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Automated real-time data collection is becomingmore prevalent in construction,
with workers’ location data being a pivotal component in detecting poor logistics
and inefficient construction flows. However, the collection of location data for
productivity monitoring raises significant concerns about privacy and wellbeing
implications for workers. Implementing such technological solutions requires an
understanding of how humans may respond to sensor-based automated data
collection, making this a socio-technical issue. This study identifies the drivers of
construction workers’ acceptance of radio-based location tracking technology
for productivity measurement using a modified Technology Acceptance Model
(TAM) and offers a sociotechnical understanding of technology acceptance with
implications formanaging how new technologies are introduced on construction
projects. Using a large residential project in Lima, Peru as a case study,
construction workers were monitored using Bluetooth Low Energy (BLE)
technology, and data were gathered using mixed methods. A k-means
clustering analysis showed two forms of acceptance among workers:
supporters (37%) and acceptance with reservations (63%). Partial least squares
Structural Equation Modelling (PLS-SEM) results showed that perceived
usefulness and perceived stress underpinned workers’ attitudes and intention
to accept the technology. Perceived privacy risk, however, emerged as the sole
most significant predictor at the end of the monitoring process. Findings further
suggest that workers’ acceptance of the technology is influenced by the
perception that it is also beneficial for safety management. Building on the
preceding, the paper highlights the need for employee orientation focused on
addressing perceived privacy concerns by leveraging positive perceptions about
using monitoring technologies for improving onsite safety, logistics and
productivity. This requires management of construction firms to develop
narratives that reflect their goals for rolling out technologies in ways that
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ensure workers’ buy-in, and a re-focus on problem framing and collective
approaches to identifying functional and less intrusive forms of monitoring
technologies.
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real-time location monitoring, technology acceptance, construction worker, productivity
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1 Introduction

There is extensive documentation indicating that the economic
productivity of construction at the sector level, as measured by gross
value-added per hour worked, has not shown any significant
improvement over recent decades (Barbosa et al., 2017; ONS,
2021). The increased adoption of lean construction techniques,
off-site manufacturing, and digital technologies has opened the
doors for improved project-level production control and
performance (Farmer, 2016; PwC, 2018; Lagos and Alarcón,
2021) which ultimately should reflect in sectoral productivity
improvement. Yet, construction organisations encounter a
challenge with capturing, integrating, processing, analysing, and
interpreting construction data for production control and
productivity improvement (Hasan and Sacks, 2023).

A newly proposed solution to address the productivity
challenges in construction management is Digital Twin
Construction (DTC), which aims to leverage real-time data from
site monitoring technologies for accurate as-built information and
efficient planning, production, safety, and productivity optimisation
(Sacks et al., 2020). The successful implementation of DTC requires
simultaneous analysis of planned and actual data including
programme and production plans as well as production rates and
labour utilisation (Murguia et al., 2022). However, one challenge lies
in measuring labour utilisation in critical activities while accounting
for unproductive time caused by suboptimal construction flows due
to poor planning and logistics. Labour and production data can be
obtained through automated means such as radio-based or vision-
based tracking technologies (Zhang et al., 2018; Cai and Cai, 2020).
Radio-based systems require the attachment of devices to workers
for real-time dashboard monitoring of their locations, with analytics
providing insights into time spent in production areas (Zhao et al.,
2019). Vision-based methods employ outdoor cameras mounted on
cranes or nearby buildings for overall monitoring, whilst indoor
scanning is utilised for more granular as-built information.
However, ethical concerns regarding digitalisation’s impact on
workers must be considered. Specifically, there are questions
about construction management teams’ responsibility when it
comes to accessing workers’ location data for productivity
monitoring–even if anonymized–and whether workers agree to
be monitored.

Previous studies have investigated the use of motion and
physiological sensors to detect safety hazards and to continuously
monitor construction worker’s health (Ahn et al., 2019). Moreover,
Rao et al. (2022) found that contemporary studies of real-time
monitoring of construction sites entails observing employees’
hazardous conduct, physiological state, health status tracking as
well as identifying unsafe situations (Awolusi et al., 2018; Hwang
et al., 2018; Ahn et al., 2019). Furthermore, research has explored

critical success factors for assessing the impact of wearable sensing
devices for health and safety monitoring on construction workers
(Nnaji and Awolusi, 2021; Okpala et al., 2021). Nevertheless, no
prior studies appear to examine how location-tracking technology
for productivity monitoring impacts workers’ behaviour. According
to Paneru and Jeelani (2021), there is a possibility that construction
workers may experience increased levels of anxiety and stress due to
the perception of constant monitoring, ultimately leading to
negative impacts on their mental health. Additionally, some
countries like New Zealand have expressed concerns about data
protection and privacy management for frontline workers subjected
to productivity monitoring systems (Wu et al., 2022).

The factors influencing the acceptance of location tracking
technologies for productivity monitoring might not align with
the determinants associated with the acceptance of wearable
sensing devices for occupational health and safety, the foci of
previous studies. The fear of job loss, constant surveillance, and
the perception that taking long breaks or straying from their
designated work area might be seen as unproductive could
impact workers’ acceptance of location tracking technologies for
productivity monitoring. These issues are yet to be explored
empirically. Therefore, additional work evaluating workers’
acceptance towards this technology is crucial to expand existing
understanding of location tracking technologies for productivity
improvement in construction.

Moreover, this study also takes inspiration from the broader
sociotechnical tradition for technology studies (Harty, 2005;
Schweber and Harty, 2010; Sony and Naik, 2020) and
conceptualises technology acceptance as a function of
sociotechnical interactions between human actors and technical
components of technology. Different actors construct the
meaning of technology differently, which suggests that a
sociotechnical approach is needed to understand better how
workers perceive automated location-tracking technologies.
Existing research has investigated workers’ acceptance of
wearable sensing devices for occupation safety and health from a
critical success factors perspective, with limited consideration to
social aspects to technology (Choi et al., 2017; Huang et al., 2021;
Man et al., 2021; Okpala et al., 2022). Therefore, technology
acceptance is complemented with a sociotechnical view to
establish the non-technical considerations that are significant for
achieving desired levels of technology acceptance. Thus, this study
offers both quantitative and qualitative insights for a comprehensive
understanding of how new technologies can be successfully rolled
out at construction sites. Thus, the objectives of this study are: 1) To
identify the levels of acceptance of location-monitoring technologies
for productivity monitoring, 2) To determine the factors that
influence construction workers’ willingness to accept location-
tracking technology for productivity monitoring, and 3) To
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describe the socio-technical implications of monitoring technologies
within organisational and project contexts.

In this study, Bluetooth low energy (BLE) technology was
selected as the radio-based technology for indoor tracking of
construction workers (Zhao et al., 2019). The methodology for
monitoring construction workers using BLE technology is
presented in Olivieri et al. (2017) and Zhao et al. (2021) and
adapted in Figure 1. Workers wear beacons attached to either
their helmets or armbands, transmitting data via Bluetooth Low
Energy (BLE) technology at a frequency of 1 Hz, corresponding to
one-second intervals. These signals are communicated to gateways
strategically positioned on each floor (link 1). These gateways
continually capture the periodic signals emitted by nearby
beacons and relay this data to the cloud-based system utilizing
the Message Queuing Telemetry Transport (MQTT) protocol (link
2). The cloud-based system processes and manages this information
in real-time, offering precise details about the workers’ locations. Site
management teams can access this information through a web-
based application (link 3). For further information about the cloud
infrastructure, refer to Zhao et al. (2019).

The implementation of this system offers a suitable setting for
understanding the influence of productivity monitoring
technologies on construction workers. Prior studies have not
examined worker acceptance towards BLE technology for
productivity monitoring, making this research significant. Unlike
previous studies which collected worker’s reaction to technology
data based on induction (Choi et al., 2017) or surveyed workers with
general construction experience rather than specific technology
exposure (Huang et al., 2021), this study occurs in a construction
site environment where a location tracking system was
implemented. Thus, data for this study was collected “in situ”,
and directly based on workers’ first-hand experience of the
technology.

This paper is structured as follows. Section 2 presents the
theoretical framework and hypotheses whilst Section 3 presents a

socio-technical view of technology acceptance. Section 4 describes
the case study research approach and the context under study.
Section 5 presents the outcomes of quantitative data analysis whilst
Section 6 presents the qualitative data analysis results. Section 7
presents the discussion of the findings including the theoretical and
managerial implications. Finally, Section 8 presents the conclusions
and future lines of inquiry.

2 Location-tracking technology
acceptance

Vision-based monitoring technologies in the construction
industry support the identification of workers’ movement
patterns and activity recognition (Luo et al., 2018). However,
workers are increasingly becoming more aware of their privacy
rights at work since prior studies have suggested that explicit
consent from workers were often needed for real-time monitoring
in construction (Kim et al., 2019). On the other hand, radio-based
monitoring technologies with passive and non-image-revealing
features such as Radio frequency identification (RFID) or
Bluetooth Low Energy (BLE) have been proposed (Teizer et al.,
2020; Zhao et al., 2021). Nonetheless, the fact that workers are
already aware of the ongoing monitoring process may impact
workers’ wellbeing and stress (Nazareno and Schiff, 2021),
highlighting the need for a better understanding of how
monitoring technology influences workers’ behaviour.
Therefore, it is of high importance to understand the influence
of monitoring technologies on workers. Then, a clearer
relationship between the adoption of a monitoring system in
construction and workers’ reactions can be drawn to improve
production control and construction management. As such, this
study applies a modified Technology AcceptanceModel (TAM) for
analysing the factors of workers’ acceptance of monitoring
technologies.

FIGURE 1
Methodology for monitoring construction workers using BLE technology.
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2.1 Technology acceptance model (TAM)

TAM is a seminal model developed by Davis et al. (1989) and
Davis (1993) that explains the drivers for users’ acceptance of new
technologies. The model assumes that users are likely to adopt a
technology if they perceive that the technology is useful for their
individual performance (i.e., perceived usefulness) and that it is easy
to learn (perceived ease of use). The model predicts that “Perceived
Usefulness” and “Perceived Ease of Use” influence “Attitude
Towards Using”. Moreover, “Attitude Towards Using” influences
“Behavioural Intention to Use” which in turn influences “Actual
System Use”. TAM or modified versions of TAM were used in
construction technology research such as user’s acceptance of virtual
reality training and education (Zhang et al., 2022), construction
professionals’ acceptance of web-based training (Park et al., 2012)
and mobile computing devices (Son et al., 2012), construction
worker’s acceptance of wearable technologies (Choi et al., 2017),
BIM in design organisations (Son et al., 2015) and BIM adoption
among contractors (Murguia et al., 2023).

In this research, the construct “Perceived Usefulness” was
selected to capture frontline workers’ belief of how the
monitoring system helps to improve their productivity as well as
logistics of material and equipment and the quality of the work area.
Similarly, “Attitude Towards Using” was also selected as a strong
predictor as suggested by previous studies. However, the factor
“Perceived Ease of Use” was not deemed suitable for predicting
workers’ acceptance for several reasons. Firstly, workers do not
actively use the technology, but rather simply carry the beacons.
Secondly, workers do not need any training to use the technology,
including the beacons and gateways. And thirdly, the technology is
primarily used by the site management team and not by the
construction workers, who do not need to learn how to use the
technology.

2.2 Perceived privacy risk

Privacy risk is defined as the expected loss potential due to
releasing personal information to the firm (Li et al., 2014). Workers’
decision to accept monitoring systems involves a trade-off between
potential benefits and perceived privacy risks as real-time location
information is released to the employer (Gao et al., 2015). The
potential threat to the individual’s privacy can make users reluctant
to use wearable devices as data is transmitted wirelessly between the
sensor device and the cloud (Choi et al., 2017). Moreover, some
workers might believe that the real-time location data can be used to
monitor their individual performance and, thus, the employer can
terminate their contracts if not performing well. Workers with high
privacy risks can perceive a greater threat to their job security,
therefore they would be unwilling to be monitored or accept new
technology. More specifically, frontline workers could be
uncomfortable when their location information at the workplace
is shared with site engineers during working time and/or meal and
toilet breaks (Choi et al., 2017).

Previous studies in the realm of health and safety have
incorporated “Perceived Privacy Risk” to study the acceptance of
wearable devices to capture physiological data. Awolusi et al. (2018)
argued that wearable systems are commonly criticised for privacy,

security, and legal issues. Similarly, Choi et al. (2017) claimed that
people tend to be sensitive towards sharing relevant information
about them, especially if the information will bring potential harm.
Ahn et al. (2019) also found that perceived privacy risk was a
predictor of intention to use technologies for automated safety
measurement. Hence, “Perceived Privacy Risk” is an essential
factor worth investigating for workers’ acceptance of automated
productivity monitoring systems.

2.3 Perceived stress

Automation might improve productivity although it may also
have mixed or negative impacts on worker wellbeing (Nazareno and
Schiff, 2021). Moreover, construction professionals and
construction workers experience high levels of stress in the
workplace which can harm their psychological wellbeing (Love
et al., 2010; Bowen et al., 2014). The wellbeing of construction
workers is of paramount importance to ensuring healthy, safe, and
productive construction sites. The study of psychological stress in
the construction industry is growing in the literature (Love et al.,
2010; Jebelli et al., 2019; Dennerlein et al., 2021; Palaniappan et al.,
2022). However, the introduction of recent technology such as an
automated real-time location tracking system for productivity
monitoring can be a technological stressor in the workplace for
monitored workers.

Previous research has acknowledged that job insecurity is a
dimension of occupational stress (Alsulami et al., 2021).
Hellhammer et al. (2010) argued that the perception of social
hierarchy (managers always knowing the position of workers)
and the concern with possible future events (fear to lose their
job) are common sources of stress. Jandl et al. (2021) stressed
that location data can be used to track productive working hours,
and this can lead to additional burden or stress for employees. Thus,
perceived stress due to the introduction of a monitoring system
should be proactively managed to mitigate its ill side effects which
range from making errors to causing accidents (Umer, 2022) and to
overcome resistance to adoption. The existing body of research has
measured stress-related psychological symptoms such as tension,
lack of confidence, sadness, depression, or dissatisfaction (Abbe
et al., 2011; Bowen et al., 2014). Hence, measuring perceived stress
would be fundamental to understanding frontline workers’
acceptance of automated location tracking systems for
productivity monitoring.

2.4 Social factors

Drawing from the Theory of Reasoned Action (TRA),
“Subjective Norm” was defined as the individual’s perception
that people who are important to them think they should perform
a specific behaviour (Fishbein and Ajzen, 1975). “Subjective
Norm” was applied by Davis et al. (1989) for the case of
individual acceptance of technologies and found that
“Subjective Norm” explains the individual’s intention to adopt
a new system. On the other hand, the Unified Theory of
Acceptance and Use of Technology (UTAUT) developed by
Venkatesh et al. (2003) presented the construct “Social

Frontiers in Built Environment frontiersin.org04

Murguia et al. 10.3389/fbuil.2023.1336280

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2023.1336280


Influence” as a predictor of intention to adopt new technologies.
“Social Influence” was defined as the degree to which an
individual perceives that important others believe they should
use new technology. Thompson et al. (1991) developed a model
for personal computer (PC) utilisation and applied “Social
Factors” as a determinant for the use of PCs. “Social Factor”
was defined as the individual’s internalisation of the group’s
subjective culture and the specific relationships that the
individual has made with others in specific social situations.
Together, these studies suggest that social interactions are key
determinants of the acceptance and use of technologies.

The definition provided by Thompson et al. (1991) is closer to
the case of automated monitoring systems as the implementation of
location-tracking technologies might change the relationships
between actors in a specific social situation determined by the
introduction of new technology. For instance, the deployment of
an automated location monitoring system might inhibit workers’
free movement as long breaks or being outside their working area
can be perceived as unproductive. Also, workers might perceive that
the knowledge of their location is not acceptable to their supervisors
or peers, thus, affecting their relationships. Hence, this research
defines “Social Factors” as the extent to which construction workers
believe that automated location tracking systems affect their
relationships with other people on the job site and their
free movement.

2.5 Theoretical framework

Based on the TAMmodel and the associated factors found in the
literature, Figure 2 presents the theoretical framework and
hypothesis for this study. Specifically, the key hypotheses are:

H1: “Perceived Usefulness” (PU) is positively associated with
workers’ attitude towards the monitoring system (ATT)

H2: “Perceived Privacy Risk” (PPR) is negatively associated with
workers’ attitude towards the monitoring system (ATT)

H3: “Perceived Stress” (PS) is negatively associated with workers’
attitude towards the monitoring system (ATT)

H4: “Social Factors” (SF) is negatively associated with workers’
attitude towards the monitoring system (ATT)

H5: “Attitude towards the monitoring system” (ATT) is positively
associated with the intention to accept the monitoring system (INT)

3 Beyond TAM: a socio-technical view
of technology acceptance

The sociotechnical studies (STS) view of technology is situated
in the broader viewpoint of the sociology of technology (Geels and
Kemp, 2007). Fundamentally, the STS view offers an approach that
contrasts long-held views suggesting that technology and its
adoption is a rigid process that is primarily techno-centric
(Harty, 2005). Adopting any sociotechnical network approach
that follows the broader STS tradition requires a departure from
a rigid conceptualisation of technology adoption that favours
compartmentalisation of its adoption with a focus mainly on the
technical aspect (i.e., the design and composition) (Bergek et al.,
2015). For a better understanding of the unique, context-specific
nature of technology and its adoption, the STS approach comprises
an array of network approaches (e.g., the Social Construction of
Technology, Actor-Network Theory and the Large Technological
Systems) which provide a “schema which acknowledges all those
institutions, artefacts and arrangements within which the adoption,
configuration and use of those technologies take place–including the
knowledge and expertise which have created technologies and are
embedded in them. . .” (Williams and Edge, 1996) (p. 875).

The STS view of technology offers a lens through which
interactions between humans and technology can be examined in
an environment (Schweber and Harty, 2010). From this perspective,
the development and use of any kind of technology is not considered
devoid of social influence; its identity is embedded in the
characteristics of the context in which it is found (Harty, 2005;
Schweber and Harty, 2010). Here, context refers to the human
actors, the institutions and setting within which the development,
adoption, and use of the technology occur (Williams and Edge, 1996;
Sony and Naik, 2020). Such a viewpoint is crucial in extending
existing knowledge about technology acceptance in construction
project settings from the establishment of quantitative relationships
to understanding how social (human, organisational and contextual)
elements play crucial roles as strong factors in shaping acceptance
outcomes (cf. Oesterreich and Teuteberg, 2019; Shojaei and
Burgess, 2022).

Construction project delivery involves a wide array of human
actors and technical artefacts within a technological mix engaged
towards the completion of a built asset (Harty, 2005). Relatedly,
construction firms employ a blend of tacit and explicit technology
such as construction plant and equipment, project techniques and
management processes, as well as intuitive ideas that are
incorporated in project design, and managing construction
processes (cf. (Harty, 2005; Shojaei and Burgess, 2022)). The
introduction of any new technology is therefore intrinsically
situated within this mix of interacting factors. The interactions
influence how new technology will be perceived, accepted, and
consequently adopted. As part of these interactions, we argue
that perceptions about a technology reflect the collective views
(technological frame) actors hold, which in turn shape their
responses concerning the adoption and use of new technical
components. Understanding how workers would embrace new

FIGURE 2
Theoretical framework.
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technology is therefore incomplete if examined only from the angle
of identifying perceptions without an understanding of the wider
human, organisational, and contextual factors influencing
acceptance, adoption, and eventual use. We take forward the
foregoing view in examining workers’ perceptions about the
acceptance and use of tracking technologies on a construction site.

4 Research method

4.1 Case study research

To empirically analyse the theoretical framework and examine
the sociotechnical environment, the authors selected a deductive
case study approach because it allows for explaining causal links or
associations in real-world interventions within the context in which
they occurred (Yin, 2014). Since the adoption of location-tracking
technologies is not yet a common industry practice, it is rare to find
projects using such systems. Therefore, a purposeful intervention in
a single-case study, Project Alpha, was selected. Within the case
study, construction workers served as an embedded unit of analysis.
First, the project depicts the common case defined by Yin (2014). For
instance, Project Alpha is managed by a general contractor who
employs multiple trade contractors to carry out construction
activities such as rebar, formwork, and concrete. Second, an in-
depth examination of workers’ perception and acceptance of real-
time location technologies for productivity monitoring requires
maximising the number of observations within the case to
analyse a phenomenon previously inaccessible (Yin, 2014). Third,
a single-case study allows for collecting data at two or more different
points in time. In the case of monitoring construction workers, a
two-week interval is suitable for revealing changes between workers’
initial perceptions of the technology and their perceptions after
being monitored. An effective evaluation of a case study should
employ a variety of sources of evidence to verify and support the

results, including both quantitative and qualitative data (Yin, 2014).
This research selected questionnaire data to identify the levels of
acceptance and validate the theoretical framework, and semi-
structured interviews to delve into the socio-technical aspects
related to technology acceptance. Under this approach, the
researchers first conducted quantitative research and then built
on the results to explain them in more detail with qualitative
data (Creswell, 2014). A summary of the research method is
shown in Figure 3.

4.2 Research design

The next step in the methodology was to design a questionnaire
to obtain empirical data. The measurement items were adapted from
different sources and some others were purposively designed for this
study. “Perceived Usefulness”, “Attitude towards the monitoring
system”, and “Intention to accept monitoring system” were adapted
from Davis et al. (1989), Davis, (1993) and Venkatesh et al. (2003).
“Perceived Privacy Risk”was adapted from Awolusi et al. (2018) and
Choi et al. (2017) who studied the effect of wearable devices for
health and safety monitoring. Hellhammer et al. (2010) argued that
self-report questionnaires are the most common method of
measuring “Perceived Stress”. Thus, the questionnaire items for
“Perceived Stress” were adapted from Abbe et al. (2011) and Bowen
et al. (2014). The “Social Factors” items were extracted from
Urbina (2019).

A summary of the variables used in this stage is shown in
Table 1. Likert-type scales with a mid-point (e.g., 5-point scale) have
been criticised as respondents might interpret the mid-points in
ways not int ended by the researchers, therefore, introducing bias in
the data. Moreover, participants without knowledge of the topic or
undecided participants could still respond to the questions by
selecting the mid-point (Baka et al., 2012). Given the nature of
this study, responses were recorded on a 4-point scale (1 = Strongly

FIGURE 3
Research method.
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Disagree; 2 = Disagree; 3 = Agree; 4 = Strongly agree) with a “No
Opinion” option. This allowed participants to select “No Opinion”
when confronted with questions they are not comfortable with,
therefore, reducing bias in the data. The questionnaire was piloted
with a crew of fifteen construction workers to ensure the face validity
of the constructs. Finally, a semi-structured interview was designed
to gather qualitative data to draw insights into the socio-technical
aspects of technology acceptance. Construction workers were asked
questions regarding the perceived usefulness of the monitoring
system, the perceived privacy risk, their individual reactions to
the technology and the degree of acceptance of further
monitoring, as shown in Table 2.

4.3 Data analysis methods

Confirmatory composite analysis (CCA), k-means clustering,
and partial least squares structural equation modelling (PLS-SEM)
were selected as the quantitative data analysis methods. CCA was
used to assess the construct validity of the multi-item factors.
Construct validity is the extent to which a set of observed
variables reflects the theoretical factor they are expected to
measure (Hair et al., 2021). Construct validity is made up of
convergent and discriminant validity. Convergent validity is the
extent to which a measure correlates positively with alternative
measures of the same construct. To evaluate convergent validity,

TABLE 1 Assessment items.

Latent factor Variable Assessment item Adapted from

Perceived Usefulness (PU) PU1 The monitoring system improves my productivity Davis et al., 1989; Davis (1993), Son et al., 2012; Urbina
(2019), Wong et al. (2021)

PU2 The monitoring system improves the distribution of materials
and equipment

Davis et al., 1989; Davis (1993), Urbina (2019)

PU3 The monitoring system improves the quality of my work area Davis et al., 1989; Davis (1993), Urbina, 2019; Wong
et al. (2021)

PU4 The monitoring system improves the instruction of my
supervisors

Davis et al., 1989; Davis (1993), Urbina (2019)

Perceived Privacy Risk (PPR) PPR1* I am comfortable with letting the company know the time I
spent with my co-workers

Choi et al. (2017), Awolusi et al. (2018)

PPR2* I am comfortable with letting the company know the time I
spent outside my work area

Choi et al. (2017), Awolusi et al. (2018)

PPR3* I am comfortable with letting the company always know my
position

Choi et al. (2017), Awolusi et al. (2018)

PPR4* I am comfortable with letting the company always record my
position

Choi et al. (2017), Awolusi et al. (2018)

Perceived Stress (PS) PS1 The monitoring system makes me feel upset Abbe et al. (2011), Bowen et al. (2014)

PS3 The monitoring system makes me feel worried to lose my job Abbe et al. (2011), Bowen et al. (2014)

PS4 The monitoring system makes me feel nervous and stressed Abbe et al. (2011), Bowen et al. (2014)

PS5 The monitoring system makes me feel tired Abbe et al. (2011), Bowen et al. (2014)

Social Factors (SF) SF1 The monitoring system affects the interaction with my
supervisor

Urbina (2019)

SF2 The monitoring system affects the interaction with my peers Urbina (2019)

SF3 The monitoring system affects my free movement Davis et al., 1989; Davis (1993), Urbina (2019)

Attitude towards the monitoring
system (ATT)

ATT1 The monitoring system is a good idea Davis et al. (1989), Venkatesh et al. (2003), Wong et al.
(2021)

ATT2 I like being monitored Davis et al. (1989), Venkatesh et al. (2003), Wong et al.
(2021)

ATT3 The monitoring system makes my work more interesting Davis et al. (1989), Venkatesh et al. (2003), Wong et al.
(2021)

Intention to accept the monitoring
system (INT)

INT1 I would like the company to implement monitoring systems on
the next project

Davis et al. (1989), Venkatesh et al. (2003), Wong et al.
(2021)

INT2 I would like the company to implement monitoring systems as
soon as possible

Davis et al. (1989), Venkatesh et al. (2003), Wong et al.
(2021)

INT3 I would like to help the company to implement monitoring
systems

Davis et al. (1989), Venkatesh et al. (2003), Wong et al.
(2021)

Note: * Reversed scored.
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researchers should consider the outer loadings of the indicators,
construct reliability (CR), and the average variance explained
(AVE). A common rule of thumb is that the standardised outer
loadings should be 0.7 or higher, CR above 0.7, and AVE of 0.5 or
higher. Discriminant validity is the extent to which a latent factor is
distinct from other latent factors. Fornell and Larcker (1981)
recommended comparing the square root of the AVEs for any
two constructs with estimated correlations between these two
constructs. The square root of AVE should be greater than the
correlation estimate. Passing this test provides evidence of
discriminant validity.

Second, K-means clustering is a method used for grouping similar
data points based on their characteristics. The k-means algorithmworks
by partitioning a dataset into “k” clusters, where each cluster represents
a group of data points that are similar to each other (Wu et al., 2008).
The algorithm starts by randomly selecting “k” data points as the initial
centroids, and then iteratively assigns each data point to the nearest
centroid, re-calculates the centroids based on the mean of the data
points in each cluster, and repeats the process until convergence (Celebi
et al., 2013). K-means clustering can be an effective tool for identifying
groups or levels of acceptance of new technology because it allows for
the classification of individuals based on questionnaire responses. By
clustering individuals with similar characteristics and behaviours,
researchers can gain insight into the different levels of acceptance.
This information can then be used to tailor strategies to specific groups
or to better understand the reasons why certain groups are more or less
likely to accept the technology.

Third, Structural equation modelling (SEM) is a second-generation
multivariate analysis technique that overcomes the weaknesses of first-
generation techniques such as analysis of variance or multiple
regression. SEM has the potential to analyse path diagrams when
these involve latent factors with multiple variables (Gefen et al.,
2011). As such, SEM integrates the measurement model (latent
factors and observed variables) and the hypothesised paths
(structural model). There are two types of SEM: covariance-based
SEM (CB-SEM) and partial least squares SEM (PLS-SEM) (Hair
et al., 2011). The latter is primarily used for theory testing and
determines how well a theoretical model can estimate the covariance
matrix of the dataset. PLS-SEM is primarily used to develop theories in
exploratory research with a focus on explaining the variance in the
dependent variables when examining the model. Moreover, PLS-SEM
makes no assumptions about the distribution of the data (e.g., normal
distribution) and is superior compared to multiple regression which
uses sum scores to calculate composite values (Hair et al., 2021). As
such, PLS-SEM uses weighted composites of indicator variables

facilitating accounting for measurement error. For these reasons, this
research selected PLS-SEM to test the conceptual framework shown in
Figure 2. Theminimum sample size should safeguard the results of PLS-
SEM to have adequate statistical power. When the maximum number
of independent variables in the measurement and structural models is
four, the sample size required is 41 to achieve a statistical power of 80%
for detecting R2 values of at least 0.25 at the 5% significance level (Hair
et al., 2021). Finally, it is recommended to use “bootstrapping” to assess
whether a path coefficient is significantly different from zero. The
minimum number of bootstrap samples is 5,000 (Hair et al., 2021).

4.4 Case study description

The BLE system was set up in Project Alpha, a large residential
project in Lima, during the structural works phase between August
and September 2021. Project Alpha consists of five underground
levels and nineteen stories with a structural frame of traditional in-
situ reinforced concrete with structural components such as shear
walls, columns, beams, and slabs. The typical floor plate of 1,100 m2

has 12 apartments. The contractor has 19 years of experience in the
market and has several subcontractors to execute the structural
works. The site management team provided drawings, programmes,
crew sizes, and the overall planning strategy. Four gateways were
installed according to the project’s zones. The gateways were placed
in wooden boxes to protect them from weather and impact damage.
These gateways were moved as the crews moved between zones
and levels.

Before starting the monitoring process, all construction workers
(N = 105) were briefed on the research protocol and invited to
voluntarily participate in the study. Workers who accepted to
participate in the study signed an informed consent agreement.
This process was conducted according to Le Métayer and
Monteleone’s (2009) recommendations that the consent must be
a) freely given, b) specific, and c) informed and unambiguous.
Table 3 shows that 105 workers were invited to participate and
79 accepted being monitored. This is a participation rate of 75.2%.
The monitoring process was conducted for 2 weeks per crew. First,
the formwork installation crew participated in the study and was
monitored during weeks 1 and 2 (N = 23). This was followed by the
rebar installation crew who were monitored during weeks 3 and 4
(N = 18). The third crew who participated in the study were the
bricklayers, who were monitored during weeks 5 and 6 (N = 17).
Finally, a group of electricians, plumbers, and plasterers were
monitored during weeks 7 and 8 (N = 21). At the end of the first

TABLE 2 Interview questions.

Number Question

Q1 Did you feel that the real-time monitoring system put at risk your privacy? Why?

Q2 What did you feel about the fact that the management team always knew your position?

Q3 Did you feel that the monitoring system affected your job stability? Why?

Q4 Would you say that the monitoring system improves productivity and daily progress?

Q5 Would you accept being monitored again? Why?

Q6 Would you support the monitoring system becoming a widespread industry practice?
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week (T1), construction workers were invited to respond to the
survey. However, some participants declined to fill out the survey. As
a result, 60 responses were collected. At the end of the second week
(T2), the construction workers were invited again to respond to the
same survey. As a result, 55 responses were collected. A summary of
the construction workers who participated in this research is shown
in Table 3. Therefore, the response rate was 75.9% and 69.6% for T1

and T2 respectively which was deemed to be acceptable for the
nature of the study.

5 Quantitative stage

5.1 Participants’ background

The demographics of the construction workers who agreed to
fill out the survey at T1 are shown in Table 4. Most participants
had 1–6 years of experience in construction (65%) whilst 18.3%
of the sample had more than 10 years of experience. Furthermore,
58.3.% of the respondents were skilled workers, whereas 41.6%
were non-skilled workers. Skilled workers are trained and
experienced in material installation and equipment handling
for their specific tasks, whilst the non-skilled workers do
contributory activities such as transport, moving materials,
or cleaning.

5.2 Measurement validation

Twomeasurementmodels for T1 and T2 were estimated using Smart
PLS4. The results are indicated in Table 5. First, all factor loadings were
above the recommended threshold of 0.70 except for PS1 (T1) and SF3
(T2). Second, all latent factors’ CR were above 0.7 and all AVEs are well
above 0.5. Hair et al. (2021) recommended that indicators with loadings
between 0.4 and 0.7 should be considered for removal from the scale only
when deleting the indicator leads to an increase in the CR or AVE above
the accepted thresholds. Since all CRs and AVEs are well above the
accepted thresholds, PS1 (T1) and PU1 (T2) were retained based on their
contribution to content validity. Hence, the convergent validity of the
measurement model was accepted. On the other hand, the square root of
all AVE estimates fromTable 5 was greater than the corresponding latent
factors’ correlation estimates in Tables 6, 7. Therefore, the discriminant
validity of the measurement models was also accepted.

5.3 K-means clustering

The k-means clustering classification was conducted using SPSS
28.0 using the pooled dataset (N=115)with the average sumof scores per
latent factor. The Within-cluster Sum of Squares (WCSS) statistical
approach was used to determine the optimal number of clusters “k”.
WCSS measures the sum of the squares of the distances of each item to

TABLE 3 Participants’ summary.

Crew Weeks Invited Accepted N1 N2 Interviews

Formwork 1–2 30 23 16 14 3

Rebar 3–4 24 18 18 18 3

Bricklayers 5–6 26 17 14 13 3

Other 7–8 25 21 12 10 2

Total 105 79 60 55 11

TABLE 4 Demographics of construction workers at T1.

Variable Value Frequency Percentage

Skill Skilled worker 35 58.3

Non-skilled worker 25 41.6

Years of experience in construction 1–3 years 22 36.7

4–6 years 17 28.3

7–10 years 10 16.7

More than 10 years 11 18.3

Crew Rebar installation 18 30.0

Formwork installation 16 26.7

Bricklayer 14 23.3

Plumber 4 6.7

Electrician 4 6.7

Plasterer 4 6.7
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the cluster centroid. The WCSS values for different values of “k” were
compared to identify the point at which the drop inWCSS was no longer
substantial. The analysis revealed that k = 2 was the optimal number of
clusters for the data, indicating that the observations in the dataset could
be divided into two distinct clusters based on their similarities in terms of
the variables used in the analysis. An ANOVA analysis per cluster
(Table 8) further confirmed this finding, showing a significant
difference between the means of both groups, except for SF.

The two groups can be described as follows:

• Cluster 1 (Supporters): This cluster contains approximately
37% of the observations in the dataset. Workers in this cluster
have relatively high scores in attitude, intention, and perceived
usefulness whilst very low scores for perceived privacy risk and
perceived stress, indicating a positive attitude towards the
technology.

TABLE 5 Convergent validity of latent factors.

Latent factor Variable T1 T2

Loading CR AVE Loading CR AVE

PU PU1 0.831 0.915 0.730 0.732 0.897 0.686

PU2 0.893 0.819

PU3 0.829 0.877

PU4 0.864 0.877

PPR PPR1 0.833 0.920 0.741 0.890 0.937 0.787

PPR2 0.866 0.847

PPR3 0.902 0.879

PPR4 0.842 0.930

PS PS1 0.533 0.833 0.562 0.912 0.917 0.734

PS3 0.781 0.770

PS4 0.822 0.870

PS5 0.822 0.867

SF SF1 0.955 0.926 0.807 0.925 0.895 0.743

SF2 0.918 0.952

SF3 0.816 0.683

ATT ATT1 0.832 0.878 0.706 0.971 0.840 0.640

ATT2 0.864 0.973

ATT3 0.825 0.944

INT INT1 0.908 0.955 0.876 0.888 0.974 0.927

INT2 0.958 0.831

INT3 0.940 0.663

TABLE 6 Discriminant validity of latent factors (T1).

Latent factor ATT INT PPR PS PU SF

ATT 0.840

INT 0.783 0.936

PPR −0.446 −0.463 0.861

PS −0.401 −0.330 0.049 0.749

PU 0.511 0.350 −0.394 −0.108 0.855

SF 0.306 0.246 −0.182 0.213 0.327 0.898

Note: Values below the diagonal are correlation estimates between constructs, and values in the are the square root of AVE’s.
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• Cluster 2 (Acceptance with reservations): This cluster contains
approximately 63% of the observations in the dataset. Workers
in this cluster have relatively average scores in attitude,
intention, and perceived usefulness and average scores for
perceived privacy risk and perceived stress, indicating a more
negative or cautious attitude towards the technology.

Finally, data were cross tabulated to examine changes in worker
groups between T1 and T2, as shown in Figure 4. The results revealed
that 12 workers (24%) supported the system in both T1 and T2,
whilst 25 workers (51%) remained in the acceptance with
reservations cluster in both periods. Six workers (12%) shifted
from cluster 1 to cluster 2 between T1 and T2, and an additional
6 workers (12%) moved from cluster 2 to cluster 1 during the same
timeframe. These findings suggest that worker perceptions changed
over time, which may have significant implications for the factors
that influence technology adoption, as discussed in the following
section. Specifically, the data reveals a degree of uncertainty and
hesitation among most workers, indicating a need for further
investigation into the reasons behind this attitude and potential
socio-technical strategies to address it.

5.4 Structural equation modelling

In the previous section, CCA was presented to assess the validity
of measured variables in the questionnaire and the underlying
factors. In this section, paths will be added to the CCA models

to conduct PLS-SEM. Data were analysed using Smart PLS 4 using
5,000 bootstrap samples. Table 9 presents the structural equation
model results. First, models 1, 3, and 5 present the results with the
control variables (years of professional experience and skill). Second,
the predictors of the theoretical framework are added in models 2, 4,
and 6. R2 values of 0.75, 0.50, or 0.25 for endogenous latent variables
in the structural model can be described as substantial, moderate, or
weak, respectively (Hair et al., 2021). At T1, the explained variance
for “Attitude” and “Intention” is R2 = 0.532 and R2 = 0.624,
suggesting that the variance explained by the theoretical
framework is between moderate and substantial. The model
suggests that “Perceived Usefulness” is associated with attitude
towards monitoring systems (β = 0.307, p < 0.05). Therefore,
hypothesis 1 was supported. Moreover, “Perceived Privacy Risk”
was not found to be associated with attitude towards monitoring
systems (β = −0.248). Hence, hypothesis 2 was not supported.
Furthermore, there is a strong association between “Perceived
Stress” and attitude towards monitoring systems (β = −0.402, p <
0.001). Therefore, hypothesis 3 is also supported. However, there is
no evidence of a direct association between “Social Factors” with
attitude towards monitoring systems (β = 0.224). Hence, hypothesis
4 was not supported. Finally, there is a strong association between
attitude towards monitoring systems and intention to accept
monitoring systems (β = 0.800, p < 0.001). Hence, hypothesis
5 was supported.

At T2, the explained variance for “Attitude” and “Intention” is
R2 = 0.713 and R2 = 0.711, suggesting that the variance explained by
the theoretical framework is substantial. The model suggests that

TABLE 7 Discriminant validity of latent factors (T2).

Latent factor ATT INT PPR PS PU SF

ATT 0.800

INT 0.822 0.963

PPR −0.819 −0.683 0.887

PS −0.227 −0.335 0.194 0.857

PU 0.513 0.494 −0.487 −0.253 0.828

SF −0.428 −0.410 0.445 0.600 0.012 0.862

Note: Values below the diagonal are correlation estimates between constructs, and values in the are the square root of AVE’s.

TABLE 8 ANOVA results per group.

Factor Cluster 1 Cluster 2 ANOVA according to
cluster

Mean Standard deviation Mean Standard deviation F-value p-value

PPR 1.59 0.51 2.20 0.42 48.410 0.000

PU 3.30 0.47 2.72 0.41 49.715 0.000

PS 1.58 0.44 2.04 0.31 46.765 0.000

SF 2.14 0.70 2.27 0.42 1.682 0.197

ATT 3.34 0.37 2.63 0.44 76.975 0.000

INT 3.37 0.41 2.62 0.52 66.218 0.000
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“Perceived Usefulness” was not associated with attitude towards
monitoring systems. Therefore, hypothesis 1 was not supported.
Furthermore, there is a strong association between “Perceived
Privacy Risk” with attitude towards monitoring systems
(β = −0.642, p < 0.001). Hence, hypothesis 2 was supported.
Moreover, “Perceived Stress” and “Social Factors” are found not
to be associated with attitude towards monitoring systems.
Therefore, hypotheses 3 and 4 were not supported. Finally, there
is a strong association between attitude towards monitoring systems
and intention to accept monitoring systems (β = 0.837, p < 0.001).
Hence, hypothesis 5 was supported.

A pooled dataset was also examined following the suggestion of
the seminal work of Venkatesh et al. (2003). The explained variance
for “Attitude” and “Intention” is R2 = 0.486 and R2 = 0.672,
suggesting that the variance explained by the theoretical
framework is moderate. The model suggests that “Perceived
Usefulness” is associated with attitude towards monitoring
systems (β = 0.266, p < 0.05). Therefore, hypothesis 1 was
supported. Furthermore, there is a strong association between
“Perceived Privacy Risk” with attitude towards monitoring
systems (β = −0.446, p < 0.001). Hence, hypothesis 2 was

supported. Moreover, there is a strong association between
“Perceived Stress” and attitude towards monitoring systems
(β = −0.203, p < 0.05). Therefore, hypothesis 3 is also supported.
However, there is no evidence of a direct association between “Social
Factors” with attitude towards monitoring systems. Hence,
hypothesis 4 was not supported. Finally, there is a strong
association between attitude towards monitoring systems and
intention to accept monitoring systems (β = 0.816, p < 0.001).
Hence, hypothesis 5 was supported.

Further, retrospective post hoc analysis was conducted to assess
the suitability of the final sample size for PLS-SEM. Kock and
Hadaya (2018) proposed the use of the inverse square root
method which considers the probability that the ratio of the
lowest path coefficient and its standard error will be greater than
the critical value of a test statistic for a specific significance level.
Therefore, the results of the required minimum sample size depend
only on one path coefficient and do not depend on the size of the
most complex regression in the model (Hair et al., 2021). The
significant coefficient for T1 ranges between 0.307 and
0.800 whilst for T2 ranges between 0.642 and 0.837. Using the
inverse square root method, the minimum sample size for path

FIGURE 4
Cross tabulation of workers per cluster at T1 and T2.

TABLE 9 PLS-SEM results (5000 bootstrap samples).

T1 T2 Pooled

Model factors Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Dependent variable: INT

Experience −0.008 0.101 −0.118 −0.034 −0.056 0.036

Skill 0.200 −0.264 0.148 −0.200 0.238 −0.233

ATT - 0.800a - 0.837a - 0.816a

Dependent variable: ATT

Experience −0.102 −0.014 −0.089 0.005 −0.103 −0.011

Skill 0.581 0.351 0.470 0.154 0.488c 0.248

PU - 0.307c - 0.191 - 0.266c

PPR - −0.248 - −0.642a - −0.446a

PS - −0.402a - 0.026 - −0.203c

SF 0.224 −0.160 0.037

R2 ATT 0.050 0.532 0.036 0.713 0.043 0.486

R2 INT 0.027 0.624 0.018 0.711 0.010 0.672

Note: ap<0.001; bp<0.01; cp<0.05. Standardised coefficients are reported. Sample size T1 = 60; T2 = 55; Pooled = 115.
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coefficients ranging between 0.31 and 0.40 and a power of 80% at the
5% significance level is 39 samples (Hair et al., 2021). Thus, the
sample meets the requirements for analysis and interpretation using
PLS-SEM. Table 10 presents a summary of the hypotheses testing.

6 Qualitative stage

Follow-up semi-structured interviews were conducted with a group
of workers to provide a better understanding of the socio-technical
aspects associated with technology acceptance. Thematic analysis was
chosen as the qualitative data analysis technique to complement
quantitative outcomes. Three crew members per team were invited
for an interview and eleven workers consented to participate.
Transcriptions of recorded data revealed four interrelated prevailing
themes. First, job loss fear was strongly perceived by workers at the
beginning but reduced towards the end of monitoring. Second, some
workers believed that productivity levels on site are already known by all
crews and therefore making use of a monitoring system would only
reveal to site managers what is common knowledge amongst workers.
Third, the acceptance of the system byworkers would increase if they do
not perceive any hindrance to their free movement or remain unaware
of the presence of beacons. Moreover, a location-tracking system that
facilitates safety management would gain more acceptance from
workers. These results enrich quantitative outcomes and lend
significance to factors and associations within the
theoretical framework.

At first, some workers expressed concerns about the possibility
of losing their jobs due to the perception that the company was
targeting less productive employees, or that the data would be used
to terminate their contracts. An interviewee claimed that those who
declined to participate in the study viewed monitoring systems as a
tool for control and exploitation. Despite this, 79 out of 105 workers
accepted to be monitored, indicating an initial rejection rate of
24.7%. However, some of the monitored workers reported feeling
more comfortable with the system as time went on. Initially,
perceived stress, particularly the fear of job loss, strongly
influenced workers’ attitudes toward the system, but this
diminished towards the end of the monitoring process, consistent
with the study’s quantitative results. Motivated workers appeared to
be more accepting of the system than those who declined to
participate. One worker stated that they loved their job and were
honest, so the system did not affect them. These findings suggest that
perceived stress, specifically the fear of losing one’s job, initially had
a significant impact on workers’ acceptance of the monitoring
system, but this declined over time.

Additionally, some workers argued that the monitoring system
would rightly expose the less productive colleagues, for example, by
tracking their breaks or naps in the bathroom or canteen. Moreover,
other workers pointed out that daily tasks and productivity targets
are transparent among the crews, and as long as they meet those
targets, they have no reason to worry about being monitored. In fact,
some workers even welcomed the idea of being observed, seeing it as
a way to detect timewasters and improve productivity. These
insights reflect social aspects within the project context.
Furthermore, the beacons used for monitoring were provided to
workers in armbands, but some workers found them uncomfortable
or worried about the beacons falling and getting damaged. This
suggests that for a large-scale monitoring system to be successful,
beacons or sensors must be designed in a way that does not interfere
with workers’ movement and that they go unnoticed as much
as possible.

Finally, some workers contended that they would support the
real-time location system as a standard industry practice if it proved
useful for safety management. Health and safety procedures impose
a duty of care on crew members who must not leave their colleagues
alone in dangerous areas. For instance, one worker stated that “If you
send your co-worker to the basement to get some materials, or if they
go alone for any reason, and something happens, we will know where
they are.” Another worker added, “If I had an accident, they would
locate me quickly and provide assistance.” Therefore, these findings
suggest that the ease of locating workers in emergencies is another
aspect of “Perceived Usefulness” associated with workers’
acceptance of the monitoring system.

7 Discussion

7.1 Technology acceptance

Examining workers’ reactions to location-tracking technologies
for productivity monitoring has received little attention in the
existing literature. Thus, extracting construction workers’
perception of location-tracking technologies is a novel
contribution. This study has examined workers’ reactions to a
real-time location monitoring system by adapting the Technology
Acceptance Model (TAM). Over 2 weeks, workers who had no
previous experience with monitoring were studied. Out of
105 workers who received induction, 24.7% refused to
participate. This could be due to distrust or insecurity with the
new system, insufficient information, and opposition to monitoring
systems. The analysis of the data found that workers’ attitude and
intention to accept monitoring systems at the beginning of the
monitoring process were linked to their perception of usefulness and
stress. However, at the end of the process, the most significant factor
influencing acceptance was their perception of privacy risk. Previous
research has found that “Perceived Privacy Risk” is a barrier to the
acceptance of wearable biosensors such as smart vests in
construction (Choi et al., 2017), fitness devices (Gao et al., 2015),
and digital personal health record systems (Li et al., 2014). Also,
“Perceived Usefulness” was found to be positively associated with
the intention to use personal protection equipment (Wong et al.,
2021), wristbands (Choi et al., 2017), and healthcare wearables
(Singh et al., 2022). Although previous studies provide insight

TABLE 10 Summary of hypotheses testing.

Hypothesis T1 T2 Pooled

H1: PU → ATT Accepted Rejected Accepted

H2: PPR → ATT Rejected Accepted Accepted

H3: PS → ATT Accepted Rejected Accepted

H4: SF → ATT Rejected Rejected Rejected

H5: ATT → INT Accepted Accepted Accepted
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into the acceptance of sensing technologies for health and safety, the
present study focuses on real-time location tracking technology for
productivity measurement. The study also found that “Social
Factors” was not associated with attitude or intention. However,
a similar factor (e.g., “Social Influence” or “Social Norm”) was found
associated with intention in previous studies in occupational health
and safety (Gao et al., 2015; Choi et al., 2017; Wong et al., 2021).
“Social Factors” was strongly correlated with “Perceived Privacy
Risk” and “Perceived Stress” in T2, with a correlation coefficient of
0.445 and 0.600, respectively. These findings suggest that “Social
Factors” precedes “Perceived Privacy Risk” and “Perceived Stress”,
and as a result, the socio-technical implications must be further
elucidated.

Qualitative interviews have shown that initially, workers had
limited knowledge of the real-time location monitoring system and
relied solely on the information provided during induction. They
believed that the system would enhance productivity, logistics, and
work quality. However, as they became more familiar with the
system, they realised that its primary utility was in managing safety,
as it could provide valuable assistance in case of an emergency. This
finding indicates that location monitoring technologies designed to
measure productivity could be integrated with sensing devices used
for health and safety, which could increase the acceptance of such
systems (Gao et al., 2015). Furthermore, workers experienced
“Perceived Stress” due to the added pressure of potentially losing
their jobs as a result of continuous monitoring of their location by
site management. This made them more cautious about their
movements and interactions with others. However, at T2 workers
experienced less stress and worry about losing their jobs compared
to T1, as indicated by the coefficients in Table 9.

Qualitative interviews have also indicated that workers and foremen
already have knowledge of which workers are the most (and least)
productive, and this information can potentially affect workers’
willingness to participate in the location-tracking process. Therefore,
some workers may approve of the monitoring system revealing the less
productive workers to the site management team. However, those who
are less productive may be less likely to accept such a transparent
system. Additionally, there is a risk of incorrectly equating low-
productive workers with those who do not accept the system, as
some workers may not genuinely accept the technology. As a result,
site managers should be transparent with the workforce, informing
them of the data that will be collected and how it will be interpreted,
analysed, and utilised. Finally, some workers also experienced
discomfort while carrying the beacons, which impacted their daily
productivity. The acceptance of monitoring systems relies on a non-
obstructive method for locating the beacons such as attaching beacons
to helmets or integrating them with ID badges.

7.2 Socio-technical implications

The study brings forward three key sociotechnical implications
for construction firms when considering rolling out automated
location tracking systems for productivity monitoring. The issues
revolve around the nature of workers as social actors with
technological frames that can change, the evolutionary nature of
these technological frames as part of the journey towards
acceptance, and the need for organisations to adopt management

strategies that encompass collective problem identification and
solutions. The identified non-technical factors complement
existing insights about the take up and application of technology
in several sectors (Oesterreich and Teuteberg, 2019), including
construction (Shojaei and Burgess, 2022).

First, critical to technology acceptance is how construction workers
will embrace it when rolled out. Therefore, identifying their perceptions
related to acceptance is important. Concomitant to this is an
understanding of how this acceptance may occur over time. Primary
to this insight is the awareness presented from the qualitative study that
workers are social actors who share frames of reference about
technological artefacts, and that can change. From the findings,
some workers fully supported the system and others supported it
with reservations. Those who supported totally agreed with and
would further support the use of the system. They also had high
perceived usefulness of the technology and very low perceived privacy
risks and stress about the technology. Workers who held reservations
did not wholly accept the technology and were not completely
convinced about the usefulness of the technology. They also held
more potential privacy risks and stress levels that the system could
pose. These frames of reference for the workers however evolve, as 24%
of workers supported the system in Time 1 and Time 2 whilst 12%
moved from support to acceptance with reservations. Similarly, 51% of
workers accepted the system (with reservations) in Times 1 and 2 whilst
12% moved from acceptance with reservations to support. These shifts
suggest that how groups of workers perceived the technological system
changed over time, and the “how” should be of interest to the
management of construction firms seeking to implement automated
location tracking technology for productivity monitoring.

Second, workers are not merely those who “accept” or “rebel” by
default. As social actors, they can make informed decisions so their
perceptions, concerns and problems identified can be managed
positively. This insight is crucial for the development of
management approaches to aid the transition of workers who
have reservations, to those who fully support the implementation
of a technology. This can be achieved by identifying the rallying
factors for workers who are “supporters” and using that to inform
strategies for addressing the concerns or problems raised by those
who identify issues with sensor-based data-gathering technology.
For instance, the fear of job loss was strongly felt by workers at the
beginning of the monitoring process, but these feelings appeared to
have reduced at the end of the monitoring process. This ease
potentially contributed to an increase in the percentage of
workers who were supportive of the system. How that occurred
is a useful question for the management of construction firms to
note. Here, we argue that a problem-solution engagement between
management and workers in construction firms is fundamental for
addressing any perceived problems about technology (e.g., fear of
job losses) to rally more support around its use.

The final sociotechnical observation from the study is about
technology co-development and contextual considerations. It is
common to find techno-centric studies making assumptions that
suggest that technological systems are context-agnostic. However,
from a sociotechnical viewpoint, the design and use of technology
are significantly influenced by context. From the findings, workers
would accept the system further if the beacons are unnoticeable and
do not interfere with their free movement. In this case, the views of
the workers and the kind of work they do means a preference for
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non-intrusive or non-obstructing technologies. This brings forward
the need to consider such social (human-centric) needs as part of
selecting and rolling out sensor-based automated data-capturing
devices on construction sites and underscores the importance of
establishing co-creative approaches for the design and
implementation of systems that would require either or both
parties to interact with a technological component. It is therefore
plausible to argue that automated data capturing technology roll
outs should consider concerns about how they could be made non-
intrusive or non-obstructing technologies for successful
implementation.

7.3 Managerial implications

Together, the findings of this study suggest that managerial
teams should be aware of and work on workers’ privacy risks,
perceived stress, and perceived usefulness. As such, the first step
for a full-scale roll out of the system is to ensure worker’s and unions’
buy-in and communication is key. The narratives to promote
workers’ acceptance would include: 1) location data will not be
used for individual tracking but to understand crews’ logistics and
needs and to identify improvement areas; 2) location data can be also
used for safety management; and 3) the technology is designed to go
unnoticed by workers as much as practical. However, companies
must also be aware of the potential risk of being sued by workers and
unions due to the lack of regulations surrounding data privacy in
monitoring systems within the construction sector.

The presence of workers outside their designated areas can offer
opportunities for logistics and planning improvements since field-
level issues often go unnoticed by site management (Halttula and
Seppänen, 2022). Furthermore, encouraging the participation of
workers and subcontractors in collaborative planning meetings may
have a positive impact on the perceived usefulness of the monitoring
system, and ultimately improve its acceptance. To achieve this, it is
imperative to communicate the system as a tool for improving
construction flows rather than a surveillance system that rewards or
punishes workers. Workers should be able to see that their feedback
is incorporated into the system to improve their work environment.
Therefore, this approach can lead to productivity improvements for
workers, subcontractors, and contractors.

The acceptance of technology in the construction industry is also
influenced by power dynamics between contractors, subcontractors,
and workers. Jandl et al. (2021) argued that workers’ consent to provide
location data to employers is not entirely voluntary, and agreements,
either formal or informal, should be made clear. This creates a dilemma
between mandating the system and asking workers to willingly
participate. The study suggests that the system must not be
mandatory. However, managers can consider the use of incentives
to promote acceptance, with the caveat that these incentives should be
focused on encouraging participation rather than rewarding individual
results. Furthermore, since construction workers may not have
permanent jobs, especially trade contractors who are appointed on a
project-by-project basis, those with stable contracts and knowledge of
the organisational culturemay bemore willing to accept the system. For
example, theymay trust the organisation and better understand that the
monitoring system is for performance improvement rather than
surveillance. Managers should create win-win environments where

workers can see the benefits of the monitoring process for
production planning and control.

8 Conclusion

The objective of this studywas to explore how construction workers
perceive and accept real-time location tracking technology for
productivity monitoring, and the socio-technical implications. A
radio-based monitoring system was deployed to track the location of
workers during the structural phase of a large residential building, and a
modified Technology AcceptanceModel was developed to test workers’
attitudes and intentions towards the monitoring system. Data were
collected through questionnaires and semi-structured interviews
conducted at two points during the monitoring process. The study
found that workers’ perceptions of usefulness and stress were significant
predictors of their attitudes and intentions towards the monitoring
system.However, perceived privacy risk emerged as themost important
factor affecting workers’ acceptance of the technology.Workers initially
feared that the monitoring system could be used against them, but over
time, they saw its potential benefits, such as locating workers in
emergencies and improving productivity. The study suggests that
monitoring technologies should not be used to evaluate workers’
social behaviour but rather to find opportunities for productivity
and safety improvement which helps both workers and employers.
The research provides insights into workers’ perceptions of monitoring
technologies in the construction sector and highlights the importance of
considering workers’ wellbeing in the implementation of digitalisation
in construction. The study underscores how critical to technology
acceptance is the management of employee perceptions. We should
move beyond rigid categorisations of workers into supporters and
opposers and understand that views can be modified. The key to
changing the views is understanding the underlying factors of
opposition and reframing the usefulness of technology to address
any concerns. These findings draw attention to the need to adopt a
comprehensive approach to introducing and using new technologies in
organisations and project settings.

The study has some limitations. Firstly, the results only apply to the
specific case study, although case studies are designed to generalise to
theoretical propositions as opposed to populations (Yin, 2014).
Therefore, the results provide a rich understanding of the significant
factors that affect workers’ acceptance of technology. Secondly, future
studies may require multiple case studies as location monitoring
technologies become more widely used. Thirdly, a more extended
monitoring period would have been preferable, but limited resources
and the desire to reduce discomfort to workers made 2 weeks the best
option. In the future, studies could monitor workers for longer periods
and use different radio-based or vision-based techniques. Finally, the
resultsmay have been influenced by the specific project under study and
the cultural and cognitive elements of a developing country. To confirm
or challenge the findings of this research, future studies could replicate
the method elsewhere.
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