
A framework for computer vision
for virtual-realistic multi-axial
real-time hybrid simulation

W. Saeger1, P. Miranda2, G. Toledo3, C. E. Silva2, A. Ozdagli4 and
F. Moreu1*
1Department of Civil, Construction and Environmental Engineering, The University of New Mexico,
Albuquerque, NM, United States, 2Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela
Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador, 3Department of Mechanical Engineering,
The University of New Mexico, Albuquerque, NM, United States, 4Department of Bioengineering, Civil
Engineering, and Environmental Engineering, Florida Gulf Coast University, Fort Myers, FL, United States

Real-time hybrid simulation has gained popularity over the last 20 years as a viable
and cost-effective method of testing dynamic systems that cannot be tested
using traditional methods. The emergence of multi-axial Real-time Hybrid
Simulation (maRTHS) has led to an increase in the allowable fidelity of the
numerical and experimental substructures. The testing community can now
replicate multiple-degree-of-freedom (MDOF) responses of both
substructures and thus can perform more representative tests. However, with
this increased fidelity of the substructures comes an increased complexity of
controlling these components. Specifically, multi-axial hydraulic actuator
assemblages require nonlinear coordinate transformations to derive plant
displacements as the force transducers on the actuators are not capable of
performing this task directly. Recently, benchmark problems have been provided
to the RTHS community in the form of virtual simulations. Virtual simulation refers
to a fully virtual testing methodology where numerical and physical components
are represented virtually. This approach enables the RTHS community to evaluate
various control algorithms without the need to recreate physical components.
This project aims to demonstrate the capability of computer vision-based
displacement tracking in a realistic virtual simulation of the experimental
substructure in avoiding excess nonlinear coordinate transforms. The tracking
algorithm utilizing the Lucas-Kanade optical flow method is tested in the virtual
simulation environment which is set up using real-time 3D creation engine,
Unreal Engine 4 (UE4), and computer graphics software, Blender. This
environment interfaces with MATLAB/Simulink, more specifically “Simulation
Tool for v-maRTHS benchmark” developed for multi-axial tests. The result of
this study establishes a novel framework for applying computer vision-based
tracking algorithms and sensing in v-maRTHS simulations using simulated
cameras within virtual simulation environments. A computer vision
displacement tracking algorithm is developed and optimized to work in
tandem with a MIMO PI controller to reduce tracking time delays within
31.25 milliseconds while tracking the nodal displacement and rotation of the
frame within a normalized RMSE of 1.24 and 1.10 respectively.

KEYWORDS

real-time hybrid simulation, computer vision, multi-axial test, virtual reality, control

OPEN ACCESS

EDITED BY

Tao Wang,
China Earthquake Administration, China

REVIEWED BY

Wael A. Altabey,
Alexandria University, Egypt
Chia-Ming Chang,
National Taiwan University, Taiwan

*CORRESPONDENCE

F. Moreu,
fmoreu@unm.edu

RECEIVED 09 April 2024
ACCEPTED 22 July 2024
PUBLISHED 08 August 2024

CITATION

Saeger W, Miranda P, Toledo G, Silva CE,
Ozdagli A and Moreu F (2024), A framework for
computer vision for virtual-realistic multi-axial
real-time hybrid simulation.
Front. Built Environ. 10:1415032.
doi: 10.3389/fbuil.2024.1415032

COPYRIGHT

© 2024 Saeger, Miranda, Toledo, Silva, Ozdagli
and Moreu. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with these
terms.

Frontiers in Built Environment frontiersin.org01

TYPE Original Research
PUBLISHED 08 August 2024
DOI 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/articles/10.3389/fbuil.2024.1415032/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1415032/full
https://www.frontiersin.org/articles/10.3389/fbuil.2024.1415032/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2024.1415032&domain=pdf&date_stamp=2024-08-08
mailto:fmoreu@unm.edu
mailto:fmoreu@unm.edu
https://doi.org/10.3389/fbuil.2024.1415032
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2024.1415032

1 Introduction

Real-time hybrid simulation (RTHS) is an experimental
technique popularly used to test structural systems that are
not typically feasible to implement in a lab setup due to size
or cost constraints. Hybrid simulation as we know it today was
developed by Hakuno et al. (1969), who used an analog
computer to solve a one-degree-of-freedom (1DOF) equation.
This novel research on pseudo dynamic (PsD) testing
constituted an efficient way of modeling engineering systems
and opened the door to developing new experiments with
physical and numerical substructures. The first formal
contribution to this alternative was formally made by
Takashima (Takanashi et al., 1975) in 1975, where the
equation of motion (EOM) was discretized in the time
domain to facilitate its numerical integration. The
substructuring idea arose from these early developments.
Substructuring implies that instead of building the entire
reference structure for testing, only a portion of it can be
extracted as a specimen and tested, focusing on the portion
with the most uncertain or hysteretic behavior occurs (Shao
et al., 2011; Nakata et al., 2014). On the other hand, Horiuchi
et al. (1999) demonstrated in a test of a stiffness specimen that
the effect of the time delay is equivalent to adding a negative
damping to the structure in RTHS. When this negative damping
is greater than or equal to the system damping, instability
problems can occur and further threaten the safety of the system.

Due to this effect in RTHS systems, new advanced control
strategies have been proposed that seek to minimize the
unavoidable delay between the commanded signal and the
measured signal. Recently, many of these approaches adapt
several stages for robust and adaptive design (Ou et al., 2015; Li
et al., 2021), which also increases their attention to improving
system performance in the presence of noise and random
disturbances.

In efforts to successfully synchronize the experimental and
numerical substructures, many sophisticated control algorithms
have been developed. To date, in the maRTHS context, robust
and adaptive methods (Aguila et al., 2024; Xu et al., 2024) have
been proposed to mitigate the inherent unknown uncertainties of
the servo-hydraulic system. It has been shown that Linear Quadratic
Gaussian (LQG) controllers produce very low tracking errors in
single axis RTHS applications (Fermandois, 2019; Wang et al.,
2019). These LQG controllers leverage model-based
compensation techniques to be robust to model uncertainties.
Consequently, compensation methods have emerged obtaining
very good results using optimized PI controllers. Tao and
Mercan (Tao and Mercan, 2019), optimized their PI controller
using an adaptive feedback compensation method. Niño Hilarion,
A. (Niño Hilarión, 2021), used a deep learning framework to
optimize their PI controller.

Typically, a physical substructure of an RTHS experiment is
comprised of a transfer system [servo-valve dynamics, actuator
dynamics and control-structure interaction (CSI) (Palacio-
Betancur and Gutierrez Soto, 2022)] coupled to an
experimental substructure, which is a representation of the full
structure (Condori et al., 2023). These components must be
properly identified in the form of transfer functions or state-

space equations so they can be numerically integrated. However,
these dynamics are affected by several factors, such as D/A
(digital/analog) and A/D conversions, communication time,
controller sampling frequency and actuator dynamics (Dyke
et al., 1995), making the successful synchronization of the
experimental and numerical substructure a challenge.

Typical control architectures used for conducting RTHS
experiments may include feedback signals of displacement,
acceleration, and force. Displacement transducers, such as
LVDTs, can be used to provide direct displacement
measurements of the actuators and the frame. For some
laboratory setups it may be difficult or impossible to position
or angle the displacement to properly obtain the desired frame
displacement measurements. Force-transducers offer an almost
instant feedback signal that is optimal for actuator controller
purposes and has little structural interaction. However, these
sensors are less optimal for determining the nodal displacement
of the frame. To find the nodal displacement values the signals
received from the force transducers must be converted through a
nonlinear coordinate transform, a process in which errors may
occur. Additionally, if imperfections exist within the actuator
assemblages or the frame itself, there may be uncertainties if the
coordinate transform is correctly calculating the nodal
displacements of the frame. Accelerometers can also be a
solution to get a more exact measurement of the nodal
displacement. However, given the need to integrate the signal
twice to obtain displacement, their use is prone to producing
errors and uncertainties associated with the integration itself
and high frequency noise amplification. There are still
unanswered questions about using acceleration for RTHS
feedback, but contributions by researchers like Liu et al.
(2023), and Ferrero et al., (Ferrero et al., 2016), where
correction techniques based on Kalman filters are used to
reduce these errors have been important to increase the use
of acceleration feedback control in RTHS. Computer vision
displacement tracking offers a possible solution to these
issues by providing a non-contact solution that is unaffected
by assemblage or frame uncertainties.

Computer vision-based tracking algorithms have gained
popularity over the past 40 years, but little has been done in
the context of real-time displacement tracking of structures in the
laboratory. Optical Flow is one of the most used and accepted
tracking methods. Summarized by Barron et al. (1992), there are
many different approaches to applying optical flow methods.
Lucas and Kanade and Horn and Schunck all found success using
first-order Differential-Based Methods to minimize spatial
gradients and estimate normal velocities (Barron et al., 1992).
Nagel, Uras, Girosi, Verri, and Torre all found success using
second-order Differential-Based Methods. Anandan and Singh
utilized Region-Based Matching methods for their optical flow
algorithms (Barron et al., 1992). Waxman, Wu, and Bergholm
developed a Phase-Based technique that applies spatiotemporal
filters to edge maps to track edges in real time (Barron et al.,
1992). Fleet and Jepson developed a separate Phase-Based
technique that uses band-pass velocity-tuned filters (Barron
et al., 1992). Shoa, et al., proposed an advanced binocular
vision system for 3D vibration displacement measurements
that found success (Ali et al., 2019).

Frontiers in Built Environment frontiersin.org02

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

Recently, there has been additional focus on optimizing the
Lucas Kanade optical flow computer vision tracking techniques to
make themmore suitable for real-time displacement tracking. These
efforts include creating algorithms that are more robust to noisy
measurements and have a reduced processing time (Guo and Zhu,
2016). Aminfar et al. (2019) and Ahmine et al. (2019) investigated
the impacts of using Gaussian filters and median filters with
different optical flow techniques and were able to achieve much
higher spatial resolution within their measurements. Dan et al.
(2017) proposed a sparse Lucas Kanade optical flow algorithm
through using multi-level pyramids and combining it with the
SURF matching algorithm which greatly increased the algorithms
tracking speed.

Others have begun using real-time computer vision tracking for
control applications. The use of computer vision for control
techniques enables one to control numerous points within a
camera’s field of view. Manigel and Leonhard used a Kalman
Filter and an H2 controller with computer vision to propose new
control methods for self-driving cars (Manigel and Leonhard, 1992).
Kazemian et al., used computer vision control as a real-time
extrusion quality monitoring during robotic building construction
(Zisserman and Curwen, 1993).

Recently, there has been an increased focus on developing
digital models, consisting of digital twins and simulated cameras
that can perform simulations asynchronously with real world
sensors. Davis et al. (2024) demonstrated these capabilities by
recording the modal shapes of a flexible cantilever beam in a
simulation and comparing it to real-world experiments. This
project proposes a novel framework to create and evaluate a
computer vision displacement tracking algorithm using
simulated cameras in a virtual simulation environment for a
virtual maRTHS problem.

The structure of this paper is as follows. The subsequent section
will discuss the overall methodology of the project. After the
methodology, the changes to the Simulink architecture will be
discussed. Then, the experimental setup procedure will be
detailed in Sections 3–6. This includes the creation process of the
virtual-realistic environment, the development of the UE4 and
Simulink interface, and finally, the implementation of the
computer vision-based displacement tracking algorithm and the
MIMO PID controller. Next, the calibration process of the virtual
camera and the optimization of the PID controller will be
overviewed in Sections 6, 7, respectively. The virtual experiments
are detailed in Section 8 followed by analysis of the results of those
experiments in Section 9. Conclusions will wrap up this study in
Section 10, and followed by Author Contributions, Funding,
Acknowledgments, and References.

2 Methodology

To conduct the v-maRTHS simulation for the maRTHS
benchmark problem, “Simulation Tool for v-maRTHS
benchmark” is utilized. Developed in Simulink, this tool
encompasses an all-inclusive RTHS framework with models of
the reference structure or ground truth, the numerical
substructure, and the experimental substructure. The reference
structure is modeled using a SAP2000 finite element model. Both

the numerical and experimental substructures are represented as
state-space models. The experimental substructure used for this
benchmark problem is a frame structure with two S3 ×
5.7 columns, a custom-built beam, two connecting joints
(Nodes 4 and 7) that bolt the beam to the columns, along
with a coupler acting as a transfer system between the
actuators and Node 4. The experimental substructure in the
lab is depicted in Figure 1 (Condori et al., 2023).

This research aims to create a realistic virtual simulation
environment to test and evaluate computer vision-based tracking
algorithms. To achieve this goal, the experimental structure is
rendered in a real-time 3D creation engine, Unreal Engine 4
(UE4), where the models are built with the Computer Aided
Design software SOLIDWORKS, the open-source computer
graphics software Blender. Realistic and dimensionally
accurate representations of the coupler and the beam are
developed in SOLIDWORKS. Blender is employed to model
the columns. Finally, UE4 serves as a scaffold for assembling
SOLIDWORKS and Blender geometries and for conducting
virtual experiments. This process will be discussed in more
detail in the subsequent sections. Figure 2 illustrates the data
flow of the project.

3 Updated Simulink architecture

The Simulink model’s architecture can be divided into three
different sub-levels: low-level, mid-level, and high-level. The
low-level architecture is defined as the atomic models
contained within a block that do not contain any sub-blocks.
For example, the experimental substructure representation is
low-level, as it does not contain further sub-blocks within
itself. Typically, a mid-level block contains only low-level
architecture sub-blocks. Here, the controller sub-block is
considered mid-level, as it contains the experimental
substructure representation along with other low-level blocks
such as the Kalman filter. High-level architecture encapsulates all
middle- and low-level sub-blocks and coordinates the signals
between them.

3.1 Low-level updated architecture

To introduce computer vision capability into the “Simulation
Tool for v-maRTHS benchmark” problem, several modifications
are made to the Simulink model provided with the benchmark.
The representation method of the experimental substructure is
changed from a state-space model to a UE4-based virtual-
realistic simulation. Four unique modules from the “Vehicle
Dynamics Blockset,” “Simulation 3D Actor Transform Set,”
“Simulation 3D Actor Transform Get,” “Simulation 3D Scene
Configuration,” and “Simulation 3D Camera Get,” are leveraged
to enable the virtual simulation. Additionally a separate
“MATLAB Function” module is developed to facilitate the
computer vision tracking algorithm. Each of these modules
will be discussed in detail in later sections. Figure 3 illustrates
the “Flexible UE4 Model” sub-block, which includes the new
blocks used for computer vision capability.

Frontiers in Built Environment frontiersin.org03

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

3.2 Mid-level updated architecture

The major modification made to the mid-Level architecture of
the Simulink model is the addition of measured nodal displacement
signals outputting from the “Flexible UE4 Model” sub-block.
Mimicking the provided model, these measured actuator signals
are sent through an estimator and used in the control loop while also
output from the controller sub-block. Additionally, the measured
nodal displacement values are also output from the controller sub-
block. The actuator displacements are sent through the provided

coordinate transformation sub-block and recorded to provide a
baseline for comparing the tracking abilities of the computer
vision algorithm. These processes can be seen in Figure 4.

3.3 High-level updated architecture

The aforementioned mid-level and low-level adjustments are
packaged in the “Physical Substructure” sub-block depicted below.
The updated high-level architecture is shown in Figure 5. The high-

FIGURE 1
Physical experimental substructure in a laboratory (Condori et al., 2023).

FIGURE 2
Overview of the v-maRTHS pipeline.

Frontiers in Built Environment frontiersin.org04

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

level architecture no longer requires two separate nonlinear coordinate
transforms to close the RTHS loop. The first nonlinear transform
converts desired nodal displacements into actuator displacements.
However, the second nonlinear coordinate transform can now be
bypassed, thanks to the creation and implementation of the virtual-
realistic simulation and the computer vision-based tracking algorithm,
which allow for direct measurement of nodal displacements.

4 Unreal engine virtual-realistic model

4.1 Geometry creation

A virtual realistic representation of the experimental
substructure is created in UE4. However, one of UE4’s

limitations is its inability to create flexible objects with Euler
beam like behavior directly using the UE4 interface. To overcome
this challenge, SOLIDWORKS and Blender are employed to
create the geometry of the 3D experimental substructure.
SOLIDWORKS is used to model the built-up beam, the
connector components, and the coupler. These components
are then imported into UE4 as static meshes, as all these
components are assumed to remain rigid through the
experiment. The two S3 × 5.7 columns of the substructure are
modelled in Blender as I-shaped prisms with consistent base,
width, and height dimensions as listed in the benchmark problem
statement. The columns are then manually meshed into eight
hexahedral elements, and each element is connected to
neighboring elements with “bones.” These columns are then
imported into UE4 as skeletal meshes and physics assets.

FIGURE 3
Vehicle Dynamics Block set modules used for Simulink and UE4 Interface.

FIGURE 4
MIMO PID control loop in Simulink.

Frontiers in Built Environment frontiersin.org05

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

Adjusting the physical properties of the skeletal meshes allows
the columns to appear flexible and mimic Euler beam-like
deformation.

4.2 Assembling the experimental
substructure

Each static mesh is assigned to its own “Static Mesh Actor.” An
actor in UE4 refers to any object that can be spawned or placed into a
level. Once assigned to an actor, each component is positioned and
assigned material properties. Every component in the assembly is
assigned UE4’s metal material. The two skeletal meshes are
imported as to “Skeletal Mesh Actors.” Physics constraints
between each bone of the mesh are created to represent the
stiffness and damping properties of the columns while still
allowing some degree of flexibility. “Physics Constraint Actors”
are then used to represent contacts and boundary conditions
within the model. The “Physics Constraint Actors” are also
assigned the degrees of freedom, stiffness, and damping, between
each component connection to represent fixed supports on the
bottom of each column.

4.3 Simulink-unreal engine interface
components

4.3.1 Unreal engine components
After the physical substructure is assembled, the Simulink-

UE4 Interface Components (SUEICs) are added to both the
Simulink and UE4 model. The components for UE4 provided
freely by MathWorks, MathWorks Interface and MathWorks
Automotive Content, are installed in UE4. Next, two
controllable spherical actors are added to the environment to
represent the hydraulic actuators. The two actuators are
positioned 254 mm apart and centered on the coupler,
consistent with the depiction in the benchmark problem

statement. Each actuator is linked to the coupler with “Physics
Constraint Actors,” and the Chaos Physics Engine is used to
simulate the collisions between each component. The Chaos
Physics Engine and collisions are necessary to accurately
represent the actuators translating the coupler and provide key
features for rigid body dynamics, such as damping and collision
response. The final SUIEC added to the UE4 model is a virtual
camera pointing towards the coupler. To ensure the virtual
camera can accurately capture the motion in the simulation, a
controlled black background and a point light are added to the
environment. The recorded video data from this virtual camera is
used for data collection in the computer vision-based tracking
algorithm. A render of the virtual environment is shown
in Figure 6.

4.3.2 Required symmetry
A major limitation of “Physics Constraint Actors” is their inability

to represent a “pulling force” from the SUEIC actuators on the coupler,
thus leaving the model unable to accurately simulate negative actuator
displacements. To work around this issue, symmetry is introduced into
the model. A second coupler is added to Node 7 of the experimental
substructure and then both actuators are copied and placed behind the
second coupler, as illustrated in Figure 7. In this setup the previous
negative “pulling forces” are now represented as “pushing forces” on the
second actuator.

4.3.3 Simulink components
To communicate with the SUEIC actors, the Vehicle

Dynamics Blockset provided by MathWorks is utilized. While
the primary intent of this blockset is to simulate vehicle dynamics
in various driving scenarios, it is repurposed for this project to
conduct RTHS tests. The “Simulate 3D Scene Configuration”
block within the blockset is used to link the virtual realistic
environment to the Simulink model and allow for
communication between UE4 and Simulink. Next, the
“Simulation 3D Actor Transform Set” block is introduced to
send the desired actuator displacement values from Simulink into

FIGURE 5
v-maRTHS high-level architecture in Simulink.

Frontiers in Built Environment frontiersin.org06

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

FIGURE 6
Virtual-realistic experimental setup in UE4.

FIGURE 7
Depiction of the pushing and pulling couplers.

Frontiers in Built Environment frontiersin.org07

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

the SUEIC actuators in UE4 at every time step. Likewise, the
“Simulation 3D Actor Transform Get” block is used to receive
measured actuator displacement values from the SUEIC
actuators back to Simulink. Due to the collisions in the
UE4 simulation, the actuators experience a damping effect,
causing the desired and measured actuator displacements to
differ, which is consistent with what one would expect in a
real-world test. To be thorough, the sensor noise values are
also added to each of the measured responses to preserve the
representation of the force transducers. The final block used in
the simulation is the “Simulation 3D Camera Get” block. This
block is used to configure the mounting location and rotation, the
vertical and horizontal resolution, and field of view angle of the
virtual camera SUEIC setup earlier. The block then records the
simulation from the specified mounting point and exports a real-
time RGB array value at each time step. The combination of the
virtual realistic environment in UE4 and the previously listed
Simulink blocks now allow for computer vision-based tracking
algorithms to be simulated in the v-maRTHS.

5 Computer vision tracking algorithm

A real-time computer vision-based tracking algorithm is used
to measure the displacement of Node 4, shown previously in
Figure 7 of the experimental substructure directly. The algorithm
utilizes the Lucas-Kanade optical flow method to track the
displacement of a specific Region of Interest (ROI) from the
RGB array that is output from the simulation video at each time

step (Al-Qudah and Yang, 2023). To compute the optical flow
between two images, the optical flow constraint equation,
Equation 1, shown below is solved.

Ixu + Iyv + It � 0 (1)

Ix, Iy, and It, are the spatiotemporal image brightness derivatives, u
is the horizontal optical flow, and v is the vertical optical flow. To
solve the constraint equation for u and v flow values, the Lucas-
Kanade method assumes a constant velocity in sub neighborhoods
over the ROI and performs a weighted, least square fit of the
constraint equation to a constant model for [u v]T. This is
achieved by minimizing the following weighted equation,
Equation 2:

∑n

x,y ∈ ΩW
2 Ixu + Iyv + It[]2 (2)

Ω represent small spatial neighborhoods within the ROI
domain, where x and y refer denote individual pixels within each
spatial neighborhood. W is a window function that prioritizes the
constraints towards the center of the ROI acting as the weighting
factor. The solution to the weighted minimization problem is seen
below in Equation 3.∑W2I2x ∑W2IxIy∑W2IyIx ∑W2I2y

⎡⎣ ⎤⎦ u
v

[] � − ∑W2IyIt∑W2IyIt
⎡⎣ ⎤⎦ (3)

The spatiotemporal derivatives Ix and Iy, are computed using a
four-central differences kernel 1 /

12 [−1, 8, 0,−8, 1] and its transpose,
while the It derivative is computed between two temporal

FIGURE 8
Lucas Kanade Optical Flow kernels.

Frontiers in Built Environment frontiersin.org08

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

consecutive images using the kernel [−1, 1]. Lastly, the window
function was separable and isotropic, and its effective 1-D weights
were 1 /

16 [1, 4, 6, 4, 1]. This process is depicted in Figure 8.

6 Controller

6.1 MIMO controller

The controller is based on a conventional proportional-integral-
derivative (PID) model, the with derivative constant omitted due to
its potential to induce instability. To establish initial values for the PI
controller gains, the Ziegler-Nichols closed-loop tuning method
(Fahmy et al., 2014) is employed. Since the system is a MIMO
system, the gains set for the control subsystem in the PID block are
presented in the expression given by Equation 4:

Cn s() � kp + ki
s

(4)

where kp is the proportional constant and ki is the integral constant;
these gains significantly influence the controller’s effect on the
system’s response. Here, C1(s) � 1.95 + 0.71

s and C2(s) � 3.00 + 0.2
s

are the transfer functions of the tracking controller, with the initial
parameters obtained with the Ziegler-Nichols method. It should be
noted that the effective balance of the gains is based on the
consideration that the proportional gain, kp, may result in faster
error response, potentially reducing the rise time but increasing the
risk of instability. The integral gain, ki, on the other hand, implies a
response could have a more efficient behavior in eliminating steady-
state errors but may lead to a slower response or overshoot.

The block diagram illustrated in Figure 9 depicts the
experimental implementation of the control plant based on a
UE4 interface aimed at achieving the most synchronized tracking
possible. For this reason, the output of the control plant (measured
displacements) follows the target displacement vector (numerical
substructure) and evaluates the tracking, estimation and global
performance of the maRTHS. Another significant aspect of this
new approach is the versatility of the frame response, which is not
estimated, i.e., the response of the experimental substructure

provides the displacements and calculates the measured forces for
the numerical substructure.

In the tracking control section, one can observe the interaction
scheme between the structure and the actuators. An estimate based
on a Kalman filter is established for the signal filtering that acts
directly on the MIMO PID controller, as previously mentioned. In
this context, the displacement obtained from the actuators does not
directly interfere in obtaining the measured force. This, as you can
see, is obtained from the tracking algorithm for computer vision. A
block diagram of the UE4 and Simulink interface is provided
in Figure 10.

6.2 Kalman filter for estimating
unobserved states

According to (Ziegler and Nichols, 1993), an estimator is
necessary, because the measured signals, ηm � [ηm1 ηm2]T, contain
high frequency noise, and not all states can be measured. Therefore,
the states of the experimental substructure must be estimated to
achieve a filtered response. For the design of the Kalman estimator
the covariance of the process noise and measurement noise are
considered in the behavior of the experimental framework,
represented in the form of a state-space model which is
presented as seen in Equation 5:

_z � Az + Bu + wk

ηm � Cz +Du + vk
(5)

where ηm is the output vector, and A, B, C and D are matrices of the
augmented control plant, necessary for state and output estimations.
The matrices are structured as A, [B G], C, [D E], where G is an
identity matrix of the same size as A, and E is a matrix of zeros with
the same number of rows as C and as many columns as G. This
variation in the plant structure enables the Kalman filter to estimate
the true state despite the presence of process noise, since the model is
subject to perturbations that should not be neglected. The
distribution of the process noise is assumed to be wk ~ N(0, Q),
and the distribution of the measurement noise is assumed to
be vk ~ N(0, R)

FIGURE 9
Computational and Experimental Domain block diagram.

Frontiers in Built Environment frontiersin.org09

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

In MATLAB, the Kalman function performs the estimates to
minimize the steady-state error covariance. It takes the plant system
and noise covariance data (Q, R and N), and returns the estimates of
the output and states (Kalman: Design Kalman filter for state
estimation, 2007). The process noise covariance gain, Q, and the
sensor noise covariance gain, R, are positive values, which in this
case are obtained from experimental measurements conducted on
the multiaxial benchmark.

6.3 PID optimization

The Control Design Toolbox of MATLAB (Simulink Control
Design, 2023) is an optimization package that facilitates the selection
of feedback gains to meet design specifications in closed-loop
control systems. The values discussed in Section 6.1 are refined
through simulations or real-time testing to achieve optimal
performance, selecting the optimization method, Bode, Nichols
or Root Locus editor. In this case, being a MIMO system, the PI
controller constants are determined for each output of the control
plant, taking into account their respective responses. Using the Root
Locus Editor method, the poles and zeros are strategically adjusted
to determine a feasible stability range for the system that will be
reflected in new gain values (Clark, 1996; Ogata, 2010). Both the
open-loop frequency response and step response can be visualized
simultaneously, allowing verification of proper control practice in
the time-domain response—a crucial aspect of effective control
design, aiming for less than 20% overshoot. This method
provides a starting point for further refinement to achieve the
desired control performance, balancing factors like response time,
stability, and steady-state accuracy. The design methods are iterative
and combine parameter selection with analysis, simulation and
understanding of plant dynamics.

7 Validation of the computer vision-
based tracking algorithm

7.1 Virtual camera calibration

To calibrate the virtual camera used to record the simulation, a
calibration board is created to be used in the MATLAB Camera
Calibrator App. The board is first modeled in SOLIDWORKS as a
200 × 200 mm square containing 50 × 50 mm checkered squares.
The board is then imported into UE4 and placed 375 mm away from
the virtual camera, maintaining the same distance as used in the
simulation. The board is then moved side-to-side and rotated while
the camera takes 9 different pictures of the process. The pictures
taken of the virtual calibration board can be seen in Figure 11.

The pictures are input into the Camera Calibrator App in
MATLAB to analyze the dynamics and characteristics of the
virtual camera. The app automatically recognizes the tracking
points in the checkerboard and shows the errors in pixels.
Images that generated larger errors are dismissed and the
calibration process is repeated. Once removed, all remaining
images are localized with defined positions and angles, with an
overall mean error of 0.15 pixels. This process is illustrated
in Figure 12.

The intrinsic and extrinsic camera parameters are saved in a
variable containing all image information, which is recorded in
Table 1. The focal length, the skew coefficient, and the first-order
radial and tangential distortions are retrieved from the intrinsic
parameters. Additionally, the pixel-to-mm conversion factor, m, is
calculated using the focal length, fc, and the known distance, d,
between the checkerboard and the camera, following Equation 6:

m � d

fc
(6)

FIGURE 10
Unreal Engine and Simulink interface block diagram.

Frontiers in Built Environment frontiersin.org10

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

FIGURE 11
Nine Pictures of the calibration board at different locations and rotations.

FIGURE 12
Error of each picture and representation of the position of the board to the camera.

TABLE 1 Intrinsic Camera Parameters received from calibration.

Intrinsic camera parameters

Focal Length (pixels) Pixel size (mm) Skew coefficient 1st Order Radial distortion Tangential distortion

X 923.365 0.4061 0 −0.0082 0

Y 923.802 0.4059 0 0.0744 0

Frontiers in Built Environment frontiersin.org11

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

7.2 Virtual validation experiment

The accuracy of the computer vision-based tracking
algorithm is then tested in a controlled experiment. The

experiment consists of a cube moving in a transverse sine
wave pattern, oscillating with an amplitude of 10 mm. The
noise threshold is optimized based on this experiment and
implemented into the algorithm, with the results shown in

FIGURE 13
Results from validation experiment.

TABLE 2 Performance evaluation criteria.

Criterion Equation Units

Actuator time delay J1,i � argmax
r

(∑N
k�1ηns,i[k] · ηm,i[k − r]) × 1000/f s ms

Normalized tracking error
J2,i �

��������������∑N

k�1(ηm,i[k]−ηns,i[k])2∑N

k�1(ηns,i[k])2

√
× 100

%

Maximum peak tracking error J3,i � max(|ηm,i[k]−ηns,i[k]|)
max(|ηns,i[k]|) × 100 %

Estimation time delay J4,i � argmax
r

(∑N
k�1ηns,i[k] · η̂m,i[k − r]) × 1000/f s ms

Normalized estimation error
J5,i �

���������������∑N

k�1(ψ̂m,i[k]−ψns,i[k])2∑N

k�1(ψns,i[k])2

√
× 100

%

Maximum peak estimation error J6,i � max(|ψ̂m,i[k]−ψns,i[k]|)
max(|ψns,i[k]|) × 100 %

Normalized error of estimation and reference at interface node
J7,i �

�������������∑N

k�1(ψ̂m,i[k]−ψi[k])2∑N

k�1(ψi[k])2

√
× 100

%

Normalized error of estimation and reference at upper levels
J8,i �

��������������∑N

k�1(ψns,i[k]−ψi[k])2∑N

k�1(ψi[k])2

√
× 100

%

Maximum peak error of estimation and reference at interface node J9,i � max(|ψ̂m,i[k]−ψi[k]|)
max(|ψi[k]|) × 100 %

Maximum peak error of estimation and reference at upper levels J10,i � max(|ψ̂ns,i[k]−ψi[k]|)
max(|ψi[k]|) × 100 %

Frontiers in Built Environment frontiersin.org12

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

FIGURE 14
Comparison of the Target versus Measured actuator 1 displacements.

FIGURE 15
Comparison of the Target versus Measured actuator 2 displacements.

Frontiers in Built Environment frontiersin.org13

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

Figure 13. The algorithm can track true displacement with a root
mean square error of 2.02 mm without smoothing. This number
drops to 0.63 mm with smoothing but due to the real time
requirement and computational demands of a moving average,
this was not applied in the RTHS model. The calibration
experiment also suggests an inherent offset in the
displacement likely due to a process that occurs in UE4 in
which the model “settles” at the beginning of the simulation.
The camera’s intrinsic parameters, the optimized noise
threshold, and the inherent offset are implemented into the
computer vision tracking algorithm to more accurately track
the nodal displacement and rotation of the frame. In real time
applications another cause of error is time delay. The algorithm is
also optimized to reduce the time delay as much as possible. To
do this, the frames are fed into the algorithm in an RGB Array
format which allows for faster data processing at the expense of
image detail. Another way this algorithm is optimized is using a

Gaussian filter which blurs the detail of each frame but greatly
reduces noise and processing time.

8 Experiments

Two separate experiments are conducted to compare the
different experimental substructure and displacement tracking
methods. The first experiment is conducted with the provided
Simulink model and an optimized PID controller. The Simulink
model represented the experimental substructure with a state-space
model and measured the nodal displacement through transforming
the actuator displacements. The second experiment is conducted
using the developed virtual-realistic experimental substructure with
the nodal displacement measured directly using the computer
vision-based tracking algorithm, the actuator displacements are
also recorded. The input for both experiments is the El Centro

TABLE 3 Error indices.

Performance criterion Criterion Indices

Performance Indices Units vRTHS PI vRTHS PI UE w/CV

Tracking Control Time delay J1,1 ms 0.98 −19.53

J1,2 ms 15.63 −3.91

Normalized tracking error J2,1 % 15.44 39.59

J2,2 % 33.48 31.78

Max. peak tracking error J3,1 % 16.76 46.63

J3,2 % 34.92 33.98

Estimation Time delay J4,1 ms 37.11 15.63

J4,2 ms 1.95 3.91

Normalized estimation error J5,4 % 31.79 71.29

J5,28 % 39.11 89.72

Max. peak estimation error J6,4 % 33.46 71.74

J6,28 % 40.49 92.5

Global RTHS Performance Normalized RTHS error J7,4 % 41.33 94.63

J7,28 % 34.99 89.15

Normalized RTHS error at upper levels J8,2 % 13.56 39.97

J8,26 % 12.55 43.26

J8,3 % 13.16 40.96

J8,27 % 12.66 42.25

Max. peak RTHS error J9,4 % 40.29 85.63

J9,28 % 34.97 93.31

Max. peak RTHS error at upper levels J10,2 % 11.05 29.57

J10,26 % 9.82 30.32

J10,3 % 10.59 29.66

J10,27 % 10.02 29.83

Frontiers in Built Environment frontiersin.org14

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

FIGURE 16
Nodal displacement tracking evaluation of the different tracking techniques.

FIGURE 17
Nodal rotation tracking evaluation of the different tracking techniques.

Frontiers in Built Environment frontiersin.org15

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

historic earthquake record scaled by a factor of 0.8. The error
indexes are recorded and can be seen in Table 2. Comparing the
tracking results of these experiments provides a means to
quantitatively evaluate the performance of the MIMO PI
controller while also determining the fidelity of the response of
the virtual simulation compared to the analytical model. The desired
nodal displacement and the rotation of the numerical substructure
and the measured nodal displacement of the experimental
substructure using both the computer vision-based tracking
algorithm and the nonlinear coordinate transform are also
recorded. By comparing the nodal displacement and rotation
measurements recorded using the coordinate transform method
and the computer vision tracking method, the accuracy of the
computer vision tracking algorithm is quantified.

9 Results and discussion

9.1 Evaluation of error indexes

The “Experimental Benchmark Control Problem for Multi-axial
Real-time Hybrid Simulation” paper provides 10 different error
indices to evaluate the performance of the controller. The formulas
used to calculate each error index can be seen in Table 2.

The state-space and virtual realistic representations produce
similar tracking control error index results. Using the PID controller
and the provided control plant, the model can be controlled to a
maximum peak tracking error under 35% and a maximum time
delay of 15.63 milliseconds. Meanwhile, the virtual realistic

representation can be controlled to a maximum peak tracking
error of 46.63% with a maximum time delay of
19.53 milliseconds. The tracking results are plotted in Figures 14, 15.

The estimation and global RTHS performance of the state-
space representation performs significantly better than the
virtual-realistic representation. The state-space model can be
controlled to a maximum peak estimation error of 40.49% and
a maximum peak RTHS error of 40.29%. It also records a
maximum estimation time delay of 37.11 milliseconds.
Meanwhile, the virtual realistic model has much higher
maximum estimation and global RTHS errors of 92.5% and
94.63%, respectively. All of the error indices can be seen in
Table 3. The higher estimation and global RTHS errors are due
to a lack of refinement in the computer vision-based tracking
algorithm and the uncertainties within the virtual realistic
simulation environment. This is evident because despite similar
tracking results the estimation and global errors are magnified.
This is investigated in the following sections.

9.2 Nodal tracking evaluation

The nodal tracking abilities of the nonlinear coordinate
transform and the computer vision-based tracking algorithm are
compared and plotted in Figure 16, below. The nonlinear coordinate
transform can track the nodal displacement values within a
maximum peak tracking error of 35.6% and a normalized RMSE
of 0.64 using Eq. 7. The computer vision tracking algorithm can
track the nodal displacement within a maximum peak tracking error

FIGURE 18
Error mitigation investigation.

Frontiers in Built Environment frontiersin.org16

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

of 78.8% and a normalized RMSE of 1.24. This can be seen
in Figure 16.

NRMSE �
�������������
1
n∑n

i�1 yi − ŷi()2√
max yi() − min yi() (7)

The nonlinear coordinate transform is able to track the nodal
rotation values within an maximum peak tracking error of 30.9%
and a normalized RMSE of 0.50. The computer vision tracking
algorithm was able to track the nodal displacement within a
maximum peak tracking error of 70.7% and an RMS percent
error of 1.10, as illustrated in Figure 17.

9.3 Error mitigation investigation

The computer vision tracking algorithm produces higher errors
when tracking the displacement and rotation of the frame, which

significantly influences the estimation and global RTHS results.
Additionally, noise appears to play a role in these effects, offering
areas for potential improvement. As mentioned in the accuracy
validation section, the addition of a moving average filter to the
tracking algorithm to make it more resistant to noise can greatly
improve the accuracy of the tracking results. Moving averages of
different window sizes are applied to the computer vision tracking
algorithm and the tracking errors are recalculated and plotted
in Figure 18.

Both the nodal displacement and rotation tracking results
improve greatly when a moving average with a window size of
8 is applied to the data. The estimation and global RTHS error
metrics are recalculated with this filter applied. The recalculated
error indices are shown in Table 4.

The time delay errors and the RTHS errors at the upper levels
are unaffected by the filter, however the remaining estimation
and global RTHS indices are improved when the filter is applied.
The indices that are most impacted include the normalized

TABLE 4 Filter effect investigation.

Performance criterion Criterion Indices

Performance Indices Units CV CV with Filter

Tracking Control Time delay J1,1 ms −19.53 −16.60

J1,2 ms −3.91 −2.93

Normalized tracking error J2,1 % 39.59 42.56

J2,2 % 31.78 32.32

Max. peak tracking error J3,1 % 46.63 46.16

J3,2 % 33.98 34.32

Estimation Time delay J4,1 ms 15.63 16.60

J4,2 ms 3.91 2.93

Normalized estimation error J5,4 % 71.29 64.23

J5,28 % 89.72 72.97

Max. peak estimation error J6,4 % 71.74 69.42

J6,28 % 92.5 79.37

Global RTHS Performance Normalized RTHS error J7,4 % 94.63 65.05

J7,28 % 89.15 67.98

Normalized RTHS error at upper levels J8,2 % 39.97 39.97

J8,26 % 43.26 43.26

J8,3 % 40.96 40.96

J8,27 % 42.25 42.25

Max. peak RTHS error J9,4 % 85.63 72.89

J9,28 % 93.31 74.81

Max. peak RTHS error at upper levels J10,2 % 29.57 29.57

J10,26 % 30.32 30.32

J10,3 % 29.66 29.66

J10,27 % 29.83 29.83

Frontiers in Built Environment frontiersin.org17

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

RTHS error at nodes 4 and 28 dropping from 94.63% to 65.05%
and 89.15%–67.98%, respectively. This suggests that the
algorithm will benefit greatly from a predictive moving
average filter or an adaptive feedback loop to reduce the noise
of the signal.

9.4 Comparison with previous PI controllers

The performance of the PI controller is compared to the tracking
performance of the PI controllers that were submitted to the
previous single-axis RTHS benchmark problem. This comparison
quantifies the effectiveness of the PI controller implemented in this
study compared to four previously successful PI controllers: the
sample optimized PI controller from the previous single-axis
benchmark problem, a deep reinforcement learning (DRL) PI
controller, and an adaptive delay compensation PI controller. It
also provides some insight into what effects multi-axial dynamics
may have on PI controllers. Table 5 displays the time delay,
normalized tracking error, and maximum tracking error achieved
by each controller. The MIMO PI controller used in this study is
separated into two columns to compare actuator tracking results
independently.

The comparison of the MIMO PI controller to the initial
optimized PI controller, provided with the first benchmark
statement (Silva et al., 2020), suggests that the enhanced level of
complexity due to multiple actuators has a great negative impact on
an optimized PI controller’s performance as both controllers were
made using similar methodologies. The comparison suggests that
either a deep reinforcement learning feature (Niño Hilarión, 2021)
or an adaptive delay feedback would greatly improve the
performance of the MIMO controller.

10 Conclusion and future work

This study establishes a novel framework for applying computer
vision-based tracking algorithms and sensing in v-maRTHS
simulations using simulated cameras within virtual simulation
environments. A computer vision displacement tracking
algorithm has been developed to reduce time delays within
31.25 milliseconds while tracking the nodal displacement and
rotation of the frame within a normalized RMSE of 1.24 and
1.10, respectively. Thus, demonstrating that the nodal
displacement and rotation of the frame can be tracked directly
using the Lucas-Kanade Optical Flow algorithm and provides an

alternative method to the current method of nonlinear coordinate
transformations. This study also begins to allow others to advance
computer vision control theory in future v-maRTHS benchmark
problems. It is shown that Unreal Engine can be a feasible approach
to simulating experimental substructures of similar nature, while
still being able to measure actuator imperfections and control
structure interactions. The virtual simulation environment along
with computer vision tracking can be interfaced with a MIMO PI
controller to conduct a maRTHS with maximum actuator tracking
errors of under 46.63% and 33.98% for actuators 1 and 2,
respectively, and a maximum actuator time delay of
19.53 milliseconds and 3.91 milliseconds.

With these conclusions, there are areas that could be further
explored. Firstly, this experiment could be simulated with an event-
based imager. An event-based imager has a much higher sampling
frequency than a traditional camera and can be a viable option to
record higher frequency tests in the laboratory, producing shorter
time delays and higher tracking accuracy. Secondly, increasing the
model fidelity of the virtual-realistic model, including using a more
detailed mesh, and more accurate contact points, could enhance the
realism of the simulation. Lastly, applying a computer-vision
controller or a more sophisticated PI controller into the model
could yield better tracking results.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

WS: Conceptualization, Data curation, Formal Analysis,
Investigation, Methodology, Project administration, Software,
Validation, Visualization, Writing–original draft. PM:
Conceptualization, Formal Analysis, Investigation, Methodology,
Software, Validation, Visualization, Writing–original draft. GT:
Conceptualization, Formal Analysis, Methodology, Software,
Visualization, Writing–original draft. CS: Conceptualization, Formal
Analysis, Methodology, Software, Supervision, Writing–original draft,
Writing–review and editing. AO: Conceptualization, Formal Analysis,
Investigation, Methodology, Project administration, Supervision,
Writing–original draft, Writing–review and editing. FM:
Conceptualization, Funding acquisition, Project administration,
Resources, Supervision, Writing–review and editing.

TABLE 5 Comparison with previous PI controllers.

Criteria Unit vRTHS PI (Silva et al.,
2020)

DRL PI
(Niño Hilarión,

2021)

ADF PI
(Wang et al.,

2019)

MIMO PI
(Actuator 1)

MIMO PI
(Actuator 2)

Time delay ms 4.6 0 −0.09 −19.53 −2.93

Normalized tracking
error

% 10.4 3.21 0.79 42.56 32.32

Maximum tracking
error

% 11.5 3.45 1.03 46.16 33.98

Frontiers in Built Environment frontiersin.org18

Saeger et al. 10.3389/fbuil.2024.1415032

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

Funding

The author(s) declare that financial support was received for the
research, authorship, and/or publication of this article. The authors
appreciate the support of NSF Division of Information and
Intelligent Systems (IIS) CISE, Hardening the Data Revolution
DSC, Grant/Award Number: 2123346; and Office of Naval
Research, research program: Structural Reliability, ONR 331,
Grant No: 13620990, Award Number: N00014-22-1-2638.

Acknowledgments

The authors thank the creators of the “Experimental Benchmark
Control Problem for Multi-axial Real-time Hybrid Simulation” for
the opportunity to compete in this competition and for driving this
research objective. The authors would like to thank the UNMCenter
for Advanced Research Computing, supported in part by the
National Science Foundation, for providing the laboratory space
and office resources used to conduct this work. The authors also

thank Brandon Sisk and Duncan Gardener for their early assistance
with this research.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of
the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may
be evaluated in this article, or claim that may be made
by its manufacturer, is not guaranteed or endorsed by
the publisher.

References

Aguila, A. J., Li, H., Palacio-Betancur, A., Ahmed, K. A., Kovalenko, I., and Gutierrez
Soto, M. (2024). Conditional adaptive time series compensation and control design for
multi-axial real-time hybrid simulation. Front. Built Environ. 10, 1384235. doi:10.3389/
fbuil.2024.1384235

Ahmine, Y., Caron, G., Mouaddib, El M., and Chouireb, F. (2019). Adaptive lucas-
kanade tracking. Image Vis. Comput. 88, 1–8. 0262-8856. doi:10.1016/j.imavis.2019.
04.004

Ali, K., Yuan, X., Davtalab, O., and Khoshnevis, B. (2019). Computer vision for real-
time extrusion quality monitoring and control in robotic construction. Automation
Constr. 101, 92–98. doi:10.1016/j.autcon.2019.01.022

Al-Qudah, S., and Yang, M. (2023). Large displacement detection using improved
lucas–kanade optical flow. Sensors 23, 3152. doi:10.3390/s23063152

Aminfar, A. H., Davoodzadeh, N., Aguilar, G., and Princevac, M. (2019). Application
of optical flow algorithms to laser speckle imaging. Microvasc. Res. 122, 52–59. ISSN
0026-2862. doi:10.1016/j.mvr.2018.11.001

Barron, J. L., Fleet, D. J., Beauchemin, S. S., and Burkitt, T. A. (1992). “Performance of
optical flow techniques,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), Champaign, IL: CVPR, 236–242.

Carrion, J. E., and Spencer, B. F. (2007). Model-based strategies for real-time hybrid
testing. University of Illinois at Urbana-Champaign.

Clark, R. N. (1996). Control system dynamics. Cambridge University Press.

Condori, J. W., Salmeron, M., Patino, E., Montoya, H., Dyke, S. J., Silva, C. E., et al.
(2023). Experimental benchmark control problem for multi-axial real-time hybrid
simulation. Front. Built Environ. 9. doi:10.3389/fbuil.2023.1270996

Dan, L., Dai-Hong, J., Rong, B., Jin-Ping, S., Wen-Jing, Z., and Chao, W. (2017).
“Moving object tracking method based on improved lucas-kanade sparse optical flow
algorithm,” in 2017 International Smart Cities Conference (ISC2), Wuxi, China, 14-
17 September 2017, 1–5.

Davis, A., et al. (2024). “Digital twins for photorealistic event-based structural
dynamics,” in Computer vision and laser vibrometry, volume 6. SEM 2023.
Conference proceedings of the society for experimental Mechanics series. Editors
J. Baqersad and D. Di Maio (Cham: Springer). doi:10.1007/978-3-031-34910-2_13

Dyke, S. J., Spencer, B. F., Jr, Quast, P., and Sain, M. (1995). Role of control-structure
interaction in protective system design. J. Eng. Mech. 121, 322–338. doi:10.1061/(asce)
0733-9399(1995)121:2(322)

Fahmy, R., Badr, R., and Rah, F. (2014). Adaptive PID controller using RLS for SISO
stable and unstable systems. Adv. Power Electron., 5. doi:10.1155/2014/507142

Fermandois, G. A. (2019). Application of model-based compensation methods to
real-time hybrid simulation benchmark.Mech. Syst. Signal Process. 131, 394–416. 0888-
3270. doi:10.1016/j.ymssp.2019.05.041

Ferrero, R., Gandino, F., Hemmatpour, M., Montrucchio, B., and Rebaudengo, M.
“Exploiting accelerometers to estimate displacement,” in 2016 5th Mediterranean
Conference on Embedded Computing (MECO), Bar, Montenegro, Bar, Montenegro,

12-16 June 2016, 206–210. keywords: {Accelerometers;Acceleration;Kalman filters;
Estimation;Noise measurement;Motion measurement;Frequency measurement;
accelerometer;Kalman filter;position tracking;displacement}.

Guo, J., and Zhu, C. (2016). Dynamic displacement measurement of large-scale
structures based on the Lucas–Kanade template tracking algorithm. Mech. Syst.
Signal Process. 66–67, 425–436. ISSN 0888-3270. doi:10.1016/j.ymssp.2015.
06.004

Hakuno, M., Shidawara, M., and Hara, T. (1969). Dynamic destructive test of a
cantilever beam, controlled by an analog-computer. Proc. Jpn. Soc. Civ. Eng. 1969, 1–9.
doi:10.2208/jscej1969.1969.171_1

Horiuchi, T., Inoue, M., Konno, T., and Namita, T. (1999). Real-time hybrid
experimental system with actuator delay compensation and its application to a
piping system with energy absorber. Earthq. Eng. Struct. Dyn. 28, 1121–1141.
doi:10.1002/(sici)1096-9845(199910)28:10<1121::aid-eqe858>3.3.co;2-f
Kalman: Design Kalman filter for state estimation (2007). MathWorks. Available at:

https://la.mathworks.com/help/control/ref/ss.kalman.html?lang=en.

Li, H., Amin, M., Montoya, H., Uribe, J. W. C., Dyke, S. J., and Xu, Z. (2021). Sliding
mode control design for the benchmark problem in real-time hybrid simulation.Mech.
Syst. Signal Process. 151, 107364. doi:10.1016/j.ymssp.2020.107364

Liu, X., Li, Q., Wang, L., Lin, M., and Wu, J. (2023). Data-Driven state of charge
estimation for power battery with improved extended kalman filter. IEEE Trans.
Instrum. Meas. 72, 1–10. keywords: {State of charge;Estimation;Batteries;Neural
networks;Kalman filters;Mathematical models;Integrated circuit modeling;Back-
propagation (BP) neural network;extended Kalman filter (EKF);lithium-ion
battery;state of charge (SOC);variance compensation}. doi:10.1109/TIM.2023.
3239629

Manigel, J., and Leonhard, W. (1992). Vehicle control by computer vision. IEEE
Trans. Industrial Electron. 39 (3), 181–188. keywords: {Computer vision;Remotely
operated vehicles;Road vehicles;Computer displays;Mobile robots;Guidelines;Charge
coupled devices;Charge-coupled image sensors;Cameras;Automotive components}.
doi:10.1109/41.141618

Nakata, N., Dyke, S., Zhang, J., Mosqueda, G., Shao, X., Mahmoud, H., et al. (2014).
Hybrid simulation primer and dictionary. Available at: https://datacenterhub.org/
resources/8102.

Niño Hilarión, A. (2021). Using deep reinforcement learning to design a tracking
controller for a real-time hybrid simulation benchmark problem. Univ. los Andes.
Dispon. Available at: http://hdl.handle.net/1992/55345.

Ogata, K. (2010). Modern control engineering. Prentice-Hall.

Ou, Ge, Ozdagli, A. I., Dyke, S. J., and Wu, B. (2015). Robust integrated actuator
control: experimental verification and real-time hybrid-simulation implementation.
Earthq. Eng. Struct. Dyn. 44, 441–460. doi:10.1002/eqe.2479

Palacio-Betancur, A., and Gutierrez Soto, M. (2022). Recent advances in
computational methodologies for real-time hybrid simulation of engineering
structures. Archives of Computational Methods in Engineering.

Frontiers in Built Environment frontiersin.org19

Saeger et al. 10.3389/fbuil.2024.1415032

https://doi.org/10.3389/fbuil.2024.1384235
https://doi.org/10.3389/fbuil.2024.1384235
https://doi.org/10.1016/j.imavis.2019.04.004
https://doi.org/10.1016/j.imavis.2019.04.004
https://doi.org/10.1016/j.autcon.2019.01.022
https://doi.org/10.3390/s23063152
https://doi.org/10.1016/j.mvr.2018.11.001
https://doi.org/10.3389/fbuil.2023.1270996
https://doi.org/10.1007/978-3-031-34910-2_13
https://doi.org/10.1061/(asce)0733-9399(1995)121:2(322)
https://doi.org/10.1061/(asce)0733-9399(1995)121:2(322)
https://doi.org/10.1155/2014/507142
https://doi.org/10.1016/j.ymssp.2019.05.041
https://doi.org/10.1016/j.ymssp.2015.06.004
https://doi.org/10.1016/j.ymssp.2015.06.004
https://doi.org/10.2208/jscej1969.1969.171_1
https://doi.org/10.1002/(sici)1096-9845(199910)28:10<1121::aid-eqe858>3.3.co;2-f
https://la.mathworks.com/help/control/ref/ss.kalman.html?lang=en
https://doi.org/10.1016/j.ymssp.2020.107364
https://doi.org/10.1109/TIM.2023.3239629
https://doi.org/10.1109/TIM.2023.3239629
https://doi.org/10.1109/41.141618
https://datacenterhub.org/resources/8102
https://datacenterhub.org/resources/8102
http://hdl.handle.net/1992/55345
https://doi.org/10.1002/eqe.2479
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

Shao, X., Reinhorn, A. M., and Sivaselvan, M. V. (2011). Real-time hybrid simulation
using shake tables and dynamic actuators. J. Struct. Eng. 137 (7), 748–760. doi:10.1061/
(ASCE)ST.1943-541X.0000314

Silva, C. E., Gomez, D., Maghareh, A., Dyke, S. J., and Spencer, B. F., Jr (2020).
Benchmark control problem for real-time hybrid simulation.Mech. Syst. Signal Process.
135, 106381. doi:10.1016/j.ymssp.2019.106381

Simulink Control Design (2023). MathWorks," MathWorks. Available at: https://la.
mathworks.com/help/control/ref/controlsystemdesigner-app.html.

Takanashi, K., Udagawa, K., Seki, M., Okada, T., and Tanaka, H. (1975). Nonlinear
earthquake response analysis of structures by a computer-actuator on-line system.
Earthquake Resistant Structure Research Center.

Tao, J., andMercan, O. (2019). A study on a benchmark control problem for real-time
hybrid simulation with a tracking error-based adaptive compensator combined with a

supplementary proportional-integral-derivative controller. Mech. Syst. Signal Process.
134, 106346. 0888-3270. doi:10.1016/j.ymssp.2019.106346

Wang, Z., Ning, X., Xu, G., Zhou, H., and Wu, B. (2019). High performance
compensation using an adaptive strategy for real-time hybrid simulation. Mech.
Syst. Signal Process. 133, 106262. ISSN 0888-3270. doi:10.1016/j.ymssp.2019.106262

Xu, W., Meng, X., Chen, C., Guo, T., and Peng, C. (2024). Evaluation of data-
driven-narx model-based compensation for multi-axial real-time hybrid
simulation benchmark study. Front. Built Environ. 10, 1374819. doi:10.3389/
fbuil.2024.1374819

Ziegler, J. G., and Nichols, N. B. (1993). Optimum settings for automatic controllers.
J. Dyn. Syst. Meas. Control-transactions Asme 115, 220–222. doi:10.1115/1.2899060

Zisserman, A., and Curwen, R. (1993). A framework for spatiotemporal control in the
tracking of visual contours. Int. J. Comput. Vis. 11, 127–145. doi:10.1007/bf01469225

Frontiers in Built Environment frontiersin.org20

Saeger et al. 10.3389/fbuil.2024.1415032

https://doi.org/10.1061/(ASCE)ST.1943-541X.0000314
https://doi.org/10.1061/(ASCE)ST.1943-541X.0000314
https://doi.org/10.1016/j.ymssp.2019.106381
https://la.mathworks.com/help/control/ref/controlsystemdesigner-app.html
https://la.mathworks.com/help/control/ref/controlsystemdesigner-app.html
https://doi.org/10.1016/j.ymssp.2019.106346
https://doi.org/10.1016/j.ymssp.2019.106262
https://doi.org/10.3389/fbuil.2024.1374819
https://doi.org/10.3389/fbuil.2024.1374819
https://doi.org/10.1115/1.2899060
https://doi.org/10.1007/bf01469225
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1415032

	A framework for computer vision for virtual-realistic multi-axial real-time hybrid simulation
	1 Introduction
	2 Methodology
	3 Updated Simulink architecture
	3.1 Low-level updated architecture
	3.2 Mid-level updated architecture
	3.3 High-level updated architecture

	4 Unreal engine virtual-realistic model
	4.1 Geometry creation
	4.2 Assembling the experimental substructure
	4.3 Simulink-unreal engine interface components
	4.3.1 Unreal engine components
	4.3.2 Required symmetry
	4.3.3 Simulink components

	5 Computer vision tracking algorithm
	6 Controller
	6.1 MIMO controller
	6.2 Kalman filter for estimating unobserved states
	6.3 PID optimization

	7 Validation of the computer vision-based tracking algorithm
	7.1 Virtual camera calibration
	7.2 Virtual validation experiment

	8 Experiments
	9 Results and discussion
	9.1 Evaluation of error indexes
	9.2 Nodal tracking evaluation
	9.3 Error mitigation investigation
	9.4 Comparison with previous PI controllers

	10 Conclusion and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References

