023b); Nela et al. (2023c); Nela et al. (2023d).

5.1 Collapse mechanisms

Collapse mechanisms provide an insight into the structural
condition at the instant of collapse. The plots show in a light
gray color the undeformed state and in a bold color the collapse
mechanism; the hinges are zoomed for an increased readability. Due
to the large amount of results yielded from this research, it is not
possible to plot all the mechanisms achieved. Consequently, only
some of the them are herein shown while the reader is referred to the
above-mentioned repository for the rest of the results.

5.1.1 Collapse mechanisms considering big-sized
blocks

Evaluating the collapse mechanisms for the equivalent (EQ) one
ring arches, it is possible to extract how different thicknesses of
arches produce different types of failure. Due to the multi-factorial
dataset of parameters involved in the study, a matrix plot of the type
of collapse mechanisms only for the equivalent arches is given in
Figure 7. This plot provides the change of collapse mechanisms from
sliding (marked with solid squares) to a rotational (marked with
hollow squares) one given three levels of friction, four levels of rings,
and three levels of span. Considering big blocks, for the case of R2-
EQ, a four-hinge rotational mechanism occurs at any level of friction
and any span length. On the contrary, for the span of 3 m and for the
R3-EQ, sliding occurs for a friction angle of 25o but for higher values,
it is restricted. Nevertheless, this is not the same for spans of 5 and
7 m. Assessing greater thicknesses while remaining on the span of
3 m, for R4-EQ, sliding occurs for friction angles of 25o and 30o,
whereas for R5-EQ, it happens for all levels of friction. Different
results are achieved for the span of 5 m where sliding is present only
for the R5-EQ at a friction level of 25o. On the contrary, for the span
of 7 m, there is no sliding present for any level of friction.

While for the equivalent arches, the collapse mechanisms are
evident and straightforward, for the multi-ringed ones, they are not.
In Figure 8, a categorization is given of the collapse mechanisms
involved in the assessment of multi-ringed arches. The arches with
two rings, R2, follow the same mechanisms of no sliding as fewer
rings are involved and this is the same for all spans. Nevertheless,
different outcomes are achieved for the other ring numbers, where
for the span of 3 m, R3 shows sliding at friction angles of 25o and 30o,
while for 35o, it slides at a different location from the one seen in the
equivalent arch. This occurs only for the stack bond which in fact is
closely related to the equivalent arch, while for I-15, I-35, and I-50,
there is no sliding mechanism present. R4 and R5 exhibit sliding for
all levels of friction when the units are in a stack bond, while a
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combined rotation/sliding mechanism is observed for the I-15 and
rotational ones for I-35 and I-50 (see Figure 8). At larger spans of
5 and 7 m, the sliding effect diminishes and is less evident as
observed for the equivalent arches, and also the unit interlocking
restricts it more. In every instance, it was observed that higher levels
of friction make ring separation more evident.

An example of a four-ring arch with big-sized blocks and the
span of 3 m is given in Figure 9. The case of equivalent arches are
shown on top, where the mechanism differs from sliding to
rotational for a slight change of 5o in friction. On the bottom,
the mechanisms for friction angles of 35o are given but with a slight
variation in interlocking, namely, I-00 and I-15. For I-00, the sliding
continues also for a higher angle of friction, while for I-15, it is a
combined sliding and rotational. Furthermore, between these two
mechanisms, a shift of hinges is observed as well as different local
modes. Similar results are found also for other slight variations in
parameter levels that yield different mechanisms and this holds for
all spans. Certain examples show similar collapse but almost all cases
are non-identical.

5.1.2 Collapse mechanisms considering small-
sized blocks

The assessment of equivalent one-ring arches of small blocks
likewise offers insight into the various modes of failure. Similar to
the case of big blocks, a matrix plot of the collapse mechanism types
only for the equivalent arches is given in Figure 10. Analogous

mechanisms are obtained as for the case of big blocks and equivalent
arches. Considering the small span of 3 m, for the R3, sliding occurs
at a friction angle of 25o, for R4, at angles of 25o and 30o, while for R5,
it occurs at all levels of friction. At larger spans such as 5 m, it occurs
for the R5 at a friction level of 25o, whereas for the largest span of
7 m, there is no sliding present.

Since fewer rings are involved in R2 arches, the mechanisms
obtained are rotational for all spans. For the other ring numbers,
however, different results are obtained, such as for the span of 3 m,
R3 exhibits sliding at friction angles of 25o and 30o. Only the stack
bond exhibits this, which is very closely connected to the equivalent
arch; there is no sliding mechanism in place for the I-15, I-35, and I-
50. When the units are in a stack bond, R4 and R5 show sliding for
all degrees of friction, but I-15 exhibits a combination rotation/
sliding mechanism and I-35 and I-50 demonstrate rotational ones.
The sliding effect hinders and becomes less noticeable as shown for
equivalent arches at higher spans of 5 and 7 m, and the unit
interlocking further inhibits it.

In a similar manner, the example of a four-ring arch but with
small-sized blocks for the span of 3 m is shown in Figure 11. The
case of equivalent arches depicted on top shows again the difference
in mechanism, sliding to rotational, for the slight change of 5o in
friction. The same set of mechanisms corresponding to the case of
big blocks in Figure 9 are given on the bottom. Interlocking of I-00
exhibits sliding also for the higher level of friction while the variation
of the interlocking parameter to I-15 converts the hinge to a

FIGURE 7
Matrix plot of the differences in collapse mechanisms for the big-sized blocks.

FIGURE 8
Collapse mechanism categories for multi-ring arches.
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combined sliding and rotational. It was further noted that one of the
two mechanisms had its hinges shift, along with other local modes.
Minor adjustments in parameter levels trigger various mechanisms
resulting in different outcomes. Despite some examples exhibiting
comparable results, almost no equal scenarios are found. It is shown
that with higher levels of friction, ring separation is more obvious,
much like in the case of big blocks.

The discretizing nature of the approach and consideration of
sliding by the in-house code has enabled the capture of a larger

range of mechanisms that are involved in the failure behavior of
multi-ring arches. Rotational and sliding mechanisms are
achieved in almost all of the cases to be combined also with
ring separation. Additionally, the combination of sliding and
rotational mechanisms at the same location are observed. It is
crucial to highlight that, in the cases where masonry is modeled
as a homogenous continua, these failure modes are not able to be
captured. On top of that, simplifications of the internal structure
of the arch provide different quantitative and qualitative results.

FIGURE 9
Examples of collapse mechanisms for the big-sized blocks (B) with a span of 3 m (S3) and four-ringed (R4) arches varying in equivalent thickness
(EQ), stacked texture with no interlocking (I00), interlocking of 15% (I15), and two different levels of friction, 30o (F30) and 35o (F35).

FIGURE 10
Matrix plot of the differences in collapse mechanisms for the small-sized blocks.
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The importance of such mechanisms is reflected in the different
failure loads that follow according to the mechanism they
correspond to. More importantly, if the proper failure mode
is not captured, this may lead to inaccurate strengthening
strategies.

Moreover, Figures 9, 11 depict an uplift of the blocks, which is
evident for both block sizes. Considering a dilatant behavior for the
joints simplifies the problem to an associative one, but at a cost of
an uplift instead of perfect sliding when the mechanisms involve
sliding. The question of substituting friction with dilatancy has
been widely discussed, originally by Baggio and Trovalusci (2000).
This implies a linearization of programming problems adopted for
the limit analysis and provides an upper bound for the collapse
loads. Furthermore, this has a specific mechanical justification
related to the roughness of interfaces. While choosing non-
associative flow rules can potentially lead to more accurate
results, it introduces a non-linear and non-convex mathematical
programming problem. In such cases, the solution may not be
unique, and there is even a possibility that a solution may not exist
at all. Delimitations of the collapse load can be addressed within
the framework of Drucker’s theory (Drucker, 1953), refined by
Radenkovic (Radenkovic, 1961). This approach based on dilatancy
instead of friction has proven to be valuable, especially in
applications where computational costs are a concern.

5.2 Collapse multipliers

The live load is applied at one block on the quarter span of the
structure and the collapse multiplier corresponds to the weight of
that specific block. For this reason, collapse multipliers are
normalized by the weight of the entire structure for
intercomparable results.

5.2.1 Collapse multipliers considering big-sized
blocks

Collapse multipliers for the big-sized blocks are grouped into
plotted in graphs for various parameters and given in Figure 12.
Horizontally, each graph represents a different span, while vertically,
the graphs on the left vary in interlocking parameters and those on
the right vary in friction parameters. In the case where interlocking
varies, friction is averaged and analogously for the other.
Additionally, the results are given with respect to ring number
and all the equivalent arch results obtained are omitted from these
plots as they result in very large multipliers as it will be shown after.

From the plots, it is able to extract how the interlocking effect is
more significant for the span of 3 m compared to the others, whereas
its impact is more evident for the larger number of rings, as expected.
Stacked bonds show the lowest multipliers in all the cases and the
difference in results is achieved mostly for the span of 3 m.

FIGURE 11
Examples of collapse mechanisms for the small-sized blocks (S) with span of 3 m (S3) and four-ringed (R4) arches varying in equivalent thickness
(EQ), stacked texture with no interlocking (I00), interlocking of 15% (I15), and two different levels of friction, 30o (F30) and 35o (F35).

Frontiers in Built Environment frontiersin.org11

Nela et al. 10.3389/fbuil.2023.1309696

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1309696


Nevertheless, counter-intuitively, the arches with an
interlocking coefficient of I-50% perform relatively worse than
the two others. This can be due to the fact that as the structure

is curved, the staggering of blocks forms an internal triangle, and its
mechanism is activated faster compared to the other ones, and this
can be also observed looking at the collapse mechanisms and also the

FIGURE 12
Parameter interaction of the collapse multipliers with respect to span and ring number for the big blocks.

FIGURE 13
Change of failure mode at the load application point with variations of interlocking.

Frontiers in Built Environment frontiersin.org12

Nela et al. 10.3389/fbuil.2023.1309696

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1309696


FIGURE 14
Parameter interaction of the collapse multipliers for the averaged span with respect to ring number for the big blocks.

FIGURE 15
Parameter interaction of the collapse multipliers with respect to span and ring number for the small blocks.
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close-up illustration given in Figure 13. For an interlocking of I-00%
and I-50%, it is shown how the failure lines follow the same path
from extrados to intrados, while in the case of I-15% and I-35%, it is
interrupted as a combined sliding (given by the uplift) and rotation.

In spite of that, the multipliers for interlocking levels of I-15 and
I-35 show a non-linear relationship with respect to spans of 5 and
7 m and for more than two rings. In general, I-15 produces larger
multipliers but in the larger spans this outcome is shifted between I-
15 and I-35. Friction parameters show a more linear influence and
more equally distributed results which holds for all spans
considered. Larger values of friction provide higher collapse

multipliers. In general, the arches with a larger number of rings
outperform the ones with fewer as the overall arch thickness
increases.

A general overview of the results can be seen in Figure 14
following a similar layout of the graphs in Figure 12 but with
reference to averaged spans. From this figure, a clearer
relationship between the parameters can be seen for both
interlocking and friction. As given in the previous graphs, a
linear increase in the collapse multiplier is achieved when
considering more rings. Both interlocking and friction play a
more significant role when more rings are considered, while for

FIGURE 16
Parameter interaction of the collapse multipliers for the averaged span with respect to ring number for the small blocks.

FIGURE 17
Parameter interaction of the collapse multipliers for averaged ring number with respect to span and block size; differences between equivalent
arches and discretized ones.
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the smaller number of rings, interlocking almost provides the same
results for all levels and it starts to become influential with the
consideration of three rings and above where also a better
performance of I-15 and I-35 are obtained for the averaged results.

5.2.2 Collapse multipliers considering small-sized
blocks

Collapse multipliers for the small-sized blocks are grouped into
plotted in graphs similar to the ones for big-sized blocks and shown
in Figure 15. Differently from the big-sized blocks, for the small
ones, interlocking plays an almost insignificant role for the collapse
multiplier. This is attributed directly to the size of the blocks and the
inability to achieve the tensile strength that masonry inherits from
its texture. Smaller contact surfaces in this case result in a smaller
grasp from unit to unit, thus yielding lower collapse multipliers in
general, and they are not influenced by the interlock.

Interestingly enough, beside the span of 3 and 7 m, for the mid-
span of 5 m, interlocking shows a wider distribution of results and an
increased significance. This is also more visible due to the very low
results for this span compared to the others and a closer overview
enlarges the differences. Nevertheless, the larger the number of
rings, the more significant interlocking becomes, which was also
shown for the big-sized blocks. Again, arches with an interlocking
coefficient of I-50% perform relatively worse than the two others due
to the same reasons explained for the big blocks, whereas the stacked
ones behave the poorest in term of collapse multipliers in relative
terms to the ones interlocked.

In contrast to the big blocks, the line plots are more linear and no
interchange of results is seen when accounting for the various ring
numbers. The size of blocks does not seem to impact the correlation of
friction to the capacity of the arches. A linear influence is observed and
the results are equally distributed, persisting for all spans considered. The
increase in friction coefficient yields higher collapse multiplier values.
Similarly, as the thickness of the arch rises, the ones with more rings
perform better compared to those with fewer rings.

Figure 16 provides another summary of the findings for the
small size of blocks in a layout similar to the previous graphs, but
with the spans averaged as in Figure 14. This illustration highlights
the relationship between the parameters for friction and interlocking
apparent. As seen in the preceding figures, taking into account more

rings results in a linear rise in the collapse multiplier. Also, for more
rings, friction become more important, while for this case of small
blocks, interlocking does not. Due to the use of different scales for
collapse multipliers, in order to intensify the impact of friction and
interlocking in Figures 12, 15, the overall influence is not visible for
the different block sizes. In the case of averaged spans, this effect is
more evident where influence of interlocking is easily seen as not
prevailing in the case of small size and the opposite for the big size.

5.2.3 Results comparison for both sizes
In all the above cases, the collapse multipliers are plotted without

taking into consideration the results of equivalent arches. Figure 17
shows different plots of the collapse multipliers with respect to span
by varying interlocking in the plot on the left and friction in the plot
on the right. While considering equivalent arches, it is not possible
to introduce the interlocking effect; thus, equivalent arches are given
only for the varying friction parameters. Considering that the size of
the blocks and thickness of the arches are kept the same for all the
spans, a decrease in capacity is seen for the big blocks. In the case of
small blocks, this does not properly occur because of a slight
decrease obtained at the span of 5 m interrupting the linearity of
results.

From the interlocking effect on the graph, it is emphasized even
more how it plays a role in the case of big blocks and is almost
negligible for the small ones even with respect to span. On the other
hand, when arches are discretized into multi-ring ones, friction is
significant for both big and small blocks with a larger dispersion of
results for the case of the former. The same cannot be said when
equivalent arches are considered. A very significant dispersion of
collapse multipliers is obtained for the case of the smallest 3 m span.
Afterwards, the results do not differentiate among each other with
respect to friction levels for the 5 and 7 m spans. This was also shown
during the discussion of the collapse mechanisms. Carefully
checking at the values of the collapse multipliers, the results for
the discretized multi-ring arches and the equivalent ones vary by
large amounts of about six times. More clearly, this discrepancy is
highlighted in Figure 18.

In Figure 18 (left), using a boxplot, the vertical distribution of
results is illustrated, where both equivalent arches and discretized
ones are shown. Boxplots are given with respect to ring number as a

FIGURE 18
Boxplot of collapse multipliers with respect to ring size; differences between equivalent arches and discretized ones.
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distribution of results without differentiation among other
parameters. In other words, block size, span length, interlocking,
and friction are averaged without considering the equivalent arches.
Changes in the span length, however, are differentiated in the line
plots by averaging block size, interlocking, and friction. Separately,
the collapse multipliers for the equivalent arches are plotted in a line
plot where all the considered parameters are averaged with the
exception of ring number. Moreover, on the graph in Figure 18
(right), only the equivalent arches are shown as a boxplot and line
plot to illustrate in more detail the distribution of the results for the
case of equivalent arches. In this case, a distinct increase in strength
is achieved for the equivalent arches. For this reason, it is crucial to
highlight the importance of considering the internal structure of
masonry during structural assessment, since even the slightest
simplifications may lead to exaggerated overestimation.

6 Conclusive remarks

In this research, a parametric study of influential factors for the
behavior of multi-ring arches was performed. Using an upper bound
limit analysis aided by the in-house code, it was possible to achieve a
large pool of simulations for this study. Factors considered included
two levels for size (big and small), three levels for span (3, 5, and
7 m), four levels for ring number (2, 3, 4, and 5 rings) with also
representative equivalent arches for all of the rings, four levels of
interlocking coefficient (0, 15, 35, and 50%), and three levels of
friction (25o, 30o, and 35o). As such, 360 simulations were performed
to detect the collapse multipliers and mechanisms. The main
conclusions that have been deduced from the parametric study
are as follows.

• Considering the size of the blocks, bigger ones perform better
than the small ones in terms of the structural capacity of the
multi-ring arch. Although for the big blocks there is a larger
variety and range of distribution in the collapse multipliers,
interlocking is better accomplished as a result of the larger
areas of contact between the interconnected surfaces that
provide a better grip.

• Regarding span, it was illustrated how there are different
behaviors of such structures in correlation with other
parameters. For small spans and large-sized blocks, the
interlocking parameter has more influence, while for
smaller spans in general, the friction parameter has an
increased impact.

• Ring number, on the other hand, plays a crucial role in
combination with interlocking and the friction coefficient.
As more contact surfaces are involved in the collapse
mechanism of multi-ring arches, interlocking and friction
provide indirect tensile strength to masonry. Nevertheless,
it was seen that interlocking is less influential when blocks of
smaller size compose the rings.

• The friction coefficient, as a general overview, was better
observed when using equivalent arches for the internal
structure of the rings and comparing to the discretized
ones. The correlation between sliding mechanisms of

equivalent and ringed arches differed based on the internal
structure, where friction proved to be crucial. Additionally, it
was seen that larger values of the friction coefficient, even at
smaller increments of 5o, play an important role in the
outcome.

Using the capabilities of the code for a discretized
description of the texture, the importance of taking into
account the internal structure of masonry has been
emphasized. Equivalent arches, instead of the discretized
multi-ring ones, produced an increase of about six times
more for the collapse multipliers, resulting in an inflated
overestimation of the structural capacity.
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