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The resistive force of linear viscous damping (LVD), which is commonly used as a
dampingmodel for structures, decreases proportionally with the frequency. Another
linear dampingmodel knownas the rate-independent linear damping (RILD)model is
used as a linear mathematical model for representing the damping characteristics of
structures andmaterials that have a low frequencydependency. Because the resistive
force of RILD is proportional to the displacement amplitude instead of the velocity, it
is expected to directly and effectively control the seismic response displacement of
low-frequency structures if implemented in a physical device. In this study, we
propose the application of a causal approximationmodel of the RILDmodel—based
on Biot’s model—that extends the order of dynamic stiffness of each branch to the
second order with seismically isolated structures. A few branches of commercially
available tuned viscous mass dampers with second-order dynamic stiffness are
arranged in parallel in the proposed device. When the demand for isolator
displacement mitigation is moderate, the proposed model simulates the
performance of the RILD model well. The proposed system outperforms the LVD
system even when the demand for isolator displacement mitigation becomes
more severe.
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1 Introduction

1.1 Background

Seismic isolation can alleviate the seismic force transmitted to the superstructure at the
expense of isolator displacement by increasing the fundamental natural period of the structure.
However, there is concern regarding long-period and long-duration ground motions that are
amplified by a thick sedimentary subsoil on which many buildings are built and induced by
large-scale subduction-zone earthquakes (Architectural Institute of Japan, 2007). Excessive
isolator displacement caused by long-period and long-duration ground motion may result in
moat wall impact, thereby damaging seismic isolation devices and superstructures.

Increasing the number of conventional dampers to address this challenge presents a
dilemma: excessive damping compromises the seismic isolation performance under the effect
of ground motions that are dominated by high-frequency components and that occur more
frequently than long-period ground motions. Ikago and Inoue (2014) and Luo et al. (2019)
reported that rate-independent linear damping (RILD) offers an attractive solution because it
realizes direct control of the displacement, thus exploiting its rate-independent resistive force.
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Other systems that increase resistive force in accordance with
response displacement include the skid system (Kelly et al., 1980),
modulated homogeneous friction (Inaudi, 1997), and nonlinear
displacement-dependent dampers (Ilgeigi et al., 2012).

1.2 Rate-independent linear damping

Rate-independent linear damping (RILD) is a linear damping
model used for representing the energy dissipation characteristics of
structural materials that are independent of frequency over a wide
frequency range. This contrasts with the commonly used linear
viscous damping (LVD) model, whose energy dissipation is
proportional to the frequency. RILD is also referred to as linear
hysteretic or structural damping. Although we confined ourselves to
linear damping systems in this study, a comprehensive review of
nonlinear damping systems can be found in Lu et al. (2018).

1.3 Noncausality of RILD and Biot’s causal
RILD model

Crandall (1991) reported that structures equipped with RILD
respond before an excitation is applied, and RILD is thereby
noncausal. Figure 1 shows a displacement time history of a single-
degree-of-freedom (SDOF) system containing RILD subjected to
impulse excitation at time t = 0. Anticipatory response is observed
before an impulse is applied, thus violating the causality.

Owing to this noncausal nature, RILD is physically unsound and
impossible to realize as a physical device. The first successful causal
model that exhibited an approximated rate-independent energy
dissipation behavior was proposed by Biot (1958). Caughey
(1962) stated that Biot’s model can be constructed by arranging
infinite Maxwell elements in parallel.

1.4 Dynamic stiffness

The transfer function from displacement to force in the
frequency domain has a stiffness dimension and is thus
referred to as the dynamic stiffness, which is expressed as a
complex number. The real and imaginary parts of the dynamic

stiffness are referred to as the storage and loss stiffness,
respectively.

The storage stiffness is identical to the conventional stiffness
coefficient. Although the loss stiffness has the dimensions of
stiffness, it is in phase with the velocity—that is, 90◦ advanced to
the displacement—which results in energy dissipation.

1.5 Undesirable storage stiffness of causal
RILD models

Makris (1997) demonstrated that the modification of RILD to
satisfy causality necessitates the addition of a storage stiffness that is
proportional to the logarithm of the frequency. This explains why
the storage stiffness of Biot’s model increases as the frequency
increases. A fractional order derivative model for approximating
RILD, proposed by Luo and Ikago (2021) also exhibited increasing
storage stiffness with respect to frequency. Thus, the storage and loss
stiffnesses are bound to each other by the causality requirement,
which results in a trade-off between the accuracy of mimicking RILD
and maintaining a low storage stiffness. This is the challenge
encountered when exploring the application of a RILD-based
damping model for the protection of low-frequency structures.

Keivan et al. (2020) developed a control algorithm for a magneto-
rheological damper to causally realize the performance of RILD
without the addition of an undesirable stiffness at the fundamental
natural frequency of the controlled structure. The transfer function of
the control algorithm was subsequently observed to be equivalent to
that of a parallel configuration of negative stiffness and Maxwell
elements (Luo et al., 2019). Their work further led to an examination
of combinations of the Maxwell–Wiechert model, negative stiffness,
and inerters to realize causal RILD models (Liu and Ikago, 2021a; b,
2022a; b,c). Wu and Ikago (2024) proposed the addition of two
inerters to a Maxwell–Wiechert model in series and parallel to negate
the undesirable storage stiffness at two specified frequencies. A
combination of a negative-stiffness element and an inerter to
negate the added storage stiffness in a causal RILD model was
investigated by Liu et al. (2022) and Wu et al. (2023).

In this study, unlike conventional approaches, we propose expanding
the order of dynamic stiffness of the components in the proposed
damping device to mitigate undesirable storage stiffness. Specifically,
an inerter is connected in parallel to the damper to construct a

FIGURE 1
Noncausal response of an SDOF system containing RILD.
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commercially available device called a tuned viscous mass damper
(TVMD). Limiting the frequency band in which the loss stiffness of
the proposed device is tuned can significantly reduce the required number
of TVMD branches, thus improving its feasibility. Another benefit of
limiting the bandwidth is that it can reduce undesirable storage stiffness.
In this study, the frequency band was determined to include the
fundamental natural angular frequency of the controlled structure as
well as twice that value.

The novelty of this study lies in the development of a physical
model that approximates the energy dissipation behavior of an ideal
RILD with lower storage stiffness compared with existing causal
models in the literature.

The remainder of this paper is organized as follows: Section 2
expands the dynamic stiffness of Biot’s model to the second order.
The second-order model included Biot’s model. Section 3 presents the
adopted TVMD, which is a commercially available device with second-
order dynamic stiffness, to realize the proposed model. To improve its
feasibility, in Section 4, we propose that the frequency band be limited,
wherein the target constant loss stiffness is attained, which significantly
reduces the number of required TVMD devices. An analytical example
using the proposed model with three TVMD branches demonstrated its
efficacy in causally approximating the ideal RILD, thus outperforming
conventional LVD. Section 5 presents the conclusions of this study.

2 Proposed causal model of rate-
independent linear damping

2.1 Insight obtained from Biot’s model

One of the most successful models to causally approximate an
ideal RILD is Biot’s model (Biot, 1958), which comprises infinite
branches of Maxwell elements (Figure 2).

The transfer function obtained from the deformation x to the
resistive force Fj of the jth branch of Biot’s model is:

ZM
j iω( ) � Fj

x
� kj

iω

iω + rj
. (1)

where kj, cj, and rj = kj/cj are the stiffness, damping coefficient, and
relaxation parameter of the Maxwell element, respectively. i � ���−1√
and ω are the imaginary unit and excitation angular frequency,
respectively.ZM

j (iω) has a stiffness dimension and is thus referred to
as the dynamic stiffness. Note that the relaxation parameter rj is the
inverse of relaxation time.

The real and imaginary parts of the dynamic stiffness are referred to
as the storage and loss stiffnesses, respectively. The storage stiffness is
identical to the conventional stiffness. The product of the loss stiffness
and deformation yields the resistive force, the amplitude and phase of
which are proportional to the deformation and are in phase with the
velocity, respectively. Thus, the loss stiffness is related to energy loss.

[Storage stiffness]

R ZM
j iω( )[ ] � ω2

ω2 + r2j
kj (2)

[Loss stiffness]

I ZM
j iω( )[ ] � ωrj

ω2 + r2j
kj (3)

Figure 3A shows how Biot’s model realizes constant loss stiffness
characteristics at high frequencies. As indicated by the solid lines,
the loss stiffness of the jth branch reaches its maximum value
(indicated by red circles) of kj/2 at angular frequency ω = rj.

When the stiffness and damping coefficient of each branch are
arranged such that

Δr � rj+1 − rj ≡ constant, rj � ε + j − 1( )Δr, kj � Δr
rj
k1, (4)

the lowest relaxation parameter and jth damping coefficient are

r1 � ε, cj � kj
rj
. (5)

Accordingly, the dynamic stiffness of Biot’s model ZB
Δr(iω) is

ZB
Δr iω( ) � k0 + lim

n→∞
k1∑n

j�1

iω

iω + rj

Δr
rj
. (6)

Furthermore, when Δr → 0,

ZB
0 iω( ) � lim

Δr→0
ZB

Δr iω( ) � k0 + k1∫∞ε iω

iω + r

dr

r

� k0 + k1 ln

��������
1 + ω

ε
( )2√

+ i arctan
ω

ε
( ){ } . (7)

Figure 3A presents the loss stiffness of Biot’s model when the
stiffnesses and relaxation parameters are determined as follows:

k1 � 2
π
, Δr � 1, r1 � ε � 1, rj � jΔr � j, kj � Δr

rj
k1. (8)

Although the loss stiffness exhibits frequency dependency at low
frequencies, it becomes almost independent of the frequency at high
frequencies.

FIGURE 2
Biot’s model.
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Figure 3B presents a comparison of the storage stiffness
of Biot’s model and ideal RILD when k0 = 0. The storage
stiffness of Biot’s model increased with frequency, while
that of the ideal RILD was constant, irrespective of the
frequency. This is owing to the causality requirement that
bounds the real and imaginary parts of the dynamic stiffness,
which is known as the Kramers–Kronig relationship (Booij
and Thoone, 1982). The causality of Biot’s model results
in the addition of stiffness when it is incorporated into
a structure.

2.2 Second-order causal model

Herein, we propose a novel causal model to approximate ideal
RILD. The model comprises infinite branches of any mechanical
device in a second-order physical system connected in parallel, as
shown in Figure 4, where s is the Laplace variable.

The dynamic stiffness of a second-order device can be defined as
a bi-proper transfer function:

Z s( ) � kj
a1s2 + a2rs

b1s2 + b2rs + b3r2
, (9)

where r and k are the frequency and stiffness dimensions,
respectively. a1, a2, b1, b2, and b3 are the dimensionless
parameters to be determined.

Let j denote the jth branch, where the dynamic stiffness of the
proposed model written in the frequency domain is the summation
of all the branches.

ZP s( ) � F s( )
x s( ) � lim

n→∞ ∑n
j�1

kj
a1,js2 + a2,jrjs

b1,js2 + b2,jrjs + b3,jr2j
(10)

Here we assume that the relaxation parameters are distributed
with a uniform interval of Δr = rj+1 − rj (j = 1, 2,/) starting from a
small value r1 = ε. Accordingly, the stiffness of the jth branch is

kj � k1
Δr
rj
, rj � ε + j − 1( )Δr. (11)

Based on these definitions, the dynamic stiffness of this model
can be expressed as follows:

ZP s( ) � lim
n→∞

∑n
j�1

a1,js2 + a2,jrjs

b1,js2 + b2,jrjs + b3,jr2j

Δr
rj
. (12)

The sum is then substituted into the integration as follows:

ZP s( ) � k1∫∞

ε

a1s2 + a2rs

b1s2 + b2rs + b3r2
dr
r
. (13)

Partial fraction decomposition of the integrand yields

ZP s( ) � k1∫∞

ε

A

r
+ B

r − sΔ1
+ C

r − sΔ2
dr, (14)

where Δ1 and Δ2 are the roots of the denominator

Δ1 �
−b2 +

���������
b22 − 4b1b3
√
2b3

,

Δ2 �
−b2 −

���������
b22 − 4b1b3
√
2b3

,

(15)

FIGURE 3
Dynamic stiffness of Biot’s model. (A) Loss stiffness. (B) Storage stiffness.

FIGURE 4
Proposed causal model of RILD.
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and A, B, and C can be represented using the roots as follows:

A � a1b3
b1

,

B � a1 + a2Δ1

Δ1 Δ1 − Δ2( ),

C � a1 + a2Δ2

Δ2 Δ2 − Δ1( ).
(16)

Subsequent to integration and simplification, Eq. 14 is
reduced to

ZP s( ) � k1 −B( )ln 1 + −Δ1( ) s
ε

[ ] + −C( )ln 1 + −Δ2( ) s
ε

[ ]{ }. (17)

Hereafter, we exclusively examine the imaginary part of
dynamic stiffness (loss stiffness).

When Δ1 and Δ2 ∈ R, the loss stiffness is further reduced to

I ZP s( )[ ] � k1 arctan −Δ1
ω

ε
( ) + arctan −Δ2

ω

ε
( )[ ], (18)

where we used the following relationship:

ln x + iy( ) � ln
������
x2 + y2
√

+ i arctan
y

x
, x, y ∈ R( ) (19)

Eq. 18 clearly shows that, when ω≫ε or ε→ 0, the loss stiffness
approaches the constant value k1π.

For the case in which Δ1 and Δ2 are complex-valued, B and C are
also complex-valued. It should be noted that the pairs of Δ1 and Δ2

and B and C are conjugate pairs. For further simplification, the
following equations are introduced:

B � α1 + iβ1, C � α1 − iβ1,
Δ1 � α2 + iβ2, Δ2 � α2 − iβ2,

(20)

where α1, α2, β1, and β2 are real-value constants. Eq. 17 is expanded
by separating the real and imaginary parts as follows:

I ZP s( )[ ] � I α1 + iβ1( ) ln

������������������
1 − β2

ω

ε
( )2 + α2

ω

ε
( )2√

+ i arctan
α2

ω

ε
( )

1 − β2
ω

ε
( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭

+ I α1 − iβ1( ) ln

������������������
1 + β2

ω

ε
( )2 + α2

ω

ε
( )2√

+ i arctan
α2

ω

ε
( )

1 + β2
ω

ε
( )⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎧⎪⎪⎨⎪⎪⎩ ⎫⎪⎪⎬⎪⎪⎭,

(21)
which is further reduced to:

I ZP s( )[ ] � β1 ln

������������
ε
ω( )2 − β2 + α2
ε
ω( )2 + β2 + α2

√√
+ α1 arctan

α2
ε
ω( ) − β2

+ arctan
α2

ε
ω( ) + β2

⎡⎢⎣ ⎤⎥⎦. (22)

Eq. 22 demonstrates that the loss stiffness approaches a constant
value as the excitation angular frequency ω increases, which proves
that the proposed model can be an excellent approximation of the
ideal RILD in terms of loss stiffness.

2.3 Relationship with Biot’s model

As previously mentioned, Biot’s model comprises infinite
Maxwell elements arranged in parallel. The dynamic stiffness of

Biot’s model in the frequency domain is a summation of those of
all branches:

ZB
0 s( ) � F s( )

x s( ) � lim
n→∞ ∑n

j�1
kj

s

s + rj
, (23)

where rj represent the relaxation frequency of the jth branch. It
should be noted that the proposed model is reduced to Biot’s model
when a1, b1 = 0 and a2, b2, b3 = 1.

ZP s( ) � lim
n→∞ ∑n

j�1
kj

a1,js
2 + a2,jrjs

b1,js
2 + b2,jrjs + b3,jr

2
j

� lim
n→∞ ∑n

j�1
kj

rjs

rjs + r2j
� lim

n→∞ ∑n
j�1

kj
s

s + rj

(24)

Because the proposed second-order causal model encompassing
Biot’s model has more parameters than Biot’s model, it offers a
solution for reducing undesirable storage stiffness, as discussed in
the following section.

3 Physical realization using tuned
viscous mass damper

An inerter (Smith, 2002) is a two-node mechanical device, the
application of which in civil structures has been investigated for decades.
The inertial resistive force generated by an inerter is proportional to the
relative acceleration between its two nodes. Its physical realization
usually involves the amplification of the physical mass using fluid
(Kawamata, 1989; Kawamata, 1987; Nakamura et al., 1988; Wang et al.,
2011; Swift et al., 2013; Nakaminami et al., 2017; Liu et al., 2018; Zhang
et al., 2018; DeDomenico et al., 2019), a leverage (Sone et al., 1998), rack
and pinion (Smith, 2002; Saitoh, 2012; Pietrosanti et al., 2021), and ball
screw (Arakaki et al., 1999a; b; Hwang et al., 2007;Watanabe et al., 2012;
Xie et al., 2019; Xue et al., 2020; Kang et al., 2023; Li et al., 2023).
Researchers have investigated various configurations of inerter, spring,
and damper for the protection of civil structures against earthquakes
and wind (Ikago et al., 2012; Giaralis and Petrini, 2017; Marian and
Giaralis, 2017; Pan and Zhang, 2018; Jia et al., 2023; Kang and
Ikago, 2023).

3.1 Tuned viscous mass damper

As shown in Figure 5A, a parallel arrangement of an inerter and a
damper yields a compact device that can provide thousands of tons of
inertance, which is sufficient for structural control. The connection of a
spring element to the device configures a tuned-mass-damper-like (TMD-
like) system, designated as a TVMD (Ikago et al., 2012). In contrast to a
conventional TMD, a mass element (inerter) is arranged in parallel to the
damper in aTVMD, as shown in Figure 5B. To the best of our knowledge,
inerter-based seismic control systems have been applied to real-life
building structures only in Japan (Sugimura et al., 2012; Architectural
Institute of Japan, 2014; Ishii et al., 2014; Ogino and Sumiyama, 2014).

The dynamic stiffness of TVMD can be expressed as follows:

ZT s( ) � F s( )
x s( ) � kd

rs2 + ω2
ds

rs2 + ω2
ds + rω2

d

(25)
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where r = kd/cd and ωd � �����
kd/md

√
represent the relaxation

parameter and fundamental angular frequency of the device local
vibratory system, respectively.

3.2 Physical realization with infinite
branches of TVMD

The dynamic stiffness of a TVMD single branch shown in Eq. 25
is similar to Eq. 9. It is easy to infer that the infinite branches of
TVMDs will also be a physical realization of the proposed model. To
prove this, we first express the dynamic stiffness of the infinite
branches of TVMDs as follows:

ZT s( ) � lim
n→∞ ∑n

j�1
kd,j

rjs2 + ω2
d,js

rjs2 + ω2
d,js + rjω2

d,j

(26)

The springs and inerters in the model resulted in the formation
of infinite oscillators. Herein, we introduce a damping ratio ζj �
cd,j/2

�������
kd,jmd,j

√
as the ratio of the damping coefficient to the critical

damping coefficient in each branch. If the infinite branches of the
TVMDs are arranged in a manner similar to Biot’s model, Eq. 26 can
be rewritten as

ZT s( ) � lim
n→∞ ∑n

j�1
kd,j

s2 + 4ζ2rjs

s2 + 4ζ2rjs + 4ζ2r2j
. (27)

On comparing the above equation with Eq. 10, the parameters
can be identified as a1, b1 = 1 and a2, b2, b3 = 4ζ2 for all branches. The
dynamic stiffness of the infinite TVMDs can then be derived as

ZT s( ) � kd,1 −B( )ln 1 + −Δ1( ) s
ε

[ ] + −C( )ln 1 + −Δ2( ) s
ε

[ ]{ } (28)

where B, C, Δ1, and Δ2 are defined as

B � −2ζ2 1 − ζ�����
ζ2 − 1
√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

C � −2ζ2 1 + ζ�����
ζ2 − 1
√⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠

Δ1 � −ζ −
�����
ζ2 − 1
√
2ζ

Δ2 � −ζ +
�����
ζ2 − 1
√
2ζ

(29)

B, C, Δ1, and Δ2 have complex values when 0 < ζ < 1; however,
they have real values when ζ > 1. As previously discussed, in either

FIGURE 5
Rotary inerter damper and tuned viscous mass damper. (A) Rotary inerter damper. (B) Configuration of TVMD.

FIGURE 6
Dynamic stiffness of Biot’s and the proposed models. (A) Storage stiffness. (B) Loss stiffness.
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case, this model can serve as an approximation of an ideal
RILD model.

3.3 Comparison with Biot’s model

This section presents an example to demonstrate the advantages
of the proposed model over Biot’s model. The loss stiffness in Biot’s
model monotonically increases over the entire frequency range [0,
∞] and approaches k1π2. Here, we set k1 � 2

π such that the loss
stiffness function approaches unity at high frequencies.

I ZB
0 iω( )[ ] � k1 arctan

ω

ε
( )< k1

π

2
� 1 (30)

The lower bound of the relaxation parameter for Biot’s model εB

was determined such that the maximum error in the loss stiffness at
frequencies greater than 1 rad/s was less than 1%.

1 −I ZB
0 ω( )[ ]ω�1 < 0.01 (31)

An iteration shows that εB = 0.015 satisfies Eq. 31. For the proposed
model, the required ζ= 0.5 whenwe set kd,1 to 2

π in the samemanner as in
Biot’s model. Another iteration for realizing the accuracy of Biot’s model
in terms of the loss stiffness shows that the value of the lower bound of
the relaxation parameter of the proposedmodel εP = 0.352. Figures 6A, B
present the storage and loss stiffnesses of the Biot’s and proposedmodels
with these parameters. The loss stiffnesses of both models exhibit
frequency-independent characteristics in the frequency region beyond
1 rad/s. The proposed model exhibits an advantage over Biot’s model in
maintaining the flexibility of the isolation layer at the expense of a
compromised loss stiffness in the region of frequencies less than 1 rad/s.

4 Parameter design method for
practical use and its application in a
base-isolated structure

The proposed model requires infinite TVMDs arranged in parallel
to causally approximate RILD over all the frequencies. Nonetheless, the
number of required branches can be significantly reduced by limiting
the frequency band in which a constant loss stiffness is achieved, which
is preferable for practical structural design.

4.1 Mathematical properties of loss stiffness
function for TVMD

The loss stiffness of a single TVMD branch is given as

Im ZT ω( )[ ] � kd
r3ζ4ω

ω2ζ4r2 + r2ζ2 − ω2

4( )2 (32)

To solve for ∂
∂ω Im[ZT(ω)] � 0 with respect to ω, we obtain the

angular frequency at which the loss stiffness exhibits a peak value.

ω � f ζ( ) · r, f ζ( ) �

�����������������������
−8ζ4 + 4ζ2 + 8ζ2

���������
ζ4 − ζ2 + 1
√

3

√√
(33)

FIGURE 7
Mathematical properties of loss stiffness function for a single TVMD branch. (A) Loss stiffness function. (B)Maximum value with respect to ζ. (C) Loss
stiffness function with variation in ζ.

FIGURE 8
Four branch example.
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Therefore, the peak value of the loss stiffness is

max
ω

Im ZT ω( )[ ]( ) � kd
f ζ( )

f2 ζ( ) + 1 − f2 ζ( )
4ζ2

( ). (34)

Figure 7A presents the shape of the TVMD loss stiffness
function and its peak value coordinates.

Eq. 34 indicates that the peak value of the loss stiffness is
proportional to the stiffness of the branch kd. As shown in
Figure 7B, the peak value decreases and approaches kd/2 as the
damping ratio of the branch ζ increases.

Figure 7C shows that the shape of the loss stiffness function
becomes longer and narrower as ζ decreases.

4.2 Finite TVMD model

Herein, we denote a second-order causal RILD device
comprising n branches of TVMDs as n-TVMD. For an n-

TVMD, the frequency band in which the loss stiffness is
specified is limited to [ωℓ, ωu].

Regarding the distribution of the relaxation parameters, Genta
and Amati (2009) adopted geometric progression. Liu and Ikago
(2021b) adopted fundamental natural frequencies as the relaxation
parameters to avoid the parameters of their proposed device to
become negative values. This study adopted a uniform distribution
as follows:

λj � ωℓ + j − 1( ) ωu − ωℓ( )
n − 1

, j � 1, 2, . . . , n (35)

The number of branches n should be chosen properly to avoid
negative parameters of the branches.

All the branches share the same damping ratio ζ, and the jth
branch is designed to exhibit a peak value at frequency λj. Thus, from
Eq. 33,

rj � λj
f ζ( ). (36)

Let Zn (ω; ωℓ, ωu) denote the dynamic stiffness of the n-TVMD
with a target frequency range [ωℓ, ωu], and the loss stiffness is

Im Zn ω;ωℓ ,ωu( )[ ] �∑n
j�1

kd,j
r3jζ

4ω

ω2ζ4r2j + r2jζ
2 − ω2

4( )2
�∑n

j�1
kd,j

f ζ( )λ3jω
f2 ζ( )ω2λ2j + λ2j − f2 ζ( )ω2

4ζ2
( )2. (37)

We consider incorporating n-TVMD into a base-isolation layer,
the isolator stiffness of which is ks, and the target loss stiffness to be
imparted is ηks. Accordingly, the following condition is imposed to
realize a constant loss stiffness within the frequency region
of interest.

Im Zn λ1;ωℓ ,ωu( )[ ] � Im Zn λ2;ωℓ ,ωu( )[ ] � . . .

� Im Zn λn;ωℓ ,ωu( )[ ] � ηks (38)

When we define βj and Qj (λk) as follows:

FIGURE 9
Loss stiffness of n-TVMD. (A) Loss stiffness of 3-, 6-, and 15-TVMD. (B) Loss stiffness of 20-TVMD.

FIGURE 10
SDOF structure equipped with n-TVMD or RILD.
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FIGURE 11
Comparison of responses of ideal RILD and proposed model. (A,D) Displacement. (B,E) Acceleration. (C,F) Control force. (G) Influence of upper
bound frequency.
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βj �
kd,j
ks

, Qj λk( ) � f ζ( )λ3jλk
f2 ζ( )λ2jλ2k + λ2j −

f2 ζ( )λ2j
4ζ2

( )2, (39)

Eq. 38 can be rewritten as

Im Zn λk( )[ ]
ks

�∑n
j�1

βjQj λk( ) � η, j � 1, 2, . . . , n. (40)

Figure 8 illustrates how constant loss stiffness is realized in a
four-TVMD model in the specified frequency range. The dashed
lines represent the loss stiffness of each branch. The summation of
the loss stiffnesses of all the branches attains a constant value
stiffness within the target frequency range, as shown by
the solid line.

On solving Eq. 40 with respect to {βj}, we obtain

β1
β2
..
.

βn

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ �

Q1 λ1( ) Q2 λ1( ) / Qn λ1( )
Q1 λ2( ) Q2 λ2( ) / Qn λ2( )

..

. ..
. ..

.

Q1 λn( ) Q2 λn( ) / Qn λn( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
−1 η

η

..

.

η

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭. (41)

A greater number of branches of TVMDs causes the loss
stiffness to become flatter when ζ is fixed, as shown in Figure 9A.

However, some of the βj values become negative when λj are
uniformly distributed and n exceeds a certain value, as shown in
Figure 9B. The maximum n required to maintain βj as positive,
thereby ensuring the feasibility of the n-TVMD is denoted as nu,
which can be reduced by increasing ζ.

Fewer branches of TVMD are preferable in practical structural
design, which is realized at the expense of accuracy in approximating
the constant loss stiffness. Discussions on achieving a compromise
between feasibility and accuracy when designing an n-TVMD are
presented in the next section.

4.3 Discussion on the target frequency band
for single-degree-of-freedom systems

To elucidate the influence of the target frequency range [ωℓ, ωu]
on the control efficacy of an n-TVMD, we examined an SDOF
structure equipped with an n-TVMD, as shown in Figure 10.

FIGURE 12
Parameter design flowchart.
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The transfer functions from the ground acceleration €Xg(ω) to
the displacement, floor response acceleration, and damper resistive
force are

Xj ω;ωℓ ,ωu( )
€Xg ω( ) � − ms

−ω2ms + ks + Zj ω;ωℓ ,ωu( ),
Aj ω;ωℓ ,ωu( )

€Xg ω( ) � ks + Zj ω;ωℓ ,ωu( )
−ω2ms + ks + Zj ω;ωℓ ,ωu( ),

Fj ω;ωℓ ,ωu( )
€Xg ω( ) � − Zj ω;ωℓ ,ωu( )ms

−ω2ms + ks + Zj ω;ωℓ ,ωu( ),

(42)

where the superscript j represents the damping element
incorporated into the structure; j = 1 and 2 correspond to RILD
and proposed models, respectively.

Thus,

Z1 ω;ωℓ ,ωu( ) � ZRILD ω( ) � iηkssgn ω( ),
Z2 ω;ωℓ ,ωu( ) � Zn ω;ωℓ ,ωu( ). (43)

Figures 11A–C, present the peak values with respect to ω of the
transfer functions of the SDOF structure containing the n-TVMD
system (j = 2) normalized by those of the SDOF structure containing
RILD (j = 1). The horizontal axes indicate the lower- and upper-
bound frequencies normalized by the fundamental angular
frequency. The vertical axes indicate the peak values of (a)
displacement, (b) acceleration, and (c) control force transfer
functions normalized by those of RILD. The n-TVMD exhibits
the best performance with a lower-bound frequency near ω0, while
the displacement mitigation performance is close to that of RILD as
long as the lower-bound frequency is lower thanω0.When the upper
bound frequency exceeds twice the fundamental frequency, the
performance of the n-TVMD approaches that of RILD.

Figures 11D–F, present the peak values of the transfer functions
with respect to the lower-bound frequency as the loss factor is varied
when the upper-bound frequency is fixed at twice the fundamental
natural frequency. The upper bound of the lower-bound frequency
ωℓ, which exhibits a displacement control performance similar to
that of RILD, decreases as the loss factor increases, as shown in
Figure 11D. However, the optimal lower-bound frequencies that
minimize the acceleration and control force remain almost constant.
Utilizing this characteristic can minimize the acceleration and
damping force responses, rendering them closer to an ideal
RILD. The increased displacement response can be managed with
a higher loss factor to satisfy design requirements.

The above observations suggest that setting ωℓ = ω0 is a viable
option for n-TVMD to realize a control performance similar to that
of an ideal RILD when the target loss factor η is relatively low.
Figure 11G presents the cross-sections of Figures 11A–C along ωℓ =
ω0. As discussed in Section 3.3, the proposed system improves the
storage stiffness more than the conventional causal RILDmodel [see
Figure 6A], resulting in a better approximation of the floor response
acceleration and damper resistive force, especially when ωu > 2ω0.
However, this is attained at the expense of the displacement response
owing to the reduced loss stiffness at low frequencies [see Figure 6B].

Considering that a lower value of ωu necessitates a smaller
number of branches, thus resulting in enhanced feasibility and
cost efficiency, we suggest setting ωu = 2ω0 for SDOF systems.

4.4 Parameters design flowchart

Figure 12 presents the parameter design flow for an n-TVMD. The
damping ratio ζ and target angular frequency range [ωℓ, ωu] are given

FIGURE 13
Analytical model information. (A) Benchmark structure. (B) Analytical model properties. (C) Modal damping ratio of uncontrolled structure.
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first. Herein, ζ = 0.25, and the target angular frequency range is [ω0, 2ω0],
where ω0 is the fundamental angular frequency of the controlled
structure. The first iteration is performed to identify the loss factor η
with themaximum feasible number of branches nu that satisfy the design
criteria. In this study, we began with an initial estimate of the value of η,
determined nu and βj, and performed a time–history analysis. The η

value was gradually increased until the design criteria were satisfied. In
the second iteration, the number of branches n was decremented until
the minimum n satisfying the design criteria was reached.

4.5 Case study

Figure 13 presents the analytical model of an example multi-
degree-of-freedom (MDOF) base-isolated structure with its
properties listed in Figure 13B. The isolator horizontal
stiffness was designed such that the fundamental undamped
natural period was 4.0 s, following the base-isolation design
practice in Japan.

Themass-proportional portion of the Rayleigh damping imparts
undesirable damping to the first mode of the isolated structure
beyond that provided by the dampers in the isolation layer, thus
resulting in an underestimated seismic response, as reported in Hall
(2006). Therefore, stiffness-proportional damping was adopted in this
study, with a damping ratio of 2% assigned to the first mode of the
superstructure with a fixed base (Ryan and Polanco, 2008; Anajafi et al.,
2020). The inherent damping at the isolation layer is ignored.
Figure 13C presents the modal damping ratios of the structure with
no damping devices incorporated into the isolation layer.

4.5.1 Discussion on target frequency band for
MDOF structure

This section presents an investigation of the high-mode effect on
the performance of the n-TVMD incorporated into the example
MDOF base-isolated structure.

Here, the loss factor is η = 0.7. In the case of the target frequency
range, two cases, [ω0, 2ω0] and [ω0, 50ω0], were investigated. The
upper-bound frequency of the former case was the same as that of the

FIGURE 14
Analytical model equipped with 5-TVMD and 26-TVMD. (A)Dynamic stiffness of 5-TVMD. (B)Dynamic stiffness 26-TVMD. (C)Modal damping ratio.
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SDOF case. The latter case was a control, the target angular frequency
range of which includes all fundamental natural angular frequencies of
the entire structure. The former and latter cases comprised 5 and
26 branches, respectively. Figures 14A, B present the dynamic
stiffnesses of the 5- and 26-TVMD systems, respectively. It should
be noted that narrowing the target frequency band reduces the
undesirable storage stiffness at high frequencies.

Figure 14C presents the modal damping ratios of the uncontrolled
structure and cases comprising the 5- and 26-TVMD systems. The ×,◦,

and ▽ notations represent the uncontrolled and 5- and 26-TVMD
controlled cases, respectively. The n-TVMDs adds n degrees of freedom,
thus resulting in n additional modes owing to the inerters. The ◦ and▽
notations, which are distributed at a damping ratio of approximately
0.25, represent the damping ratios of the locally independent modes of
TVMD branches. The damping ratio of the first mode was increased by
n-TMVDs, while those of the higher modes remained almost constant.
This is because the n-TVMDs are activated by the isolator displacement,
which is dominated by the first mode.

FIGURE 15
Participation mode vectors and modal floor response acceleration. (A) Participation mode vectors. (B) Modal floor response acceleration.
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Figure 15A presents a comparison of the participation mode
vectors of the uncontrolled, 5-TVMD controlled (ωu = 2ω0), and 26-
TVMD controlled (ωu = 50ω0) cases. This figure indicates that an
increase in the number of branches n to include the high-mode
frequencies only slightly improves the seismic response
displacement because the participation of high modes is limited.

Supplementary Figure S1 presents the acceleration spectrum for
the type-two surface subsoil provided in the building seismic design
code of Japan. Modal floor response accelerations, as products of the
participationmode vectors and acceleration spectra, are presented in
Figure 15B. In contrast to the displacement response, the high
modes—and especially the second mode—have a significant effect
on the floor response accelerations. The addition of n-TVMDs
increases the floor response acceleration. Moreover, widening the
target frequency band increases the floor response accelerations.

Thus, the selection of the upper bound of the target frequency as
twice the fundamental natural angular frequency is a better option
for mitigating floor response acceleration.

4.5.2 Time history analysis
Three recorded and three synthetic groundmotions were employed

as design earthquakes, in accordance with the practice in Japan. The
three recorded groundmotions were scaled such that their peak ground
velocities (PGVs) were 0.5 m/s. Table 1 lists the details of these ground
motions. The synthetic ground motions were generated such that their
response acceleration spectra were compatible with the design
spectrum, as shown in Supplementary Figure S1. Each ground
motion is identified by a number, as shown in Table 1.

For comparison, a base-isolated structure comprising ideal
RILD, LVD, and the proposed model (n-TVMD) was examined.

These three damping systems were designed such that the maximum
isolator displacement yielded by the six ground motions was 0.3 m.
The condition of the isolator displacement was employed as the
design criterion for the design flow presented in Figure 12. Following
the design process presented in the previous section, the number of
TVMDs was reduced to three. Table 2 lists the designed properties of
the damping models that satisfy this criterion.

Supplementary Figure S2A presents the time–history seismic
responses of the three systems under No. 6 ground motion
(synthetic ground motion with the 1995 JMA Kobe record phase
property). The diagram shows that the ideal RILD has a clear
advantage in protecting seismic isolation structures, and the
performance of the proposed model lies between RILD and LVD.
The maximum values from the time-history results of the damping
force and damper stroke demonstrate the feasibility of the proposed
model in practical engineering applications. Supplementary Figures
S2C, S2D present a comparison of their maximum responses under
each ground motion. The No. 6 ground motion yielded the highest
responses in terms of isolator displacement and rooftop response
acceleration. Thus, the No. 6 ground motion was used to realize the
damping system design, and both systems yielded a maximum
isolator displacement of 0.3 m for the No. 6 ground motion.

Supplementary Figure S2B presents a description of the relationship
between the maxima of the isolator displacement and floor response
acceleration yielded by the RILD, LVD, and proposed damping models
subjected to six groundmotions. The isolator displacement decreased as
the loss factor of the damping systems increased, while an excessively
large loss factor compromises the floor response acceleration in the
LVD and proposed models. The proposed system realizes a similar
response mitigation effect to the RILD if an isolator displacement of
0.4 m or greater is allowed. There are no feasible designs for LVD in the
gray area, i.e., the area in which the maximum allowable isolator
displacement and rooftop acceleration are less than 0.36 m and
1.43 m/s2, respectively. Nonetheless, there are feasible designs for
RILD and the proposed model.

4.6 Feasibility of proposed model

The proposed model comprises multiple branches of TVMDs. A
TVMD is a commercially available device that has been applied to real-
life building structures in Japan (Sugimura et al., 2012; Ishii et al., 2014;

TABLE 1 Ground motions.

Number Earthquakes Station Component

Recorded ground motions

1 Imperial Valley, United States, 1940 El Centro N-S

2 Kern County, United States, 1952 Taft E-W

3 Tokachi-oki, Japan, 1968 Hachinohe Harbor N-S

Synthetic ground motions

4 Imperial Valley, United States, 1940 El Centro N-S

5 Kern County, United States, 1952 Taft E-W

6 Kobe, Japan, 1995 JMA Kobe N-S

TABLE 2 Damper properties.

LVD RILD n-TVMD

n = 3, η = 0.85

Parameters TVMD1 TVMD2 TVMD3

η = 0.5 η = 0.56 md (t) 3,215 1,171 1,039

kd (kN/m) 8,452 6,157 10,925

cd (kN·s/m) 2,606 1,343 1,684
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Ogino and Sumiyama, 2014). Supplementary Figure S3A illustrates the
installation of a TVMD in a building frame (Sugimura et al., 2012). The
inertance, stiffness, and maximum resistive force of the TVMD device
are 5,400 tons, 7,300 kNm/s, and 68,600 kN/m, and 1,200 kN,
respectively. Thus, the parameters of the TVMD devices listed in
Table 2 fall within the feasible range. When incorporating the
proposed device into a seismic isolation layer, the rotary inerter
dampers are connected to a laminated rubber device to provide a
tuned stiffness, as shown in Supplementary Figure S3B.

This study focused exclusively on theoretical and numerical
analyses. Therefore, experimental studies using small- or full-scale
specimens should be conducted in the future. In addition, because
the rotary inerter damper is a relatively new device that has not yet
been widely adopted, its cost is considered a challenge.

5 Conclusion

The amplitude and phase of the RILD resistive force were
proportional to the displacement and in phase with the
velocity, respectively. This resulted in the benefit of the
direct control capability of the seismic response
displacement in a low-frequency structure such as a
seismically isolated building.

This study was motivated by one of the most successful causal
RILD models, i.e., Biot’s model, which comprises infinite
Maxwell elements with first-order dynamic stiffness. The
dynamic stiffness of each branch was expanded to the second
order. Because a branch of second-order dynamic stiffness can be
decomposed into two branches with first-order dynamic stiffness,
it was found that the second-order causal RILD model
encompasses Biot’s model, which suggests that the proposed
system can improve the storage stiffness while maintaining
constant loss stiffness characteristics.

As a physical device used for realizing the proposed second-
order branch, the TVMD, which is a commercially available device,
is employed. The negative-stiffness effect of an inerter in a TVMD
branch successfully reduces the undesirable storage stiffness
compared to Biot’s model.

By limiting the target frequency range in which a constant
loss stiffness is achieved, the required number of branches is
significantly reduced, thus enhancing the feasibility of the
proposed device.

An analytical example was used to demonstrate that the
proposed device approximated the performance of RILD well
when the maximum allowable isolator displacement was 0.4 m or
greater. The performance of the proposed device degraded when the
demand for isolator displacement mitigation became more severe;
nevertheless, it outperformed LVD. Moreover, the properties of the

proposed device, i.e., the inertance, damping coefficients, stiffness,
and maximum resistive force were in the realizable range.

Data availability statement

The raw data supporting the conclusion of this article will be
made available by the authors, without undue reservation.

Author contributions

BW: Funding acquisition, Investigation, Writing–original draft,
Writing–review and editing. KI: Supervision,Writing–original draft,
Writing–review and editing. SK: Conceptualization, Methodology,
Validation, Writing–original draft, Writing–review and editing.

Funding

The author(s) declare that financial support was received for
the research, authorship, and/or publication of this article. This
work was supported by the Support for Pioneering Research
Initiated by the Next-Generation Program (Grant Number.
JPMJSP2114) provided by the Japan Science and
Technology Agency.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fbuil.2024.1411170/
full#supplementary-material

References

Anajafi, H., Medina, R. A., and Santini-Bell, E. (2020). Effects of the improper
modeling of viscous damping on the first-mode and higher-mode dominated responses
of base-isolated buildings. Earthq. Eng. Struct. Dyn. 49, 51–73. doi:10.1002/eqe.3223

Arakaki, T., Kuroda, H., Arima, F., Inoue, Y., and Baba, K. (1999a). Development of
seismic devices applied to ball screw: Part 1 basic performance test of RD-series.
AIJ J. Technol. Des. 5, 239–244. doi:10.3130/aijt.5.239_1

Arakaki, T., Kuroda, H., Arima, F., Inoue, Y., and Baba, K. (1999b).
Development of seismic devices applied to ball screw: Part 2 performance
test and evaluation of RD-series. AIJ J. Technol. Des. 5, 265–270. doi:10.3130/
aijt.5.265

Architectural Institute of Japan (2007). Structural response and performance for long
period seismic gound motions, vol. 366 (MARUZEN)

Frontiers in Built Environment frontiersin.org15

Wang et al. 10.3389/fbuil.2024.1411170

https://www.frontiersin.org/articles/10.3389/fbuil.2024.1411170/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1411170/full#supplementary-material
https://doi.org/10.1002/eqe.3223
https://doi.org/10.3130/aijt.5.239_1
https://doi.org/10.3130/aijt.5.265
https://doi.org/10.3130/aijt.5.265
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1411170


Architectural Institute of Japan (2014) Intelligible guide to structural control. (in
Japanese) (MARUZEN).

Biot, M. A. (1958). “Linear thermodynamics and the mechanics of solids,” in
Proceedings of the third US national congress of applied mechanics (America:
American Society of Mechanical Engineers).

Booij, H., and Thoone, G. (1982). Generalization of kramers-kronig transforms and
some approximations of relations between viscoelastic quantities. Rheol. Acta 21, 15–24.
doi:10.1007/bf01520701

Caughey, T. (1962). Vibration of dynamic system with linear hysteretic damping
(linear theory). Proc. 4th U. S. Natl. Congr. Appl. Mech. 1962, 87–97.

Crandall, S. (1991). The hysteretic damping model in vibration theory. Proc.
Institution Mech. Eng. Part C Mech. Eng. Sci. 205, 23–28. doi:10.1243/pime_proc_
1991_205_086_02

De Domenico, D., Deastra, P., Ricciardi, G., Sims, N. D., and Wagg, D. J. (2019).
Novel fluid inerter based tuned mass dampers for optimised structural control of
base-isolated buildings. J. Frankl. Inst. 356, 7626–7649. doi:10.1016/j.jfranklin.
2018.11.012

Genta, G., and Amati, N. (2009). On the equivalent viscous damping for systems with
hysteresis. Mecc. Dei Solidi 32, 21–43.

Giaralis, A., and Petrini, F. (2017). Wind-induced vibration mitigation in tall
buildings using the tuned-mass-damper-inerter. J. Struct. Eng. 143, 04017127.
doi:10.1061/(asce)st.1943-541x.0001863

Hall, J. F. (2006). Problems encountered from the use (or misuse) of Rayleigh
damping. Earthq. Eng. Struct. Dyn. 35, 525–545. doi:10.1002/eqe.541

Hwang, J.-S., Kim, J., and Kim, Y.-M. (2007). Rotational inertia dampers with toggle
bracing for vibration control of a building structure. Eng. Struct. 29, 1201–1208. doi:10.
1016/j.engstruct.2006.08.005

Ikago, K., and Inoue, N. (2014). “Behavior of rate-independent linear damping
incorporated into long-period structures subjected to strong ground motions,” in
Proceedings of the 6th world conference on structural control and monitoring,
Spain, 15-17 July 2014 (IEEE), 1116–1124.

Ikago, K., Saito, K., and Inoue, N. (2012). Seismic control of single-degree-of-freedom
structure using tuned viscous mass damper. Earthq. Eng. Struct. Dyn. 41, 453–474.
doi:10.1002/eqe.1138

Ilgeigi, S., Jahanpur, J., and Farshidianfar, A. (2012). A novel scheme for nonlinear
displacement-dependent dampers. Nonlinear Dynamcics 70, 421–434. doi:10.1007/
s11071-012-0465-4

Inaudi, J. (1997). Modulated homogeneous friction: a semi active damping strategy.
Earthq. Eng. Struct. Dyn. 26, 361–376. doi:10.1002/(sici)1096-9845(199703)26:3<361::
aid-eqe648>3.3.co;2-d
Ishii, M., Kazama, H., Miyazaki, K., and Murakami, K. (2014). “Application of tuned

viscous mass damper to super-high-rise buildings,” in Proceedings of the 6th World
Conference of Structural Control and Health Monitoring, Barcelona, Sapin, 15-17 July
2014 (IEEE), 2825–2833.

Jia, R., Ji, X., Cheng, Y., and Ikago, K. (2023). Seismic response control of core wall
structures using tuned viscous mass damper (tvmd) outriggers. Eng. Struct. 292, 116546.
doi:10.1016/j.engstruct.2023.116546

Kang, J., and Ikago, K. (2023). Seismic control of multi-degree-of-freedom structures
using a concentratedly arranged tuned viscous mass damper. Earthq. Eng. Struct. Dyn.
52, 4708–4732. doi:10.1002/eqe.3977

Kang, J., Xue, S., Xie, L., Tang, H., and Zhang, R. (2023). Multi-modal seismic control
design for multi-storey buildings using cross-layer installed cable-bracing inerter
systems: Part 1 theoretical treatment. Soil Dyn. Earthq. Eng. 164, 107639. doi:10.
1016/j.soildyn.2022.107639

Kawamata, S. (1987). “Accelerated liquid mass damper and principles of structural
vibration control,” in Transactions of the International Conference on Structural
Mechanics in Reactor Technology (Lausanne), USA, 17-21 August 1987 (IEEE),
737–742.

Kawamata, S. (1989). Liquid type mass damper with elongated discharge tube

Keivan, A., Zhang, R., Keivan, D., Phillips, B. M., Ikenaga, M., and Ikago, K.
(2020). Rate-independent linear damping for the improved seismic performance of
inter-story isolated structures. J. Earthq. Eng. 26, 793–816. doi:10.1080/13632469.
2019.1693444

Kelly, J., Beucke, K., and M, S. S. (1980). Experimental testing of a friction damped
aseismic base isolation system with fail-safe characteristics. NASA STI/Recon Tech.
Rep. N. 1980 81, 26304.

Li, D., Ikago, K., and Yin, A. (2023). Structural dynamic vibration absorber using a
tuned inerter eddy current damper.Mech. Syst. Signal Process. 186, 109915. doi:10.1016/
j.ymssp.2022.109915

Liu, W., and Ikago, K. (2021a). Feasibility study of a passive rate-independent
damping device for the seismic protection of low-frequency structures. Structures
34, 2499–2514. doi:10.1016/j.istruc.2021.09.005

Liu, W., and Ikago, K. (2021b). Feasibility study of the physical implementation of
rate-independent linear damping for the protection of low-frequency structures.
J. Build. Eng. 44, 103319. doi:10.1016/j.jobe.2021.103319

Liu, W., and Ikago, K. (2022a). Causal implementation of rate-independent linear
damping for the seismic protection of low-frequency structures. Structures 35, 274–288.
doi:10.1016/j.istruc.2021.10.095

Liu, W., and Ikago, K. (2022b). Feasibility of physical implementation of rate-
independent linear damping to protect multistory low-frequency structures. J. Sound
Vib. 528, 116893. doi:10.1016/j.jsv.2022.116893

Liu, W., and Ikago, K. (2022c). Performance of a passive rate-independent damping
device in a seismically isolated multistory building. Struct. Control Health Monit. 29,
e2941. doi:10.1002/stc.2941

Liu, W., Ikago, K., Wu, Z., and Fukuda, I. (2022). Modified tuned Maxwell–Wiechert
model for improving seismic performance of base-isolated structures. J. Build. Eng. 54,
104616. doi:10.1016/j.jobe.2022.104616

Liu, X., Jiang, J. Z., Titurus, B., and Harrison, A. (2018). Model identification
methodology for fluid-based inerters. Mech. Syst. Signal Process. 106, 479–494.
doi:10.1016/j.ymssp.2018.01.018

Lu, Z., Wang, Z., Zhou, Y., and Lu, X. (2018). Nonlinear dissipative devices in
structural vibration control: a review. J. Sound Vib. 423, 18–49. doi:10.1016/j.jsv.2018.
02.052

Luo, H., and Ikago, K. (2021). Unifying causal model of rate-independent linear
damping for effectively reducing seismic response in low-frequency structures. Earthq.
Eng. Struct. Dyn. 50, 2355–2378. doi:10.1002/eqe.3450

Luo, H., Ikago, K., Chong, C., Keivan, A., and Phillips, B. (2019). Performance of low-
frequency structures incorporated with rate-independent linear damping. Eng. Struct.
181, 324–335. doi:10.1016/j.engstruct.2018.12.022

Makris, N. (1997). Causal hysteretic element. J. Eng. Mech. 123, 1209–1214. doi:10.
1061/(asce)0733-9399(1997)123:11(1209)

Marian, L., and Giaralis, A. (2017). The tuned mass-damper-inerter for harmonic
vibrations suppression, attached mass reduction, and energy harvesting. Smart Struct.
Syst. 19, 665–678. doi:10.12989/sss.2017.19.6.665

Nakaminami, S., Kida, H., Ikago, K., and Inoue, N. (2017). “Dynamic testing of a full-
scale hydraulic inerter-damper for the seismic protection of civil structures,” in
Proceeding of the 7th International Conference on Advances in Experimental
Structural Engineering, Pavia, Italy, 6th – 8th September – 2017 (IEEE), 57–79.

Nakamura, Y., Watanabe, H., and Kawamata, S. (1988). “Seismic response
control of structures by accelerated liquid mass damper,” in Proceedings of the
9th World Conference on Earthquake Engineering, Japan, Jul 2024 (Tokyo-Kyoto),
785–790.

Ogino, M., and Sumiyama, T. (2014). “Structural design of a high-rise building using
tuned viscous mass dampers installed across three consecutive sotreys,” in Proceedings
of the 12th International Conference on Computational Structures Technology, Naples,
Italy, August 24 ~ 25, 2024 (IEEE), 225.

Pan, C., and Zhang, R. (2018). Design of structure with inerter system based on
stochastic response mitigation ratio. Struct. Control Health Monit. 25, e2169. doi:10.
1002/stc.2169

Pietrosanti, D., De Angelis, M., and Giaralis, A. (2021). Experimental seismic
performance assessment and numerical modelling of nonlinear inerter vibration
absorber (iva)-equipped base isolated structures tested on shaking table. Earthq.
Eng. Struct. Dyn. 50, 2732–2753. doi:10.1002/eqe.3469

Ryan, K. L., and Polanco, J. (2008). Problems with Rayleigh damping in base-isolated
buildings. J. Struct. Eng. 134, 1780–1784. doi:10.1061/(asce)0733-9445(2008)134:
11(1780)

Saitoh, M. (2012). On the performance of gyro-mass devices for displacement
mitigation in base isolation systems. Struct. Control Health Monit. 19, 246–259.
doi:10.1002/stc.419

Smith, M. (2002). Synthesis of mechanical networks: the inerter. IEEE Trans.
Automatic Control 47, 1648–1662. doi:10.1109/tac.2002.803532

Sone, A., Yamamoto, S., andMasuda, A. (1998) Sliding mode control for building using
tunedmass damper with pendulum and lever mechanism during strong earthquake.Copy
available on request.

Sugimura, Y., Goto, W., Tanizawa, H., Saito, K., and Ninomiya, T. (2012). “Response
control effect of steel building structure using tuend viscous mass damper,” in
Proceedings of the 15th International Conference on Earthquake Engineering
(Lisbon, Portugal), USA, 24-28 September 2012 (IEEE). Paper ID 0138.

Frontiers in Built Environment frontiersin.org16

Wang et al. 10.3389/fbuil.2024.1411170

https://doi.org/10.1007/bf01520701
https://doi.org/10.1243/pime_proc_1991_205_086_02
https://doi.org/10.1243/pime_proc_1991_205_086_02
https://doi.org/10.1016/j.jfranklin.2018.11.012
https://doi.org/10.1016/j.jfranklin.2018.11.012
https://doi.org/10.1061/(asce)st.1943-541x.0001863
https://doi.org/10.1002/eqe.541
https://doi.org/10.1016/j.engstruct.2006.08.005
https://doi.org/10.1016/j.engstruct.2006.08.005
https://doi.org/10.1002/eqe.1138
https://doi.org/10.1007/s11071-012-0465-4
https://doi.org/10.1007/s11071-012-0465-4
https://doi.org/10.1002/(sici)1096-9845(199703)26:3<361::aid-eqe648>3.3.co;2-d
https://doi.org/10.1002/(sici)1096-9845(199703)26:3<361::aid-eqe648>3.3.co;2-d
https://doi.org/10.1016/j.engstruct.2023.116546
https://doi.org/10.1002/eqe.3977
https://doi.org/10.1016/j.soildyn.2022.107639
https://doi.org/10.1016/j.soildyn.2022.107639
https://doi.org/10.1080/13632469.2019.1693444
https://doi.org/10.1080/13632469.2019.1693444
https://doi.org/10.1016/j.ymssp.2022.109915
https://doi.org/10.1016/j.ymssp.2022.109915
https://doi.org/10.1016/j.istruc.2021.09.005
https://doi.org/10.1016/j.jobe.2021.103319
https://doi.org/10.1016/j.istruc.2021.10.095
https://doi.org/10.1016/j.jsv.2022.116893
https://doi.org/10.1002/stc.2941
https://doi.org/10.1016/j.jobe.2022.104616
https://doi.org/10.1016/j.ymssp.2018.01.018
https://doi.org/10.1016/j.jsv.2018.02.052
https://doi.org/10.1016/j.jsv.2018.02.052
https://doi.org/10.1002/eqe.3450
https://doi.org/10.1016/j.engstruct.2018.12.022
https://doi.org/10.1061/(asce)0733-9399(1997)123:11(1209)
https://doi.org/10.1061/(asce)0733-9399(1997)123:11(1209)
https://doi.org/10.12989/sss.2017.19.6.665
https://doi.org/10.1002/stc.2169
https://doi.org/10.1002/stc.2169
https://doi.org/10.1002/eqe.3469
https://doi.org/10.1061/(asce)0733-9445(2008)134:11(1780)
https://doi.org/10.1061/(asce)0733-9445(2008)134:11(1780)
https://doi.org/10.1002/stc.419
https://doi.org/10.1109/tac.2002.803532
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1411170


Swift, S., Smith, M., Glover, A., Papageorgiou, C., Gartner, B., and Houghton, N.
(2013). Design and modelling of a fluid inerter. Int. J. Control 86, 2035–2051. doi:10.
1080/00207179.2013.842263

Wang, F., Hong, M., and Lin, T. (2011). Designing and testing a hydraulic inerter.
Proc. Institution Mech. Eng. Part C J. Mech. Eng. Sci. 225, 66–72. doi:10.1243/
09544062JMES2199

Watanabe, Y., Ikago, K., Inoue, N., Kida, H., Nakaminami, S., Tanaka, H., et al. (2012).
“Full-scale dynamic tests and analytical verification of a force-restricted tuned viscous
mass damper,” in Proceedings of the 15th World Conference on Earthquake
Engineering (Lisbon, Portugal), China, 24-28 September 2012 (IEEE). ID 1206.

Wu, Z., and Ikago, K. (2024). Feasibility of an inerter-based causal rate-independent
damping model for the protection of seismically isolated structures. Struct. (Elsevier) 62,
106271. doi:10.1016/j.istruc.2024.106271

Wu, Z., Liu, W., and Ikago, K. (2023). Feasibility study of a practical causal
rate-independent damping device for the improved performance of seismic
isolated structures. Eng. Struct. 275, 115305. doi:10.1016/j.engstruct.2022.
115305

Xie, L., Ban, X., Xue, S., Ikago, K., Kang, J., and Tang, H. (2019). Theoretical study on a
cable-bracing inerter system for seismic mitigation. Appl. Sci. 9, 4096. doi:10.3390/
app9194096

Xue, S., Kang, J., Xie, L., Zhang, R., and Xinlei, B. (2020). Cross-layer installed cable-
bracing inerter system forMDOF structure seismic response control. Appl. Sci. 10, 5914.
doi:10.3390/app10175914

Zhang, X.-l., Gao, Q., and Nie, J. (2018). The mem-inerter: a new mechanical
element with memory. Adv. Mech. Eng. 10, 168781401877842. doi:10.1177/
1687814018778428

Frontiers in Built Environment frontiersin.org17

Wang et al. 10.3389/fbuil.2024.1411170

https://doi.org/10.1080/00207179.2013.842263
https://doi.org/10.1080/00207179.2013.842263
https://doi.org/10.1243/09544062JMES2199
https://doi.org/10.1243/09544062JMES2199
https://doi.org/10.1016/j.istruc.2024.106271
https://doi.org/10.1016/j.engstruct.2022.115305
https://doi.org/10.1016/j.engstruct.2022.115305
https://doi.org/10.3390/app9194096
https://doi.org/10.3390/app9194096
https://doi.org/10.3390/app10175914
https://doi.org/10.1177/1687814018778428
https://doi.org/10.1177/1687814018778428
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1411170

	Causal rate-independent damping device using a rotary inerter damper
	1 Introduction
	1.1 Background
	1.2 Rate-independent linear damping
	1.3 Noncausality of RILD and Biot’s causal RILD model
	1.4 Dynamic stiffness
	1.5 Undesirable storage stiffness of causal RILD models

	2 Proposed causal model of rate-independent linear damping
	2.1 Insight obtained from Biot’s model
	2.2 Second-order causal model
	2.3 Relationship with Biot’s model

	3 Physical realization using tuned viscous mass damper
	3.1 Tuned viscous mass damper
	3.2 Physical realization with infinite branches of TVMD
	3.3 Comparison with Biot’s model

	4 Parameter design method for practical use and its application in a base-isolated structure
	4.1 Mathematical properties of loss stiffness function for TVMD
	4.2 Finite TVMD model
	4.3 Discussion on the target frequency band for single-degree-of-freedom systems
	4.4 Parameters design flowchart
	4.5 Case study
	4.5.1 Discussion on target frequency band for MDOF structure
	4.5.2 Time history analysis

	4.6 Feasibility of proposed model

	5 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


