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Actuator control takes a pivotal role in achieving stability and accuracy,
particularly in the context of multi-axial real-time hybrid simulation (maRTHS).
In maRTHS, multiple hydraulic actuators are necessitated to apply precise
motions to experimental substructures thus necessitating the application of
multiple-input multiple-output (MIMO)control strategies. This study evaluates
the data-driven nonlinear autoregressive with external input (NARX) based
compensation for the servo-hydraulic dynamics within the maRTHS
benchmark model. Different from previous study, nonlinear terms are
incorporated into the NARX model. Online least square and ridge regression
techniques are utilized to estimate the model coefficients to achieve optimal
compensation. The influence of various model order and window length is
assessed for the NARX model-based compensation. The findings of this
research demonstrate that NARX-based compensation has significant
potential not only in facilitating precise actuator control for maRTHS but also
in enabling robust control in the presence of unknown uncertainties inherent to
the servo-hydraulic system.
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1 Introduction

Experimental technique plays an indispensable role in advancing earthquake
engineering research. Rigorous experimentation is crucial for new structures or
materials to be considered suitable for engineering applications. In comparison with
conventional methods such as shaking table tests and quasi-static tests, real-time hybrid
simulation (RTHS) stands out by integrating numerical modeling of analytical
substructures with physical testing of experimental substructures. This integration
allows full scale test possible in both time and size. With over 2 decades of dedicated
research focusing on integration algorithms, delay compensation, and evaluation methods,
RTHS has emerged as an effective and efficient technique for performance evaluation of
systems under earthquakes. Its capability to facilitate real-time, large-scale testing has
significantly contributed to the evaluation and validation of technologies for seismic hazard
mitigation, marking a pivotal milestone in the field of earthquake engineering (Nakashima
et al., 1992; Ou et al., 2015; Tian et al., 2020; Li et al., 2022; Palacio-Betancur and Soto, 2023).
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RTHS can be categorized based on the number of experimental
substructures or actuators required as single-actuator RTHS
(saRTHS) or multiple-actuator or multi-axial RTHS (maRTHS)
(Chen and Ricles, 2012; Lu et al., 2022; Najafi et al., 2023). In
saRTHS, a solitary actuator is employed to apply the desired
displacement exclusively to the only experimental substructure.
Conversely, maRTHS demands a minimum of two hydraulic
actuators to impart the necessary motion to experimental
substructures. In the context of saRTHS, the implementation of
single-input single-output (SISO) control is imperative to mitigate
actuator delay introduced by actuator dynamics. Previous research
underscores that actuator delay can be regarded as equivalent to
negative damping, leading to inaccuracies in test results and even
destabilize the overall simulation if not compensated adequately
(Horiuchi et al., 1999; Wallace et al., 2005; Chen and Ricles, 2008).
Traditional delay compensation methods typically require
researchers to pre-estimate the time delay before conducting
tests, assuming constant delay or constant actuator dynamics
throughout RTHS. Consequently, the efficacy of such methods
heavily relies on the accuracy of this estimation (Carrion and
Spencer, 2008). However, researchers have also noted that
actuator dynamics are frequency-dependent and time-varying.
This suggests that signals with varying frequencies or times may
correspond to different actuator delays. Consequently, both the
assumption of constant delay and constant actuator dynamics are
inconsistent with the actual actuator dynamics, even when actuator
delay or dynamics are accurately predicted (Xu et al., 2016).

To address the limitations of traditional compensations,
adaptive methods utilize measured displacements from actuators
to continually update estimations during RTHS, enhancing
compensation performance. These approaches are often termed
adaptive compensation methods, as their parameters undergo
self-regulation. Consequently, the need for accurately estimating
actuator delay or dynamics before tests is eliminated. Furthermore,
the adaptive nature of these methods allows for the regulation of
time-varying delays or actuator dynamics. As a result, adaptive
compensation methods have become the predominant approach in
RTHS, with many validated through benchmark problems (Ning
et al., 2019; Wang et al., 2019; Xu et al., 2019; Zhou et al., 2019; Silva
et al., 2020). Among these methods, the Nonlinear Autoregressive
with External Input Model (NARX) compensation (Xu et al., 2022)
constructs the actuator dynamics as a function of previously
predicted displacements and current or previous measured
displacements. The relationship between calculated displacement
and predicted displacement is determined based on this actuator
dynamics model. NARX model-based compensation can be further
categorized into different orders, such as first order NARX
(F-NARX), second order NARX (S-NARX), third order NARX
(T-NARX), and higher order NARX, depending on the number
of previous calculated displacements considered in the formulation.
When nonlinear terms are ignored, NARX degenerates into
autoregressive with external input (ARX). This is akin to
adaptive time series compensation (ATS) (Chae et al., 2013)
when the ordinary least squares method is applied to compute
coefficients in the NARXmodel (Chae et al., 2013; Chae et al., 2013).
Furthermore, first order NARX can be considered as an adaptive
alternative to traditional inverse compensation (Chen and
Ricles, 2008).

In contrast with saRTHS, maRTHS offers the advantage of
synergistically utilizing existing laboratory facilities to address
multi-dimensional problems, thus presenting potential solutions
to complex engineering challenges. However, the transition to
maRTHS requires the adoption of multiple-input multiple-output
(MIMO) control strategies instead of single-input single-output
(SISO) control, thus imposing challenges. Moreover, the global
performance of saRTHS mainly depends on the tracking
performance of one actuator, while tracking performance of all
actuators should be considered for maRTHS.

In this study, data-driven NARX model-based compensation is
evaluated for the maRTHS benchmark model (Uribe et al., 2023),
which features a steel frame, two hydraulic actuators, and a high-
stiffness steel coupler. Expanding upon the groundwork laid by the
NARX controller proposed by Xu et al. (2022), this study delves into
the integration of nonlinear terms into the NARX model-based
compensation framework. Whereas previous applications primarily
focused on linear terms, this research introduces the inclusion of
nonlinear elements for enhanced practical implementation.
Moreover, the study advocates for the utilization of ridge
regression techniques to bolster the efficacy of online least square
regression within the NARX framework. Ten criteria are utilized to
evaluate the performance of RTHS including both tracking
performance and global performance indices. Nonlinear terms
are explored for the NARX model-based compensation, and
model coefficients are estimated using online least square
regression and ridge regression techniques. The study evaluates
the impact of different model order and window length on the
compensation performance. The findings of this research further
demonstrate the effectiveness and robustness of the NARX model-
based compensation for maRTHS. In Section 2, we delve into the
NARXmethod, with Sections 2.1–2.3.1 elaborating on its intricacies.
Following this, Sections 2.3.2, 2.4 introduce our novel contributions.
The application of these innovations in a benchmark model for
maRTHS is detailed in Section 3.2.

2 Nonlinear autoregressive exogenous
model based compensation

2.1 Formulation of NARX model based
compensation

For the NARX model (Leontaritis and Billings, 1985), the
current value of a time series is influenced not only by its past
values but also by the current and past values of an exogenous series.
Mathematically, this relationship can be expressed as:

y t( ) � F ϖ t( )( ) + ε t( ) (1a)
ϖ t( ) � y t − 1( ), . . . , y t − nb( ), x t( ), . . .x t − na( )( )T (1b)

where y(t) is the output of the model at the tth step; ϖ(t) is the
regression term; y(t − 1), . . . , y(t − nb) are the previous values of
output before the tth step; x(t), . . .x(t − na) are external input for
current and previous values; ε(t) is error term; and F ( ) represents
nonlinear function. When employing the NARX model in Eq. 1b to
formulate compensation method for delay, the predicted
displacement dpn and command displacement dcn for the nth step
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are employed as its input and output, without the inclusion of an
error term, denoted as x(t) and y(t) respectively.

dp
n � F dp

n−1,/dp
n−i, d

c
n,/dc

n−j( ) (2)

where i and j are the number of predicted displacement and
command displacement required. Derived from Eq. 2, the
predicted displacement at the current time is computed based on
predicted displacements at previous times and command
displacements at the current and previous times. This resulting is
referred to as NARX model-based compensation hereafter.

2.2 Simplified form of NARX model based
compensation

Eq. 2 presents a universal formulation of NARX model-based
compensation, wherein the predicted displacements are
interconnected, allowing for the application of any nonlinear
function. However, under practical circumstances, this
formulation of NARX model-based compensation may not be
directly applicable. A simplified version is often necessary in such
situations.

In contrast with calculated and measured displacements,
predicted displacements serve as intermediate values and lack a
direct correlation with structure responses in RTHS. When
predicted displacements are interrelated, it poses a risk to the
stability of RTHS, particularly if one predicted displacement falls
outside a reasonable range. To address this issue, the predicted
displacements from previous steps are ignored.

Among all possible types of functions F ( ), the efficacy of
polynomial functions has been substantiated. In this context, Eq. 2
can be represented as:

dp
n � ∑j

k�0αkd
c
n−k +∑j

p�0∑j

q�pαl,md
c
n−pd

c
n−q +/ (3)

where αk and αl,m are the corresponding coefficients of the NARX
model for the first order and second order polynomial functions,
respectively. As observed from Eq. 3, an infinite number of terms can
be employed in the NARX model-based compensation method,
representing infinite orders of polynomial functions. For the
purpose of practical applications, Eq. 3 should be truncated to a
certain order with finite terms. For example, Eq. 3 can be
simplified as

dp
n � ∑j

k�0αkd
c
n−k (4a)

when the order of the NARX model is two, and

dp
n � ∑j

k�0αkd
c
n−k +∑j

p�0∑j

q�pαl,md
c
n−pd

c
n−q (4b)

When the order of the NARXmodel is one, Eq. 4a represents the
simplest linear form among all possible NARX model-based
compensations when compared with Eq. 4b. In this
configuration, the NARX model degenerates into an ARX model.
Eq. 4a is also referred to as the jth order NARX model based on the
terms required. Table 1 outlines the coefficients for first, second, and
third order NARX model-based compensations, denoted as F-, S-,
and T-NARX, respectively (Xu et al., 2022).

2.3 Parameter estimation for NARX model-
based compensation

In theory, the measured displacement dmn should be identical to
the command displacement dcn when the delay compensation
method works perfectly. In this scenario, the relationship
between predicted displacements and measured displacements
can be expressed as:

dp
n � F dp

n−1,/dp
n−i, d

m
n ,/dm

n−j( ) (5a)

or

dp
n−1 � F dp

n−2,/dp
n−i−1, d

m
n−1,/dm

n−j−1( ) (5b)

Given that all dp and dm values in Eq. 6b are accessible during
RTHS, the NARX model can be derived through data regression
between predicted and measured displacements. This model can
then be applied to Eq. 2 to compensate time delay. For illustrative
purposes, Eq. 4a is employed as an example to illustrate this
procedure. By substituting dcn with dmn , Eq. 5a can also be written as

dp
n � ∑j

k�0αkd
m
n−k (6a)

or

dp
n−1 � ∑j

k�0αkd
m
n−k−1 (6b)

However, Eq. 6b comprises only one equation with
j+1 undetermined parameters, leading to an under-determined
system. Consequently, there exists an infinite number of possible
solutions satisfying this equation. To address this challenge and
arrive at an appropriate and unique solution, additional constraints
must be introduced. In this study, the predicted displacements from
previous steps are employed to estimate the undetermined
parameters, i.e.,

dp
n−i � ∑j

k�0αkd
m
n−k−i i � 1, 2, . . .M( ) (6c)

The number of equations, denoted as M, in the parameter
estimation process is thereafter referred to as the window length,
which is an integer larger than j. It is then obvious from Eq. 6c that
the calculated coefficients αk in NARX-based compensation are not
instantaneous undetermined parameters rather parameters
estimated through a fixed window length. When the window
length is relatively small, the estimated parameters closely
approach the current values. Defining αn � [α0, α1,/, αj]T,
dp
n � [dpn−1, dpn−2,/, dpn−L]T, dm

n � [dmn−1, dmn−2,/, dmn−L]T and D=
[dm

n , d
m
n−1,/, dmn−j], Eq. 7 can be written as

dp
n � Dαn (7)

TABLE 1 Coefficients of the different order NARX model-based
compensation.

NARX based compensator Coefficients

F-NARX [α1 , α0]

S-NARX [α2 , α1, α0]

T-NARX [α3 , α2, α1, α0]
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In Eq. 7, dn
p and D can be obtained during RTHS, allowing for

the estimation of parameters in NARX model-based compensation
through these linear systems of equations. As the window length,
denoted as L, is larger than j, Eq. 7 leads to an over-determined
system, wherein the number of constraints exceeds the number of
unknown variables. Consequently, a solution satisfying the linear
system is generally nonexistent. Instead, an approximate solution is
sought to minimize a given error. To obtain the estimated
parameters, two data regression methods, namely, ordinary least
squares and ridge regression, are introduced in this study.

2.3.1 Ordinary least square
The essence of ordinary least squares lies in estimating

parameters by minimizing the sum of residual squares, aiming to
find α̂n appropriate value that satisfies.

α̂n � argmin Dαn − dp
n

���� ����2 (8)

where ‘argmin’ represents the argument of the minimum. To
identify this minimum, the least-square error is expanded as

αn � DTD( )−1DTdp
n (9)

2.3.2 Ridge regression
Ordinary least squares in Eq. 9 offers the best linear unbiased

estimation with minimum variance, particularly when the
correlation matrix form of DTD is nearly a unit matrix. However,
the practical application of ordinary least squares has limitations,
especially when the correlation matrix deviates significantly from a
unit matrix. Instead, ridge regression, which is based on estimation
from (DTD+γI), proves to be more suitable (Hoerl and Kennard,
1970) and gives:

αn � DTD + γI( )−1DTdp
n (10)

where γ is a real positive number and plays a crucial role in the
performance of ridge regression. As the value of γ increases, the total
variance decreases, accompanied by an increase in squared bias.
Meanwhile, the performance of ridge regression aligns with ordinary
least squares when γ is small, but diverges from real values as γ
becomes large.

When conducting ridge regression in NARX model-based
compensation, it is identical as ordinary least squares when γ

equals 0. As γ increases, the calculated ‘an’ becomes smaller. In
this scenario, the stability of the compensation can be ensured, albeit
at the expense of accuracy. To strike a balance between stability and
accuracy, ridge regression is primarily applied for compensation
methods with three or more parameters, and the range of γ should
be carefully selected.

2.4 Discussion of nonlinear terms

Eqs 4a, 4b employ the linear and nonlinear formulation,
respectively. The former has exhibited better applicability in real-
time hybrid simulation compared to the latter, attributed to the
inherent complexity and nonlinearity of hydraulic systems. The
linear form can be adapted to various hydraulic systems, while the
same cannot be said for the nonlinear form. In this section, the

selection of nonlinear terms is very briefly discussed. The nonlinear
terms are selected to serve as fine-tuning mechanisms to ensure the
stability and accuracy of NARX model-based compensation
composed of linear terms. The coefficients of the nonlinear terms
are significantly smaller than those of the linear terms, thereby
maintaining stability. It should also be noted that identifying suitable
nonlinear terms for a specific hydraulic system is a challenging task,
even with some preliminary knowledge. Nonetheless, a well-chosen
nonlinear system can yield superior compensation performance,
capitalizing on the inherent nonlinearity of the hydraulic system.

3 Benchmark model for maRTHS and
simulation matrix

3.1 Benchmark model for maRTHS

A novel maRTHS benchmark model has been proposed by
Condori Uribe et al. (2023) focusing on a frame subjected to
seismic loading at the base. As illustrated in Figure 1, the
benchmark model features a steel moment-resisting frame with
three bays and three stories. The mid-span at the bottom is
designated as the experimental substructure, while the rest is
considered as the numerical substructure. To simulate seismic
loading, a scaled El Centro historic record serves as the input
ground motion, with a scaling factor of 0.40 is applied to
maintain linear elastic behavior in all structural components of
the frame. For the experimental substructure, two actuators are
strategically positioned to deliver equivalent translational and
rotational motion. A coupler is employed to facilitate the
coupling of the linear stroke of both actuators. A block diagram
illustrating the key components, along with a properly designed and
tuned control system, is presented in Figure 2A. The objective of this
benchmark is to formulate a control system that ensures the output
of the controlled plant accurately tracks the target displacement
vector. In the benchmarkmodel, an estimator is essential to filter out
high-frequency noise before being sent to the control plant.
However, this block is typically integrated into the data
acquisition module for real RTHS. Consequently, the estimator is
not employed for NARX model-based compensation in the
benchmark model, as depicted in Figure 2B. Instead, a fifth order
Butterworth filter with a cutoff frequency of 6 Hz is utilized in
constructing the NARXmodel to balance the frequency components
of the actuator response and noise mitigate performance. The time
delay introduced by Butterworth filter is compensated
simultaneously, since the displacements after Butterworth filter
are sent to the compensator.

3.2 Evaluation for maRTHS

To evaluate the performance of NARX model-based
compensation for maRTHS, various compensation methods,
including traditional inverse compensation (IC), NARX
compensation without nonlinear terms (NARXl), NARX
compensation with ridge regression (NARXr), and NARX
compensation with different nonlinear terms (NARXn) are
applied to the benchmark model.
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FIGURE 1
Composition of the benchmark model.

FIGURE 2
Control system and NARX model-based compensation in the benchmark model.
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3.2.1 Traditional inverse compensation
As the simplest formulation of NARX model-based

compensation and a special case of F-NARX, traditional inverse
compensation is first implemented, where a0 and a1 remain time-
invariant during RTHS. Two cases are considered for inverse
compensation with different estimated time delays. In Case 1, the
estimated time delay is both 25 msec for the first and second
actuators, while, the estimated delays are 60 msec. And 25 msec.
In Case 2. More details of inverse compensation are presented in
Table 2, where ai,j represents the coefficient ai for the jth actuator.

3.2.2 NARX compensation without nonlinear term
When nonlinear terms are not considered, NARX compensation

is similar to ATS compensator. In this scenario, various orders with
different window lengths are explored. Specifically, Cases 3 to
5 represent second order NARX compensations with window
lengths of 512, 1024, and 2048, corresponding to 0.5s, 1.0s, and
2.0s. Additionally, Case 6 to Case 7 maintain a consistent window
length of 1024 with different orders, corresponding to firstand
fourth order NARX compensation, respectively. Details of NARX
compensation without nonlinear terms are summarized in Table 3.

3.2.3 NARX with rigid regression
Table 4 presents the NARX model-based compensation with

rigid regression, where Cases 8 to 11 are presented to compare the
performance of the ridge regression using varying regression
parameters γ with Case 7 for the fourth order NARX under the
window length of 1024. The values of γ for Cases 8 to 11 are 1,
0.01,1 × 10−7 and 1 × 10−9, respectively.

3.2.4 NARX with nonlinear terms
Cases 12 to 16 in Table 5 evaluates the performance of NARX

model-based compensation with nonlinear terms, where five
different nonlinear terms respectively replace the linear term xn-2
of S-NARX with a window length of 1024.

3.3 Evaluation criteria

The evaluation of compensation performance involves assessing
the difference between measured and calculated displacements.
However, tracking performance has limitations in evaluating
maRTHS. To comprehensively gauge the effectiveness of various
compensation methods, ten distinct evaluation criteria (J1~J10) are
employed. The initial six criteria focus on evaluating the tracking
performance of the control system, while the remaining four
concentrate on assessing the global performance of RTHS.
Specifically, the ten evaluation criteria are defined as:

J1,i � argmaxr ∑N
k�1

ηns,i k[ ] · ηm,i k − r[ ]⎛⎝ ⎞⎠ × 1000/fs, i � 1, 2,

(11a)

J2,i �



















∑N
k�1

ηm,i k[ ] − ηns,i k[ ]( )2
∑N
k�1

ηns,i k[ ]( )2
√√√√√

× 100, i � 1, 2. (11b)

J3,i �
max ηm,i k[ ] − ηns,i k[ ]∣∣∣∣ ∣∣∣∣( )

max ηns,i k[ ]∣∣∣∣ ∣∣∣∣( ) × 100, i � 1, 2. (11c)

J4,i � argmaxr ∑N
k�1

ηns,i k[ ] · η̂m,i k − r[ ]⎛⎝ ⎞⎠ × 1000/fs, i � 1, 2,

(11d)

J5,i �



















∑N
k�1

ψ̂m,i k[ ] − ψns,i k[ ]( )2
∑N
k�1

ψns,i k[ ]( )2
√√√√√

× 100, i � 4, 28, (11e)

J6,i �
max ψ̂m,i k[ ] − ψns,i k[ ]∣∣∣∣ ∣∣∣∣( )

max ψns,i k[ ]∣∣∣∣ ∣∣∣∣( ) × 100, i � 4, 28. (11f )

J7,i �


















∑N
k�1

ψ̂m,i k[ ] − ψi k[ ]( )2
∑N
k�1

ψi k[ ]( )2
√√√√√

× 100, i � 4, 28, (11g)

J8,i �
























∑N
k�1

ψns,i k[ ] − ψi k[ ]( )2
∑N
k�1

ψi k[ ]( )2 × 100,

√√√√√
i � 2, 26, 3, 27. (11h)

J9,i �
max ψ̂m,i k[ ] − ψi k[ ]∣∣∣∣ ∣∣∣∣( )

max ψi k[ ]∣∣∣∣ ∣∣∣∣( ) × 100, i � 4, 28. (11i)

J10,i �
max ψ̂ns,i k[ ] − ψi k[ ]∣∣∣∣ ∣∣∣∣( )

max ψi k[ ]∣∣∣∣ ∣∣∣∣( ) × 100, i � 2, 26, 3, 27. (11j)

where i represents the actuator number in Eqs 11a–11d, and
represents the node freedom number in Eqs 11e–11i. In Eqs

TABLE 2 Compensation scheme for inverse compensation.

Case Method a0,1 a 1,1 a0,2 a 1,2

1 inverse 25 −24 25 −24

2 inverse 60 −59 25 −24

TABLE 3 Compensation scheme for NARX compensation without nonlinear
term.

Case 3 4 5 6 7

Method S-NARX S-NARX S-NARX F-NARX 4th-NARX

Window length 512 1024 2048 1024 1024

TABLE 4 Compensation scheme for NARX compensation with ridge
regression.

Case 8 9 10 11

Γ 1 0.01 1 × 10−7 1 × 10−9

TABLE 5 Compensation scheme for NARX compensation with nonlinear
terms.

Case 12 13 Case14 Case15 Case16

Nonlinear term xn-2
2 xn-1×xn-2






|xn−2|√ |xn−2| xn-2
3
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11e–11i, ‘4/2/3′ and ‘28/26/27′ represent the x and θ direction
responses for the first/second/third floor. ηns, ηm, and η̂m
represent the desired actuator displacements, measured actuator
displacements, and estimated interface node displacements; ψ̂m,Ψns
and Ψ represent the frame target displacements, estimated interface
node displacements, and numerical substructure response; fs
represents the sampling frequency and is set at 1024Hz. The ten
criteria above can be divided into three categories: J1 to J3, J4 to J6, J7
to J10 represent tracking control, estimation results, and global
performance, respectively (Uribe et al., 2023). Since the estimator
is not adopted in NARX compensation, J1 is exactly the same as J4.
Consequently, the results of J4 are not presented in this study.

4 Performance of NARX model-based
compensation

The maRTHS benchmark model involves various types of
displacements, such as target and measured displacements for
each actuator, frame target displacements, and estimated interface
node displacements of the experimental frame, as well as reference
and estimatedmeasured responses of the frame at the interface node,
and reference and numerical substructure responses at each floor.
Analyzing time histories of all these displacements offers an accurate
and comprehensive way to assess the compensation’s performance.
However, in many cases, different displacements are correlated. As
such, the performance of the compensation can be effectively
reflected in the difference between the reference and estimated
measured response of the frame at the interface node.
Consequently, only the time history of the reference and
estimated measured responses of the frame at the first floor is
provided. In order to accurately obtain the patterns of
compensation methods under various working conditions, no
upper and lower limits of the coefficients are used for any case.
The tracking control and estimation results are firstly analyzed to
obtain the performance of different compensation performance.

4.1 Performance of traditional inverse
compensation

The performance of traditional inverse compensation can be
assessed through Case 1 and 2, with the reference and the measured
displacements of the first floor depicted in Figure 3 for both cases. It
is evident that the measured displacement for Case 2 is closer to the
reference, indicating that Case 2 outperforms Case 1. The evaluation
criteria are presented in Table 6 for inverse compensation. It can be
observed that all criteria for Case 2 are superior to those for Case 1,
which is consistent with observations in Figure 3. Given that a0 and
a1 remain time-invariant throughout the simulation, the
performance of inverse compensation is highly dependent on the
initial estimation. From J1,1 and J1,2 for Case 2, inverse compensation
proves effective in reducing time delay when the initial estimation is
accurate. However, a notable time delay is observed when the initial
estimation deviates from actuator dynamics, as observed in J1,1
for Case 1.

An intriguing observation arises when comparing the tracking
criteria of the second actuator, namely, J1,2, J2,2, and J3,2, for the two

cases. Despite employing the same initial estimations for both cases,
the tracking criteria for Case 2 surpass those for Case 1. This can be
attributed to the interaction between the two actuators in maRTHS.
Consequently, full compensation of dynamics is imperative all
actuators in maRTHS. This might stem from inadequate
compensation altering the properties of the structural response,
particularly the frequency components. Hence, compensation
parameters that were initially suitable may become unsuitable.
However, this issue is primarily associated with constant delay
compensation methods, and it can be effectively addressed
through adaptive compensation.

When comparing tracking criteria of the same actuator, namely,
J1, J2, and J3 for the same case, the performance of the second
actuator is significantly better. In Case 1, the substantial difference
between the two actuators is attributed to the initial estimation.
However, both J1 values are zero for both actuators in Case 2, while
J2 and J3 are nearly three times higher for the first actuator compared
to the second actuator. This discrepancy suggests that, in
comparison with the second actuator, the actuator delay for the
first actuator is more pronounced. In such cases, traditional constant
delay compensation is unsuitable, and adaptive compensation
becomes necessary. Moreover, the estimated results for x
direction responses, i.e., J5,4 and J6,4, is reduced from about 11%
for case 2%–3% for case 1. This implies the importance of initial
estimation for inverse compensation. However, the estimated results
for θ direction responses, i.e., J5,28 and J6,28, have little improvement.
This however indicates the requirement of adaptive compensation.

4.2 Influence of the window length and
order for NARX model-based compensation

The window length and the model order are two major factors
that influence the performance of NARX model-based
compensation. Cases 3 to 5 are employed to demonstrate the
impact of window length on the performance of second order
NARX model-based compensation without nonlinear terms.
Figure 4 presents the comparison of measured first-floor
displacements for these three cases. It can be observed in
Figure 4A that it is evident that the measured displacement in
cases 4 and 5 aligns quite well with the reference. In Case 3, the
fluctuations in displacement over the last 15 s indicate instability.
Additionally, in Figure 4B, none of the measured displacements
exactly match the reference, suggesting that the delay compensation
method can reduce but cannot eliminate time delay, even for NARX
model-based compensation.

The evaluation criteria for NARX model-based compensation
with different window lengths when considering tracking control
and estimation results are presented in Table 7. Criteria are small
and nearly identical for Case 4 and 5, while larger values criteria are
observed for Case 3. Constructing the NARX model requires a
certain amount of data, otherwise the NARX model may deviate
from actuator dynamics. Thus, there is a limit on the minimum data
length for NARX model-based compensation. When the window
length is smaller than the limit, the performance of compensation
deteriorates, as observed for Case 3. Once the minimum data length
is reached, increasing the window length has little impact on
performance, as observed from the minimal difference between
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Case 4 and 5. Although computational efficiency and response to
time-varying delays might decrease with an increase of window
length. When comparing Case 4 and 2, the NARX model-based
compensation outperforms inverse compensation in all tracking
evaluation criteria, i.e., J1 to J3, especially for J2,1. Consequently the
estimated results for θ, i.e., J5,28 and J6,28, direction responses is
reduced from about 20% to 2% when NARX model-based
compensation utilized.

The performance of NARX model-based compensation is
determined by the parameters of the NARX model. Since the
same compensation method is applied for both actuators, the
parameters of the NARX model are nearly identical for Case
4 and 5. Therefore Figure 5 only presents the compensation
parameters for the first actuator for Case 3 and 4. When
nonlinear terms are not considered, the sum of a should be close
to 1. From Figure 5, a0 and a2 are similar, while a1 is almost the
opposite of the sum of a0 and a2 for both cases. In Figure 5A, the
parameters undergo dramatic changes from 11 s to 15 s, 20 s to 25 s,

and 28 s to the end of the simulation. Large value of a1 is observed
more than 10,000 around 28 s, which corresponds to the time when
measured displacement deviates from the reference and the
simulation becomes unstable. On the contrary, the parameters in
Figure 5B do not have a significant change, resulting in better
compensation performance. This again indicates the importance
of window length in NARX model-based compensation.

Case 4, 6, and seven all have window length of 1024 and are
used to assess the impact of model order on NARX model-based
compensation without nonlinear terms. Figure 7 displays the
time history of the first-floor measured displacements for these
cases compared with the reference. Instability is observed in Case
7 when a fourth order NARX model is employed, whereas Case 6,
using a first order NARX model, closely resembles case 4 with a
second order NARX model. Table 8 presents the criteria for Case
6 and 7, which is consistent with observations from Figure 6. This
suggests that while higher order NARX models may become
unstable for the same window length, stability can be maintained

FIGURE 3
Comparison of measured first floor displacements for inverse compensation.

TABLE 6 Evaluation Criteria for Inverse Compensation with tracking control and estimation results.

Case J1,1 J 1,2 J 2,1 J 2,2 J 3,1 J 3,2 J 5,4 J 5,28 J6,4 J 6,28

1 18.55 0.98 25.49 5.46 25.93 5.88 11.05 22.29 11.13 23.79

2 0.00 0.00 13.64 3.88 14.82 4.68 2.78 20.16 3.17 20.92

FIGURE 4
Comparison of measured first-floor displacements for NARX model-based compensation with different window length.
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with lower order NARX models. Additionally, lower order
models require fewer parameters, allowing for accurate
parameter estimation with smaller window lengths. The
compensation parameters are presented in Figure 7 for Case
6 and 7. In Figure 7A, a0 remains approximately 50 for the first
order NARX compensation, except around 7 s and in the last 2 s.
Furthermore, the sum of a0 and a1 is close to 1. In contrast, the
parameters for the fourth order NARX model can reach up to
8×107, resulting in significantly larger evaluation criteria in
Table 8 for Case 7.

4.3 Influence of rigid regression

Due to smaller window length than the minimum for the fourth
order NARXmodel, From Figure 6 and Table 8, it is evident that the
measured displacement for Case 7 becomes unstable. This results in
inability for high order NARX model-based compensation. It is
apparent that traditional ordinary least square has limitations,
especially when the number of undetermined parameters is more
than three in the NARXmodel. Rigid regression, instead of ordinary
least square, is employed in Case 8–11 to calculate parameters in the
fourth order NARX model with different values of parameter γ. The
time histories of compensation parameters are presented in Figure 8
and the corresponding values of evaluation criteria are summarized
in Table 9.

In Figure 8A, it can be observed that Case 11 remains
unstable due to γ value as small as 1 × 10−9, indicating that
the rigid regression does not take effect. For very small value of γ,
rigid regression is same as ordinary least square regression. With
the increase of γ, cases 8–10 become stable such as case 10 when
γ equals 1 × 10−7. Compared with case 4 in Table 7, the
evaluation criteria in Table 9 for case 10 are better for almost
all criteria. This suggests the advantages of the higher order
NARX model-based compensation with ridge regression. When
γ increases to 0.01, the tracking error visibly increases for the
first actuator, while a slight increase is observed for the second
actuator as shown in Table 9. Moreover, a significant increase
can be observed for all evaluation criteria when γ increases to 1.
Consequently, ridge regression would reduce the performance of
compensation when γ reaches a threshold. However, the
simulations remain stable for larger γ. The parameters for
Case 11 are like those of Case 7, while Case 9 falls between
Case 8 and 10. Thus, only the parameters of the NARX model for
the first actuator for Case 8 and Case 10 are presented in
Figure 9. It can be observed that the absolute value of each
compensation parameter decreases with the increase of γ.
Influence of nonlinear term.

Nonlinear terms are explored in this study for the NARX
model-based compensation. In Figure 10A, clear instability is
observed for Case 15, while the rest cases remain stable. In the
close-up view of Figures 10A, B slight difference between the

TABLE 7 Evaluation criteria for NARX model-based compensation with different window length.

Case J1,1 J 1,2 J 2,1 J 2,2 J 3,1 J 3,2 J 5,4 J 5,28 J6,4 J 6,28

3 6.84 7.81 524.64 878.46 655.49 3987.4 557.7 630.07 2538.8 733.5

4 0 0 2.98 1.8 3.6 2.68 2.06 2.48 2.9 3.74

5 0 0 2.92 1.8 3.55 2.7 2.05 2.43 2.84 3.73

FIGURE 5
Parameters of NARX model for the first actuator.

TABLE 8 Evaluation criteria for NARX model-based compensation with different orders.

Case J1,1 J 1,2 J 2,1 J 2,2 J 3,1 J 3,2 J 5,4 J 5,28 J6,4 J 6,28

6 0 0 2.87 1.76 3.49 2.49 1.89 3.12 1.9 5.47

7 −8.79 −12835 2156 2376 2204 6948 2156 100 2204 100
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FIGURE 6
Illustrates a comparison of measured first-floor displacements for NARX model-based compensation with varying orders.

FIGURE 7
Illustrates the parameters of the NARX model for the first actuator.

FIGURE 8
Comparison of measured first floor displacements for NARX model based with rigid regression.

TABLE 9 Evaluation criteria for NARX model-based compensation with rigid regression.

Case J1,1 J 1,2 J 2,1 J 2,2 J 3,1 J 3,2 J 5,4 J 5,28 J6,4 J 6,28

8 22.46 6.84 33.74 13.08 28.69 11.15 19.78 15.24 14.84 16.97

9 0.98 0 4.53 1.9 6.24 2.53 2.49 3.98 3.13 5.62

10 0 0 2.83 1.75 3.49 2.55 2 2.17 2.69 3.68

11 −10.74 −13.67 2092.6 689.3 2746 1378 2093 100 2745.9 100
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measured displacement and reference is observed for Case 16,
while the measured displacements in the remaining cases agree
well with the reference. This implies that different nonlinear term
leads to distinct compensation performance. The evaluation
criteria are summarized in Table 10 for the five cases with
nonlinear terms. It is worth noting that Case 12 and 13, which
involve xn-2

2 with little difference from xn-1×xn-2, have almost
identical evaluation criteria. In comparison with corresponding
case 4 with only linear terms, these criteria are slightly larger.
Conversely, Case 14 demonstrates improved evaluation criteria
particularly with smaller tracking control when compared with
corresponding linear case. This observation suggests that the
inclusion of a carefully selected nonlinear term can further
improve the performance of the NARX model-based
compensation. However, large evaluation criteria are
noticeable for Case 15 and 16, consistent with observations
in Figure 10.

In the context of utilizing a second order NARX model for
compensation, three key parameters (a0, a1, a2) are derived
during the simulation. While the behavior of a0 and a1 aligns
with the first order NARX model compensation as shown in
Figure 7A, the focus in Figure 11 is exclusively on the time history
of the third parameter a2. From Figure 11A, it can be observed
that a2 exhibits slight variation ranging between −0.015 and 0.01.
This magnitude is notably smaller when compared to a0 and a1

from Figure 7A. This observation underscores the nuanced and
fine-tuning role played by the nonlinear term in shaping the
compensation performance. In particular, the trajectories of a2
for cases 12, 13, and 16 remain relatively small throughout the
simulation with occasional jumps. Conversely, for case 15, the
absolute values of a2 surpass 200, indicative of significant
fluctuations, ultimately contributing to worse compensation
performance.

4.4 Global performance of NARX model-
based compensation

As maRTHS incorporates a minimum of two actuators, a
comprehensive global evaluation becomes imperative. Given that
cases 3, 7, 8, 11, and 15 have been established as unstable through
simulation, the remaining 11 cases are used to evaluate the
performance of NARX model-based compensation. Figure 12
presents the global performance evaluation criteria (J7 to J10) for
these cases.

It can be observed that case 2 exhibits the best global
performance among all stable cases, while case 1 shows the worst
global performance evaluation criteria, with the exception of the θ
direction responses for the first floor. This observation confirms
previous finding that the performance of constant delay

FIGURE 9
Parameters of the NARX model for the first actuator with rigid regression.

FIGURE 10
Comparison of measured first-floor displacements for NARX model-based compensation with different nonlinear terms.
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compensation significantly rely on initial estimation. Notably, the
values for the second and third floors (J8 and J10) in case 2 are
surprisingly lower than those in NARX-model-based compensation.
This might be attributed to the reduction in testing errors for the x
and θ directions when calculating the response of the second and
third floors. Consequently, it becomes apparent that improving the
tracking performance of individual actuators does not necessarily
translate to an enhancement in the global performance of maRTHS,
which is distinct from saRTHS. Figure 13.

5 Robustness of NARX model-based
compensation

The analysis in previous section has demonstrated the
effectiveness of the NARX model-based compensation method in
maRTHS. In addition to accounting for measured responses, this
method also considers noise, uncertainties, or model inaccuracies in
the control plant as part of the benchmark model, enabling
robustness analysis. Although rigid regression enhances the

TABLE 10 Evaluation criteria for NARX model-based compensation with various nonlinear terms.

Case J1,1 J 1,2 J 2,1 J 2,2 J 3,1 J 3,2 J 5,4 J 5,28 J6,4 J 6,28

12 0 0 3.39 1.88 4.66 2.67 2 4.05 2.34 5.57

13 0 0 3.39 1.88 4.7 2.66 2 4.05 2.34 5.57

14 0 0 2.89 1.82 3.5 2.64 1.91 3.31 1.98 5.79

15 −16.6 −102.54 1418.5 2338.1 2221.7 3851.7 1418.5 100 2221.7 100

16 −2.93 0 13.53 2.06 34.18 4.03 4.52 15.68 11.17 37.75

FIGURE 11
Parameters of NARX model for the first actuator with nonlinear terms.

FIGURE 12
Global performance of NARX model-based compensation.
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robustness of higher order NARX model-based compensation
method, it is crucial to note that the performance of rigid
regression is contingent upon the regression parameter γ, which,
though significant, will not be delved into in this discussion.

To evaluate the impact of system uncertainties, an initial set of
10,000 simulations is conducted for the no-compensation case.
Subsequently, an additional 10,000 simulations with different
control plant uncertainties are carried out for Case 4 and 14,
shedding light on the robustness of the NARX model-based
compensation with both linear and nonlinear terms. Tables
11–13 present the mean and standard deviation (std) of
evaluation criteria for the no-compensation scenario, Case 4, and

Case 14. Specifically, Table 11 summarizes the statistics for the no-
compensation case, where the std ranges from 0.19 to 1.11 across
different criteria, representing 0.9%–8.8% of corresponding
mean values.

In contrast, Table 12 shows a significant std variation from 61 to
4839 for Case 4, indicating instability for the second order NARX
model-based compensation in the absence of nonlinear terms. The
average delay for both actuators are no longer 0, especially for the
second actuator. This implies again the importance of including
nonlinear terms or rigid regression for stability. Considering the
incorporation of nonlinear terms in NARX model-based
compensation, Table 13 enumerates the 22 assessment criteria for

FIGURE 13
Distribution of evaluation criteria for case 14.
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Case 14. Average delay for both actuators are 0 with 0 standard
deviation, which indicates no instability occurs. The standard
deviation ranges from 0 to 0.28 across various criteria,
constituting 0.1%–8.2% of their respective mean values.
Compared with no compensation cases in Table 11, the
introduction of nonlinear term not only improves the accuracy
but also increase the robustness of the simulation. This underscores
the commendable performance of the NARX model-based
compensation when nonlinear terms are taken into account.

6 Summary and conclusion

This study presents the performance evaluation of NARX
model-based compensation for multi-axial real-time hybrid
simulation (maRTHS) benchmark model. Traditional inverse
compensation is also considered as the simplest formulation of
NARX model compensation. Different window length and NARX
model order are accounted for searching for patterns of NARX
model-based compensation through linear terms. Rigid regression
technique is utilized to estimate the model coefficients for higher

order NARX model-based compensation. Different nonlinear terms
are selected to prove the effectiveness of the nonlinear model. A total
of 10,000 perturbed simulations are conducted to verify the
robustness of NARX model-based compensation. Based on the
results of this study, conclusions are drawn as follows:

1. As a special case of NARX model-based compensation, inverse
compensation utilizes a fixed first order ARX model during
simulation, which the tracking performance highly depends on
the initial estimation. Moreover, perfect compensation
performance cannot be reached even the initial estimation
consistent with actuator dynamics. However, inverse
compensation may provide good globe global evaluation for
maRTHS. Moreover, the compensation performance of one
actuator may influence the performance of other actuators for
maRTHS, which is different from traditional single
actuator RTHS.

2. The suitable window length for NARX model-based
compensation depends on the order of NARX model.
Higher order model has larger number of uncertain
parameters thus requiring longer window length. There is a

TABLE 11 The mean and stand derivation (std) of no compensation case.

Case J1,1 J 1,2 J 2,1 J 2,2 J 3,1 J 3,2 J 5,4 J 5,28 J6,4 J 6,28 J7,4

Mean 40.5 23.7 53.0 32.5 53.1 32.7 39.4 11.8 39.4 14.0 36.0

Std 0.76 0.46 0.77 0.39 0.81 0.38 0.40 1.04 0.37 1.11 0.31

Case J7,28 J8,2 J8,26 J8,3 J8,27 J9,4 J 9,28 J10,2 J10,26 J10,3 J10,27

Mean 10.7 6.4 6.8 6.4 6.6 37.0 13.1 5.1 5.4 5.1 5.3

Std 0.81 0.31 0.24 0.29 0.26 0.34 0.96 0.22 0.19 0.22 0.21

TABLE 12 The mean and stand derivation (std) of case 4.

Case J1,1 J 1,2 J 2,1 J 2,2 J 3,1 J 3,2 J 5,4 J 5,28 J6,4 J 6,28 J6,4

Mean 0.48 −3.83 10.4 20.1 18.9 93.9 12.5 13.7 45.4 24.2 45.4

Std 39.4 65.8 65 223 124 825 88 73 323 107 323

Case J7,28 J8,2 J8,26 J8,3 J8,27 J9,4 J 9,28 J10,2 J10,26 J10,3 J10,27

Mean 63.7 14.2 14.0 13.8 14.2 465.3 316.2 20.9 22.8 19.5 24.9

Std 425 61 66 62 67 4839 2119 131 150 122 166

TABLE 13 The mean and stand derivation (std) of case 14.

Case J1,1 J 1,2 J 2,1 J 2,2 J 3,1 J 3,2 J 5,4 J 5,28 J6,4 J 6,28 J6,4

Mean 0.00 0.00 2.88 1.81 3.79 2.74 1.90 3.30 1.99 5.74 9.95

Std 0.000 0.000 0.019 0.015 0.280 0.139 0.011 0.044 0.164 0.098 0.016

Case J7,28 J8,2 J8,26 J8,3 J8,27 J9,4 J 9,28 J10,2 J10,26 J10,3 J10,27

mean 7.95 6.88 6.05 6.47 6.11 8.65 8.40 5.11 4.73 4.79 4.71

Std 0.011 0.009 0.009 0.009 0.009 0.152 0.070 0.008 0.012 0.012 0.014
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length threshold for a certain order NARX model-based
compensation. The compensation effect becomes very poor
when the window length is smaller than threshold, but will not
significantly improves when window length larger than
this threshold.

3. Compared with ordinary least square, ridged regression sacrifices
part of accuracy to improve stability, which is particularly suitable
for higher order NARX model-based compensation. Ridged
regression decreases the length threshold, thus the advantages
of the high order NARX model can be demonstrated. The
performance of ridged regression is highly depending on
parameter λ. A small λ leads ridged regression degenerating to
ordinary least square, while large λ damage the accuracy of
compensation completely.

4. Identifying an appropriate nonlinear term poses a challenge
in NARX model-based compensation. However, the
judicious selection of a suitable nonlinear term can
significantly enhance both accuracy and robustness in
compensation performance. Typically, a harmonious
blend of linear and nonlinear terms is employed to strike
a balance between accuracy and stability. In such instances,
nonlinear terms contribute to refining the overall
compensation effect. The outcomes of 10,000 perturbed
simulations highlight that well-chosen nonlinear terms
can indeed bolster the robustness of NARX model-based
compensation with high accuracy.

5. Actuator control for maRTHS presents greater challenges
compared to saRTHS. Improving the tracking performance
of individual actuators may not necessarily result in an overall
enhancement of maRTHS performance. Therefore, the
adoption of advanced compensation techniques with higher
accuracy and robustness is necessary for effective control
of maRTHS
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