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Autonomous vehicles can transform the transportation sector by offering a safer
and more effective means of travel. However, the success of self-driving cars
depends on their ability to navigate complex road conditions, including the
detection of potholes. Potholes pose a substantial risk to vehicles and
passengers, leading to potential damage and safety hazards, making their
detection a critical task for autonomous driving. In this work, we propose a
robust and efficient solution for pothole detection using the “you look only once
(YOLO) algorithm of version 8, the newest deep learning object detection
algorithm.” Our proposed system employs a deep learning methodology to
identify real-time potholes, enabling autonomous vehicles to avoid potential
hazards and minimise accident risk. We assess the effectiveness of our system
using publicly available datasets and show that it outperforms existing state-of-
the-art approaches in terms of accuracy and efficiency. Additionally, we
investigate different data augmentation methods to enhance the detection
capabilities of our proposed system. Our results demonstrate that YOLO V8-
based pothole detection is a promising solution for autonomous driving and can
significantly improve the safety and reliability of self-driving vehicles on the road.
The results of our study are also compared with the results of YOLO V5.
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1 Introduction

Over the past few years, there has been a conspicuous emphasis on the advancement of
autonomous vehicles, driven by their remarkable potential to revolutionize transportation
and mobility (Parekh et al., 2022). These self-driving cars, an epitome of cutting-edge
implementation, incorporate many intelligent transport systems technologies within
innovative urban transport systems (Bala et al., 2022). Equipped with advanced sensors
and algorithms, autonomous vehicles can navigate and operate autonomously, eliminating
the need for human intervention (Alsalman et al., 2021). They have significant potential for
enhancing road safety, mitigating traffic congestion, and providing sustainable mobility
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solutions for future cities (Alsalman et al., 2021). In addition to their
potential benefits, the widespread adoption carries significant
implications for the environment and public health, as shown in
Figure 1 (Raza et al., 2022a; Hakak et al., 2022; Raza et al., 2023). By
substantially reducing carbon emissions, air pollution, and noise
pollution, autonomous vehicles offer the prospect of elevating the
overall quality of life within urban centres (Wynn et al., 2014; Raza
et al., 2022b; Raza et al., 2022c).

Furthermore, their deployment can address one of the most
pressing issues of road safety, namely, accidents caused by human
error (Ahmed et al., 2022). As per the World Health Organization
(WHO), a staggering 1.35 million lives are lost annually worldwide
due to road accidents and bad climate (Iftikhar et al., 2022; Rehan
et al., 2023a; Rehan et al., 2023b). The advent of autonomous
vehicles promises to curb this distressing statistic (Iftikhar et al.,
2022) significantly.

Integrating autonomous vehicles into the transportation
ecosystem heralds a future characterized by enhanced road safety,
reduced environmental impact, and improved public health (Zhang
et al., 2021). However, realizing these aspirations necessitates
addressing several challenges and intricacies (Abbas et al., 2023).
These include developing sophisticated perception and decision-
making systems, ensuring the seamless integration of autonomous
and non-autonomous vehicles, establishing robust cyber security
measures to safeguard against potential threats, and navigating the
complex legal and regulatory landscape governing autonomous
driving technologies (Azam et al., 2020). By actively addressing
these challenges and capitalizing on the opportunities presented by
autonomous vehicles, we can forge a path towards a sustainable,
efficient, and safe future of transportation (Pendleton et al., 2017).

As researchers, policymakers, and industry stakeholders unite their
efforts, the transformative potential of autonomous vehicles will
gradually unfold, revolutionizing how we travel and reshaping our
cities for the better (Park et al., 2018).

Autonomous vehicles face numerous technical challenges as
they strive to revolutionize transportation (Wang et al., 2021).
Understanding and overcoming such challenges is essential to
ensure autonomous vehicles’ successful deployment and
integration into our daily lives (Wang et al., 2021). One
significant challenge lies in perception and environment
detection. Autonomous vehicles must accurately perceive and
interpret their surroundings, including detecting and classifying
objects, pedestrians, road conditions, and potential hazards
(Collingwood, 2017). Ensuring robust perception capabilities is
vital for safe navigation and decision-making. This challenge
involves effectively handling diverse scenarios, dynamic
environments, and sensor fusion to obtain precise and reliable
information (Kavas-Torris et al., 2021). Another major hurdle is
decision-making and planning. Autonomous vehicles must make
real-time decisions based on sensor data, maps, and predefined rules
(Woo et al., 2021). Handling complex scenarios such as navigating
intersections, executing overtaking manoeuvres, and merging into
traffic demands sophisticated decision-making algorithms that
balance safety, efficiency, and legal compliance (Woo et al.,
2021). Addressing this challenge involves managing uncertainty,
accurately predicting the intentions of other road users, and
optimizing decision-making under varying traffic conditions
(Woo et al., 2021).

Safety is paramount in autonomous vehicle development.
Ensuring the reliability and redundancy of systems is crucial

FIGURE 1
Environmental impacts of autonomous vehicles (Hakak et al., 2022).
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(Acheampong and Cugurullo, 2019). Thoroughly validating the
performance of sensors and algorithms through extensive testing
and simulation is necessary to instil confidence in the technology
(Acheampong and Cugurullo, 2019). Additionally, mitigating risks
and addressing edge cases, such as rare events or challenging road
situations, pose further challenges (Alghodhaifi and Lakshmanan,
2021). Autonomous vehicles also grapple with the complexities of
communication and connectivity systems (Alghodhaifi and
Lakshmanan, 2021). Reliable and high-bandwidth
communication is essential for autonomous vehicles to exchange
information with other vehicles, infrastructure, and cloud-based
services (Alsulami et al., 2022). Establishing seamless
communication, managing latency, ensuring data security, and
developing robust communication protocols capable of handling
the vast amount of data generated by autonomous vehicles are key
challenges in this domain (Alsulami et al., 2022). Cyber security is
another critical challenge. The reliance of autonomous vehicles on
complex software systems and connectivity makes them vulnerable
to cyber security threats (Kim et al., 2021). Protecting against
hacking attempts, securing communication between vehicles and
infrastructure, vehicle-to-vehicle connectivity, and ensuring data
privacy are significant challenges that demand robust solutions
(Rathore et al., 2022). Furthermore, integrating autonomous and
non-autonomous vehicles poses challenges regarding coexistence
and interaction (Wu et al., 2020). Ensuring smooth transitions, clear
communication, and mutual understanding between these vehicles
are essential for safe and efficient traffic flow (Wu et al., 2020).

Effectively addressing these technical challenges requires
collaboration among researchers, policymakers, industry players,
and the general public (Liu et al., 2020). Continuous research and
development, establishing rigorous validation and testing
methodologies, implementing robust policy frameworks, and
raising public awareness are all crucial for overcoming these
hurdles (Aldhyani and Alkahtani, 2022). Doing so can pave the
way for the successful implementation of autonomous vehicles in
our transportation systems (Taeihagh and Lim, 2019). Additionally,
detecting potholes on the road presents a significant challenge for
autonomous vehicles (Taeihagh and Lim, 2019). Potholes are
common hazards on the road that can lead to substantial vehicle
damage, endangering the safety of drivers and passengers (Kim et al.,
2022). Detecting and avoiding potholes is crucial to ensure the safety
of autonomous vehicles and passengers (Bhatia et al., 2022). To
address this challenge, designing and developing computer vision
algorithms for self-driving vehicles has become a prominent
research field over the past decade. These algorithms are
developed and extensively employed to detect potholes in the
road (Madli et al., 2015; Ali et al., 2023d). One such technique is
the YOLO V8 model, which is proposed in this research and is a
well-known state-of-the-art algorithm for the application of object
detection, which can efficiently identify potholes in real time. The
YOLO V8 model works based on a deep neural network and
employs a single-stage object detection approach, making it fast
and efficient. It has been utilized successfully in various applications,
such as surveillance and autonomous driving (Sharma and Sharma,
2019; Ma et al., 2022; Pandey et al., 2022).

In Section 2, the literature review revealed that other studies
have considered some old modelling tools to detect potholes.
However, our study presented the new and latest model, which

helps to enhance the accuracy in detecting potholes for autonomous
vehicles. Section 3 contains methodology which depicts the dataset
of YOLO V8 and its configuration with data annotation,
augmentation and performance evaluation matrices. Section 4
presented the complete results and the comparison of the YOLO
V8 and YOLO V5 models. Finally, the conclusion is presented
in Section 5.

2 Literature review

This work aims to investigate using the YOLO V8 model for
pothole detection in autonomous vehicles. The paper will discuss the
methodology employed for training and testing the model, evaluate
its performance, and compare it with existing methods. The
proposed work can improve the design and development of
pothole detection systems for autonomous vehicles with
improved robustness and reliability. These advancements will
facilitate safer and more efficient operations on the road,
ensuring the safety of passengers and fellow road users.
Additionally, this research will have implications for road
maintenance and safety, as it can help to identify and repair
potholes before they become a hazard for drivers. Numerous
methods have been proposed and employed with diverse
techniques for pothole detection. For instance, in the study (KC,
2022), the authors of this paper used the YOLOX object detection
algorithm to identify potholes on roads. The YOLOX is an enhanced
iteration of the YOLO algorithm, integrating a backbone network to
enhance detection accuracy while reducing computational costs
(KC, 2022). Using a pothole dataset, the authors trained the
YOLOX algorithm and assessed the findings by determining the
accuracy, recall, and model size. The findings demonstrated an
overall precision of 85.6%, and the model’s overall size amounted
to 7.22 MB (KC, 2022).

In (Ali et al., 2023a), authors focused on evaluating the
performance of YOLO, faster regions in addition to convolutional
neural networks (R-CNN) together with a visual geometry group with
16 layers deep (VGG16) and residual network with 72 layer
architecture layer with 18 deep layers to identify pothole. They
further proposed an improved architecture for YOLO V2 to
mitigate the problem of class imbalance of “pothole” and “normal
road”. They have also compared its effectiveness to other object
identification models by recall, precision, the number of frames
processed in a second and the intersection over union. The authors
could achieve better results for all the examined algorithms utilizing the
least number of hyperparameters of 35 million and resulting in the
highest number of frames processed in a second (28), precision at
(0.87), and recall at (0.89) (Ali et al., 2023a). The study (Bučko et al.,
2022) used YOLO V3 incorporating sparse R-CNN to detect potholes
during changing weather conditions. Themethod was divided into two
parts: dataset construction, processing data, and experiments on the
dataset using YOLO V3. The authors obtained 77.1% and 72.6%
accuracy on YOLO V3 and sparse R-CNN, respectively (Bučko
et al., 2022).

There is increasing interest in connected and automated
vehicles (CAVs) since their implementation will transform the
nature of transportation and promote social and economic
change. The transition toward cooperative driving still
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requires understanding some critical questions to assess the
performances of CAVs and human-driven vehicles on
roundabouts and to balance road safety and traffic efficiency
requirements properly. In this view, this paper proposes a
simulation-based methodological framework to assess
increasing proportions of CAVs on roundabouts operating at
a high-capacity utilization level. A roundabout was identified in
Palermo City, Italy, and built in Aimsun (version 20) to describe
the stepwise methodology (Tumminello et al., 2023).

The study (Magalhães et al., 2021) evaluated three different
architectures, including YOLOV3, achieving an accuracy of
83.43%; YOLOV3 tiny, achieving 79.33%; and YOLOV3 single
shot multi box detector (SSD), having 88.93% accuracy, and the
area measurement accuracy was noted to be as 64.45%, 53.26%,
and 72.10% for all above architectures respectively. The study
(Kumar et al., 2020) deployed and tested different algorithms,
including SSD tensor flow, YOLO V3 Darknet with 53 layers
deep, and YOLO V4 cross-stage partial network (CSP) Darknet
with 53 layers deep initially several images of potholes were
captured by a cellphone-mounted on the car windshield then
different object detection models were employed for identifying
road potholes images given that YOLO V4 achieved a high recall,
precision and mean average precision of 81%, 85% and 85.39%
respectively.

This study (Wang et al., 2022) suggested a model using a darknet
convolutional neural network for detecting potholes and
approximating dimensions. The system gives the best results,
precision-recall (0.5) of 0.665, 0.691 and 0.726, respectively, for
the 270 epochs. The study (Ji et al., 2023) used the scaled YOLO
V4 and developed two small models of small size that perform
better, making the most of the vehicle’s constrained computational
resources. Work showed the F1 score at 0.54 and 0.586, respectively.
A semi-supervised learning technique based on the encodings
learned through a combination of a class-conditional variation
autoencoder and a Wasserstein generative adversarial network is
proposed for classifying and identifying damage into various
severity levels. Lastly, in the study (Jakubec et al., 2023), the risk
and research evaluation method (SPFPN) YOLO V4 tiny is
suggested by combining the two techniques of spatial pyramid
pooling and feature pyramid network with Darknet-53. After the
data augmentation, the dataset was divided into three sets: training,
validation, and testing, with 70% of the data being used for training.
The findings showed that the model performed better than YOLO
V2, YOLO V3, YOLO V4, YOLO V4 small, and SPFPN-YOLO
V4 tiny in terms of mean average precision, which improved by
roughly 2%–5%.

Walking is an essential activity for every human being and
has many advantages, including health, economic and
environmental benefits. Every journey made using various
means of transport begins and ends on foot. As is well
known, the group of road users particularly exposed to the
risk of serious injury in road accidents, apart from cyclists, also
includes pedestrians. These are the so-called vulnerable road
users. Pedestrians are a group of road users often deprecated by
many drivers of motor vehicles, but they are essential in road
traffic. Pedestrian injuries and pedestrian fatalities have
enormous social and economic consequences. The problem
of high pedestrian risk on roads is well known and has been

widely described in the scientific literature over the last few
years. However, the reasons for this state of affairs have yet to be
fully explained, as evidenced by the statistics of road traffic
incidents. Despite many studies in this area, the causes
indicated in the research often differ depending on the area
of analysis, the environment in which the incident took place,
the location, participants of the incident, environmental
conditions, behaviourism and many other features
(Macioszek et al., 2023).

3 Research methodology

This study primarily focuses on developing a high-
performing and accurate pothole detection system for
autonomous vehicles using the YOLO V8 model. The YOLO
V8 model was selected for pothole detection due to its high
accuracy and efficiency. After downloading the dataset, the first
step was to annotate the images using a suitable annotation tool.
In this case, RoboFlow was used for annotation, which offers a
simple and efficient way to annotate images. Once the annotation
was complete, data augmentation techniques such as rotation,
scaling, and flipping were used on data to create more variations
of the same images. Such techniques generated an augmented
dataset, which helped improve the model’s robustness and
minimized overfitting. Once the data was annotated and
augmented, it was divided in the ratio of 80:20 for training
and testing the model. The training dataset consisted of 80%
of the dataset used for training the model, while the remaining
20% of images were reserved for testing the model’s effectiveness.
Then, the model was run on Google Colab, a platform that
provides the necessary computing resources with 200 epochs,
allowing it to learn and improve its pothole detection abilities.
Figure 2 represents the detailed flow diagram for the proposed
methodology.

3.1 YOLO V8 model description

YOLO V8 is the newest addition to the popular YOLO group of
object detection models, which Ultralytics developed. This state-of-
the-art model builds on the strengths of old versions of YOLO and
provides a faster and more efficient detection system (Guo et al.,
2023). One of the critical features of YOLO V8 is its new backbone
network, which improves its accuracy and speed. The model also
employs a new anchor-free head, eliminating the need for anchor
boxes and improving its object detection performance (Al Muksit
et al., 2022). In addition to object detection, YOLO V8 provides a
unified framework to train the models for performing tasks such as
image classification and instance segmentation (Al Muksit et al.,
2022). The model demonstrates exceptional efficiency and
versatility, accommodating a wide range of export formats and
capable of functioning on both central processing units and
graphics processing units (Raza et al., 2022d; Raza et al., 2022e;
Borandag, 2023). The YOLO V8 package includes an extensive
collection of models across detection, segmentation, and
classification, with each category featuring five distinct models.
These pre-trained models include object detection checkpoints,
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which are trained on the everyday object in context (COCO)
detection dataset having a 640 resolution.

Moreover, the models encompass instance segmentation
checkpoints trained on the COCO segmentation dataset at a
640 resolution and image classification models pre-trained on the
ImageNet dataset at a resolution 224. YOLO V8 offers a powerful
and versatile solution for various computer vision tasks with its
new features and improved performance. It has rapidly gained
popularity among computer vision researchers and developers
(Habib et al., 2022).

The YOLOV8model has demonstrated sufficient enhancements in
performance compared to its predecessors. It outperforms YOLO V5,
YOLO V7, and YOLO V6 models by a significant margin (Hussain,
2023). This is because YOLOV8 incorporates several new features, such
as the recently developed backbone network, the innovative anchor-free
head, and the loss function, which improve the model’s efficiency and
speed. One of the notable improvements in the YOLO V8 model is its
superior throughput compared to other YOLO algorithms, which are
trained at 640 image resolution (Hussain, 2023). Despite having similar
parameters, YOLO V8 demonstrates higher throughput, as shown in
Figures 3A, B (Hussain, 2023; Ali et al., 2023b). This is due to its efficient
design, which enables it to process large amounts of data quickly and
accurately. A further detailed comparison is explained below in Table 1
(Hussain, 2023; Ali et al., 2023b).

3.2 YOLOV5 model

YOLOV5, an evolution of the YOLO series, represents a state-of-
the-art object detection model renowned for its speed, accuracy, and
efficiency. Developed as an independent project, YOLOV5 adopts a
streamlined architecture and leverages cutting-edge deep learning
techniques. It is a versatile solution for many computer vision tasks,
such as object detection, image classification, and image segmentation.
In general applications, YOLOV5 excels in real-time object detection
scenarios where speed is crucial. Its single-stage architecture lets it detect
objects in a single pass, leading to remarkable inference times on various
hardware platforms. It makes it a compelling choice for tasks requiring
rapid processing without sacrificing accuracy. In the context of
autonomous systems and vehicles, YOLOV5 plays a pivotal role in
enabling robust and reliable autonomous navigation. The ability to
quickly and accurately detect pedestrians, vehicles, traffic signs, and
other objects in the surroundings empowers autonomous vehicles to
make informed decisions, ensuring passenger safety and smooth
operation on the road. YOLOV5’s efficiency and precision are
paramount in autonomous driving, where real-time perception of
the environment is essential for ensuring safe and efficient
navigation. Furthermore, YOLO5 exhibits exceptional potential in
pothole detection, which is critical to autonomous vehicles’ safety
and infrastructure maintenance. Therefore, two different variants of

FIGURE 2
Shows the flow diagram of the proposed methodology.
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YOLOV5, Yolov5 Small and YOLOv5 Large, have been implemented in
this work as a benchmarking model to compare the effectiveness and
superiority of the proposed YOLOv8 model for pothole detection.

3.3 Dataset

As part of this research project, authors sourced an openly available
dataset from the Kaggle public library comprising 665 pothole images

(Bučko et al., 2022; Thompson et al., 2022). Figure 4 provides a visual
representation of a subset of these images utilized within the dataset
(Bučko et al., 2022; Thompson et al., 2022). To pinpoint the pothole
locations within the images, authors utilized the Pascal visual object
class (VOC) annotation format, utilizing bounding boxes to mark the
potholes accurately. The annotations for each image were stored in
individual extensible markup language (XML) files. In contrast, a
separate protobuf text file specified the dataset’s overall number and
types of available classes. For our purposes, authors only needed one
“pothole” class. However, the YOLOV8 model necessitates annotations
in the COCO dataset format structured as a javascript object notation
(JSON) file. A limitation of this format is the challenge of introducing
more images to the dataset once it has been formatted. Splitting data
between training and testing sets can be challenging, as all annotation
information is saved in a single JSON file. To tackle these challenges, we
converted the dataset into the Pascal VOC format, allowing every image
to possess its annotation data saved in XML files. Subsequently, the
authors divided the data into a ratio of 70:20:10 for training, validation
and testing sets. The authors then converted the Pascal VOC
annotations into the COCO format, consolidating all annotation
details for the images into a single JSON file. Once the dataset was
pre-processed and split, the authors used it to train the YOLOV8model.
After training, the authors tested the model’s effectiveness by making
predictions on the testing set. This enabled us to analyze the model’s
accuracy and determine whether its predictions were correct.

3.4 Data annotation

Data annotation is a well-known technique of labelling or tagging
data in order to make it understandable for models. It involves adding
metadata to raw data to make it more valuable and accessible to
computer systems. In computer vision, data annotation involves
adding labels or tags to images to mark the presence or absence of
particular objects or features. For instance, in this case, the potholes
were tagged to tell the YOLO model to understand the pothole, as
shown in Figure 5. Data annotation is critical in developing computer
vision models, providing the necessary information to learn and
recognize objects. Accurate and detailed annotation can significantly
improve the performance of computer visionmodels, while incorrect or
incomplete annotation can result in inaccurate predictions and reduced
model performance (KC, 2022). RoboFlow is a powerful tool for data
annotation used in this study. It provides a simple and efficient way to
label images for computer vision tasks. It offers a user-friendly interface
that allows users to easily annotate images using a variety of annotation
types, including bounding boxes, polygons, and points (Sharma et al.,
2022; Shandilya et al., 2023). To perform data annotation using
RoboFlow, the first image dataset was uploaded to the platform.
Then, the annotation type was selected as Pascal VOC. Once the
annotation was completed, the annotated images were exported in
COCO format as YOLO requires this format. These annotated images
were then employed to train and test the model for detecting potholes.

3.5 Data augmentation

In machine learning, data augmentation is a technique that
expands the training dataset by creating additional variations of

FIGURE 3
(A,B) Show the comparison between all the YOLOmodels trained
at exact image resolution (Hussain, 2023; Ali et al., 2023b).

TABLE 1 Object detection comparison between YOLOV5 and YOLOV8
(Hussain, 2023; Ali et al., 2023b).

Models size YOLOV5
(%)

YOLOV8
(%)

Difference
(%)

Xtra Large 50.7 53.9 6.31

Large 49 52.9 7.96

Me Medium 45.4 50.2 10.57

Small 37.4 44.9 20.05

Nano 28 37.3 33.21
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FIGURE 4
Shows some samples of Patholes’ images employed for testing the YOLOV8 model (Bučko et al., 2022; Thompson et al., 2022).

FIGURE 5
Shows some examples of annotated images.
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existing data with diverse attributes (Shorten et al., 2021). This
approach improves the model’s capacity to make generalizations
and reduces the risk of overfitting (Shorten et al., 2021). Data
augmentation can be done in several ways: rotation, zooming,
contrast, blur, scaling, flipping, and adding noise (Chlap et al.,

2021). The impact of data augmentation on the model is that it
increases the robustness of the model by making it more capable of
handling variations in the input data. This makes the model more
reliable and accurate when predicting real-world data.

Additionally, data augmentation provides a solution to mitigate
overfitting. In this situation, a model becomes overly specialized to
the training data, leading to suboptimal performance when dealing
with new and unfamiliar data (Lashgari et al., 2020). Our research
used RoboFlow to perform data augmentation on our dataset.
RoboFlow is a robust platform that offers various data
augmentation techniques to enhance the model’s accuracy and
robustness. It offers a user-friendly and efficient means of
producing augmented data without requiring any coding skills.
To use RoboFlow for data augmentation, authors first uploaded
the annotated dataset to the platform. We then selected the
augmentation techniques we wanted to apply to our images, such
as rotation, contrast, and zooming, as shown in Figure 6.

RoboFlow also offers advanced techniques like mosaic, mix-up,
and cut mix, which can further enhance the model’s performance.

FIGURE 6
Shows some examples of data augmentation.

TABLE 2 The final dataset after the data augmentation techniques are
applied.

Dataset Training Validation Test Total

Original 465 133 67 665

Rotating 235 65 45 335

Contrast 215 60 35 310

Zooming 140 42 20 187

Final Dataset 1,055 300 167 1,497

Original 465 133 67 665
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After selecting the augmentation techniques, we applied them to our
images and generated a new dataset with augmented images. This
process helped increase our dataset’s diversity and reduced the risk
of overfitting. Moreover, data augmentation helped the model to
generalize better by improving its ability to recognize potholes in
various lighting conditions, angles, and perspectives. RoboFlow also
provides an option to preview the augmented images before
downloading them. This helped to verify that the augmentation
was performed correctly and that the images were suitable for
training the model. Overall, the use of RoboFlow for data
augmentation provided a valuable and efficient way to enhance
the efficiency of our model, exclusive to the need for extensive
coding or technical skills.

3.6 Dataset configuration

As shown in Table 2, the initial dataset comprised 665 images, with
465 images designated for training, 133 for validation, and 65 for testing
purposes. Data augmentation methods were implemented to enrich the
dataset and increase its diversity, including image rotation, contrast
adjustment, and zooming. As a result, the dataset was expanded to
contain 1,497 images. The augmented dataset was split into three
similar sets for training, validation, and testing, following a division
of 70:20:10. The approach of augmenting the dataset through image
rotation, referred to as the Rotating-dataset augmentation method, was
employed on 335 images within the dataset. This encompassed
235 images from the training, 65 from the validation, and 45 from
the testing set. This technique enhances the model’s resilience in
effectively dealing with diverse object orientations in real-world
situations. In the next step, the augmentation process enhanced the
dataset by adjusting the contrast of 310 images. Notably, this set
comprised 215 images from the training dataset, 60 from the
validation dataset, and 35 from the testing dataset. This technique
involves changing the contrast of an image by scaling the pixel values,
making the model more effective in handling images captured under
varying lighting conditions. Finally, the Zooming augmentation
technique was applied to 187 images in the dataset. This technique
helps the model learn to detect objects at different scales and better
handle objects of varying sizes. Among the images, 140 were from the
training set, 42 were from the validation set, and 20 were from the test
set. The resulting augmented dataset exhibits increased diversity and
variability that is expected to improve the model’s generalization and
performance in detecting objects, such as potholes, in the context of
this study.

3.7 Evaluation matrices

Evaluation parameters such as F1, confusion matrix, and recall
are considered in assessing the model’s exceptional accuracy
and precision.

3.7.1 F1 score
The F1 score is the most commonly considered performance

metric in computer vision, particularly in binary classification tasks,
to assess the model’s accuracy and balance between precision and
recall (Laila et al., 2022). It is precious when dealing with imbalanced

datasets, where one class significantly outweighs the other. The
F1 score combines recall and precision into a single measure,
providing a more comprehensive evaluation of the model’s
performance (Laila et al., 2022). The F1 score includes the
harmonic mean of precision and recall, and its value ranges from
0 to 1, with 1 being the best possible score (El-Hasnony et al., 2022).
It balances the precision and recall value, providing a single value
that considers both false positives and false negatives (Naudé et al.,
2023). This is particularly important in scenarios like pothole
detection for autonomous vehicles, where correctly identifying
potholes is crucial for safety, and false negatives (missing actual
potholes) can have significant consequences (Naudé et al., 2023). In
pothole detection for autonomous vehicles using YOLOV8, the
F1 score becomes a critical metric for model performance
evaluation (Bosurgi et al., 2022). A high F1 score indicates that
the model accurately detects potholes while minimizing false
positives and negatives (Sathya and Saleena, 2022). This means
the model can provide reliable and real-time information to the
autonomous vehicle system about the presence of potholes on the
road, enabling safe navigation and proactive measures to avoid
potential hazards (Sathya and Saleena, 2022). Achieving a high
F1 score in pothole detection is paramount to ensuring the safety
and efficiency of autonomous driving systems, reducing accidents,
and improving the overall driving experience for passengers and
pedestrians (Sathya and Saleena, 2022).

The F1 score is calculated based on precision and recall, two
performance metrics commonly used in binary classification
tasks. In binary classification, there are two classes: positive
and negative. Precision evaluates the fraction of true positive
predictions among all positive predictions made by the model. In
recall, the model’s true positive predictions are divided by the
total number of positive instances in the dataset (Gajjar et al.,
2022). To calculate the F1 score, we use the harmonic mean of
precision and recall, as shown in Eq. 1 (Gajjar et al., 2022):

F1 score � 2 ×
Precision × Recall
Precision + Recall

(1)

3.7.2 Confusion matrix
A confusion matrix is a table that helps evaluate the effectiveness of

deep learning models by comparing their predicted results to actual
results (Ali et al., 2023c). It provides a matrix-based representation of
true positives, false positives, and false negatives. True positives denote
correctly predicted positive instances, false positives indicate incorrectly
predicted positive instances, true negatives represent correctly predicted
negative instances, and false negatives signify incorrectly predicted
negative instances (Ali et al., 2023c). The confusion matrix plays a
pivotal role in the computation of evaluation metrics such as accuracy,
precision, recall, and F1-score (Saisree and Kumaran, 2023). It offers a
valuable understanding of the model’s strengths and weaknesses,
identifies the errors made, and makes necessary improvements to
the model to increase its performance (Saisree and Kumaran, 2023).

3.7.3 Precision
Precision is the most commonly employed evaluation parameter in

machine learning which demonstrates the exactness of a classifier or
model (Kim et al., 2022). It refers to the proportion of true positives
(rightly predicted positive instances) to the overall number of instances
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which are predicted as positive. In other words, precision measures the
accuracy of positive predictions carried out by a model (Zhou et al.,
2019). A good precision value shows that the model has a low false
positive rate, indicating that it is highly accurate in correctly identifying
positive instances. Conversely, a low precision value shows that the
model has a high false positive rate, which means it needs to be more
accurate in identifying true positive instances (Salaudeen and Çelebi,
2022). Precision is a critical metric for a classifier’s performance
evaluation, especially when false positives have severe consequences.
For example, in a medical diagnosis scenario, a false positive diagnosis
could lead to unnecessary medical treatments or surgeries, causing
physical, emotional, and financial harm to the patient (KC, 2022).
Hence, in such cases, high precision is of utmost importance. To
calculate precision, we use Eq. 2 (KC, 2022). In Eq. 2 True positives
refer to the rightly predicted positive instances, and false positives refer
to those predicted as positive but negative.

Precision � True Possitive

True Posstive + False Positive
(2)

3.7.4 Recall
In deep learning prediction models, recall is a performance

parameter determining the model’s ability to predict all positive
samples (Pandey et al., 2022) correctly. It is also referred to as
sensitivity or true positive rate. When dealing with classification
problems, recall is computed by dividing the number of true
positive predictions by the sum of true positive and false negative
predictions (Sathya et al., 2022). In simpler terms, recall represents the
ratio of correctly predicted actual positive samples by themodel. A good
recall value shows that themodel has fewer false negatives, whichmeans
it can effectively identify all relevant samples. To calculate recall, we use
Eq. 3 (Sathya et al., 2022). Recall is an essential metric in many
applications, such as medical diagnosis and fraud detection, where
correctly identifying all positive instances is essential. However, a high
recall score often comes at the cost of a lower precision score, as the
model may also identify some false positives. Hence, it is crucial to
consider both precision and recall when assessing the effectiveness of a
deep-learning prediction model (Xin et al., 2023).

Recall � True Posstive
True Possitive + False Negative

(3)

4 Results and discussion

The objective of this study is to develop an efficient and reliable
solution for the detection of potholes for autonomous vehicles. The
latest deep learning model, YOLOV8, known for its excellent
performance in object detection, was chosen to achieve this
objective. In this section, we present the performance metrics
obtained from our proposed YOLOV8 model and compare them

FIGURE 7
Shows the PR Curve scores of all models.

FIGURE 9
Shows the Precision scores of all models.

FIGURE 8
Shows the F1 scores of all models.

FIGURE 10
Shows the Recall scores of all models.
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with two variants of YOLOV5: YOLOV5s andYOLOV5l. The results of
all the models were evaluated based on various performance metrics.
Figure 7 demonstrates the model’s F1 confidence, which was found to
be at its maximum value of 1.0 for YOLOV8, 0.81 for YOLOV5s and

0.81 for YOLOV5L respectively, which indicates that the proposed
model is highly accurate in detecting potholes. The precision-recall
curve, as shown in Figure 8, also demonstrated high precision-recall
rates at a high value of 0.995 compared to the precision-recall values of

TABLE 3 Performance comparison of YOLOV5s, YOLOV5L and YOLOV8.

Model F1 score mAP @ 0.5 or PR curve Precision Recall MaximumAccuracy (%)

YOLO V5s 0.81 0.847 1.00 0.90 95

YOLO V5L 0.81 0.853 1.00 0.86 98

YOLO V8 1.00 0.995 1.00 1.00 100

FIGURE 11
Shows the F1 confidence curve.

FIGURE 12
Shows the precision-recall curve.
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YOLOV5s and YOLOV5L which stood at 0.84 and 0.853, further
highlighting the model’s effectiveness. The precision confidence curve,
as shown in Figure 9, shows the precision values of all models,
indicating that the model had a high level of confidence in its
predictions, with all classes having a maximum value of 1.0,
including the benchmark models’ which could also achieve a high
precision value of 1.00.

Similarly, the recall confidence was also at 1.0 for the proposed
model, as shown in Figure 10, and the benchmark models’
YOLOV5s and YOLOV5L could achieve 0.90 and 0.86 only,
which confirms the proposed model’s capability for accurately

detecting potholes. Table 3 summarizes all the results for three
models, proving that the pothole detection model using YOLOV8 is
highly accurate and effective in its task. This research contributes to
developing autonomous vehicles that can safely navigate roads with
potholes, decreasing the risk of accidents and enhancing road safety.

The F1 confidence curve for our pothole detection model is
shown in Figure 11, which indicates that, at a confidence threshold
of 0.248 (24.8%), the model achieved a perfect accuracy of 100% for
all classes. This means the model consistently identifies potholes
with high precision (low false positives) and high recall (low false
negatives) across all confidence levels. Even at lower confidence

FIGURE 13
Shows precision-confidence curve.

FIGURE 14
Shows recall-confidence curve.
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thresholds, the model’s performance remains excellent, ensuring
that almost all identified potholes are genuine while minimizing the
risk of false alarms. The precision-recall curve of our pothole

detection model is shown in Figure 12 with an accuracy of
0.995 at a confidence threshold of 0.5, demonstrating its excellent
performance. At this threshold, the model achieves a high accuracy

FIGURE 15
Shows the results of patholes detected by all three models.
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of 99.5% by accurately identifying potholes with minimal false
positives, reducing false alarms. The curve illustrates the trade-off
between precision and recall, indicating that precision improves as
the confidence threshold increases while recall may decrease. The
model’s reliable pothole detection capability, particularly at the
chosen threshold, makes it a valuable tool for enhancing road
safety and infrastructure maintenance.

The precision confidence curve is shown in Figure 13, which shows
that, at a confidence threshold of 0.29, the model achieves a perfect
accuracy of 100%. It accurately identifies potholes without any false
positives, demonstrating excellent precision. As the confidence
threshold increases, the model’s precision remains consistently high.
This outstanding performance makes our pothole detection model a
valuable tool for enhancing road safety and infrastructure maintenance.
The recall confidence curve is shown in Figure 14, which indicates that,
at a confidence threshold of 0.000, the model achieved a perfect
accuracy of 100%. It accurately detected all potholes without false
negatives, showcasing excellent recall performance. As the confidence
threshold increased, the model’s recall remained consistently high,
demonstrating its reliable ability to detect potholes accurately at
higher confidence levels. This exceptional performance makes our
pothole detection model a valuable and robust tool for enhancing
road safety and infrastructure maintenance.

The superior performance of the proposed YOLOV8 model in
pothole detection is evident when compared to the results of YOLOV5s
and YOLOV5L. As shown in Figure 15, YOLOV8 achieved a
remarkable accuracy of 100% across all images, indicating that it
successfully identified every pothole in the dataset. This consistent

and perfect accuracy underscores the effectiveness and reliability of
YOLOV8 in the context of pothole detection, positioning it as a
promising solution for real-world applications. In contrast,
YOLOV5s and YOLOV5L exhibited accuracy levels ranging from
69% to 95% and 93%–98%, respectively. While these accuracies are
also commendable, they exhibit variations in their detection capabilities
across different images. This variability may be attributed to the
generalization nature of YOLOV5s and YOLOV5L, which are not
explicitly fine-tuned for pothole detection like the proposed
YOLOv8 model. The comparison between YOLOV8, YOLOV5s,
and YOLOV5L demonstrates the superiority of YOLOV8 in pothole
detection. Its consistent and perfect accuracy distinguishes it as themost
reliable and efficient model for detecting potholes. The findings
highlight the importance of customizing models for specific tasks,
such as pothole detection, to achieve exceptional accuracy and
enhance the system’s overall performance.

The pothole detection model based on YOLOV8 achieved
remarkable performance with 100% accuracy, confusion matrix as
shown in Figure 16, with 100% accuracy and only a value of 1 in the
true positive box indicates excellent performance. Themodel correctly
predicted all images containing potholes (True Positive) without
missing any potholes in the dataset (False Negative). Although the
true negatives (images correctly classified as no potholes) are not
explicitly shown in the confusion matrix, the model’s perfect accuracy
implies that all non-pothole images were accurately identified. This
exceptional accuracy underscores the effectiveness of the
YOLOV8 approach for pothole detection, making it a significant
accomplishment for pothole detection in autonomous vehicles.

FIGURE 16
Shows the confusion matrix of YOLOv8 model.
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5 Conclusion

This work presents a novel and efficient solution for pothole
detection in autonomous vehicles using YOLOV8, a state-of-the-art
deep learning model. The study was motivated by the critical need
for accurate pothole detection to enhance the safety and reliability of
autonomous navigation. The proposed YOLOV8 model was
evaluated on various performance metrics, including the
F1 confidence score, precision-recall curve, precision confidence
curve, and recall confidence curve. The evaluation results
demonstrate that the proposed model is highly accurate and
detects potholes. The F1 confidence score of 1.0 achieved by
YOLOV8 highlights its exceptional accuracy in detecting
potholes, surpassing the performance of YOLOV5s and
YOLOV5L, which obtained F1 scores of 0.81. The precision-
recall curve demonstrated YOLOV8’s ability to achieve high
precision-recall rates at an impressive value of 0.995, compared
to YOLOV5s and YOLOV5l with values of 0.84 and 0.853,
respectively, further validating its effectiveness.

Furthermore, the precision confidence curve showcased the
model’s confidence in its predictions, with all classes, including
the benchmark models YOLOV5s and YOLOV5L, achieving a
maximum precision value of 1.0. Similarly, the recall confidence
curve highlighted YOLOV8’s capability to achieve recall confidence
of 1.0, while YOLOV5s and YOLOV5l achieved values of 0.90 and
0.86, respectively. The results of this study confirm that the proposed
YOLOV8-based pothole detection model is highly accurate and
effective in its task. The findings of this research have important
implications for the development of autonomous vehicles that can
safely navigate roads with potholes. By contributing to the
development of safer autonomous vehicles, this research
addresses a critical aspect of road safety, reducing the risk of
accidents and enhancing overall transportation infrastructure.
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