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The growth of a city is typically accompanied by densification and sprawl, the
former through verticalization, urban renewal, and the filling in of empty spaces.
All of these activities extend and intensify the urban heat island (UHI), which is
quantified in this study as the difference in daily minimum temperature between
urban and rural areas. Here, we investigate this phenomenon in the area of
Rennes (France) and 17 surrounding cities using the Rennes UrbanNetworkwhich
comprises 93 weather stations. This study aims to 1) determine the optimal
method for spatializing UHI in Rennes, France, 2) estimate and spatialize the UHI
in the small peri-urban cities surrounding Rennes. For this, we model mean UHI
and intense UHI using three methods of interpolation—multi-linear regression
(MLR), ordinary kriging (OK), and regression kriging (RK)—based on data from
2022. We find that the RK method is the most suitable overall, with an RMSE of
0.11°C for mean UHI and 0.25°C for intense UHI. This approach allows
stochasticity to be taken into account, and thus provides a better
representation of UHI variation within Rennes and its peri-urban cities.
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1 Introduction

The urban heat island (UHI) effect is a climatic phenomenon caused by the expansion
and verticalization of a city. It is expressed as the difference in near-surface air temperature
between the city center and the surrounding rural areas (Oke, 1987) and has numerous
impacts on the urban environment, including on human health, patterns of pollution
(Rousseau, 2005; Stéphan et al., 2005; Ledrans, 2006), and vegetation growth (Mimet et al.,
2009; Jochner and Menzel, 2015). Compared to the (semi)natural environment, the low
vegetation density in cities, along with the high amount of artificial surfaces, lead to reduced
evapotranspiration. The net radiation is stored in building materials, causing heat
accumulation during the day and release at night, resulting in higher temperatures
(Oke, 1976; Landsberg, 1981; Oke, 1982). Most efforts have focused on large sized cities
(Cantat, 2004; Oswald et al., 2012; Shi et al., 2018; Rogers et al., 2019; Dos Santos, 2020;
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Cecilia et al., 2023) containing more than one million inhabitants
according to the UN-Habitat report1 or medium-sized cities But, in
2014, almost one out of two people worldwide lived in a city with
fewer than 500,000 inhabitants (Nations United, 2014), leading to an
increasing recent works on mid-sized cities (Eliasson and Svensson,
2003; Schatz and Kucharik, 2014; Foissard, 2015; Wicki et al., 2018;
Foissard et al., 2019; Amorim et al., 2021; Burger et al., 2021; Dumas,
2021; Richard et al., 2021; Marques, 2023Alonso and Renard, 2020;
Oukawa et al., 2022; Voelkel and Shandas, 2017). Indeed, knowing
and assessing the intensities of UHI observed in medium and small
cities will enable to support public policies in new urban planning
for more people. This study maps the UHI of the city of Rennes
(medium size) and the surrounding peri-urban small cities, a region
who have known an economic attractiveness which has led to
intensive urbanization of the peri-urban cities in recent years.

UHI monitoring can be performed using data from fixed
meteorological stations or transect measurements, or with
thermal infrared data obtained by remote sensing (land surface
temperature). Sometimes, a combination of several approaches is
employed (Amorim et al., 2015; Wicki et al., 2018; Barbosa and
Dubreuil, 2020). Land surface temperature data can be used to
estimate surface urban heat islands (SUHI), which provide relevant
and spatialized, but indirect, information on the atmospheric UHI.
Currently, the only way to monitor atmospheric UHI over time is
using measurements from meteorological stations of local air
temperatures, but the spatial coverage of this approach is often
restricted and may lack accuracy for interpolating continuous
climatic phenomena, depending on the temporal and spatial
scales of observation. To overcome these limitations,
interpolation methods can be used to estimate urban
temperatures from fixed data. These include so-called
geostatistical methods, such as splines or inverse distance
weighting, and so-called deterministic methods such as ordinary
kriging (OK), multi-linear regression (MLR), geographically
weighted regression (GWR), or regression kriging (RK) (Hengl
et al., 2007; Harris et al., 2010; Zhang et al., 2011; Szymanowski
and Kryza, 2012).

Previous studies of the UHI of Rennes have employed MLR to
take into account a combination of land use variables and data from
up to 28 weather stations (Dubreuil et al., 2008; Foissard, 2015;
Foissard et al., 2019; Dubreuil et al., 2020). Although the
geographical variables used have enabled good predictions of the
UHI over the studied space, as a stochastic method, MLR develops
errors due to the non-stationarity of the phenomenon because it
does not take into account meteorological factors that can influence
the distribution of the UHI (Foissard et al., 2019). To address this
problem, other methods can be tested, such as OK, which takes
account of the phenomenon’s non-stationarity, but requires a dense
measurement network (Hengl et al., 2007). Hence, the network of
weather stations has been densified, reaching about one hundred
connected stations. They are currently used to monitor the air
temperature (Dubreuil et al., 2022) in the study area, inside the
ring road of Rennes but also in the nearby peri-urban cities. But
using the OK method does not make it possible to maintain the

relationship with land use as for MLR. Our proposal is to use hybrid
methods such as RK which can also keep the phenomenon’s
relationship with land use, while integrating the problem of non-
stationarity.

The first objective of this study is to compare several
interpolation methods (OK, MLR, and RK) and to determine
which one is the most suitable for spatializing the UHI in a
territory that is heterogeneous in terms of urban morphology,
topography and variations in land use in rural areas. The second
objective is to estimate and spatialize the UHI in the 18 small peri-
urban cities surrounding Rennes. We considered only atmospheric
UHI, derived from the air temperature near each station.

2 Materials and methods

2.1 General description of the study area

The study site encompasses Rennes and the surrounding
suburban and peri-urban cities, which are located in Brittany, in
western France, 43 km from the sea (Figure 1). The study area
straddles a plateau in the northwest (105 m above sea level, asl) and a
valley (20 m asl) in the south. Twomajor rivers cross the site, the one
from the northeast to the south (“Ille”) and another from east to west
(“Vilaine”), and converge in the city of Rennes.

The temperate oceanic climate of Rennes is relatively cool and
rainy, and is considered to be in class Cfb of the Köppen-Geiger
classification (Eveno et al., 2016). The annual mean temperature is
12.4°C (1991–2020) with an average maximum daily temperature in
July and August of 19.25°C and an average minimum of 6.22°C in
January. The mean annual cumulative rainfall is 690 mm and the
least rainy month is August, with 43.5 mm.

The population of Brittany has increased continuously since the
middle of the 20th century. In 2019, this area had 3 323 355 residents
(INSEE, www.insee.fr), and is predicted to face an increase of 12% by
2040 (400,000 more people, compared to 8% for mainland France).
According to these scenarios, seniors (aged over 65) will represent
70% of the growth2. This population growth has been accompanied
by a marked increase in urbanization (11.4% of Breton territory in
2016). Furthermore, the significant extension of artificial surfaces
around major metropolises like Rennes (Figure 1) has enabled the
development of a multitude of small and medium-sized towns. The
conurbation of Rennes has experienced considerable urban sprawl
over the last 30 years, with a 128% increase in artificial surfaces from
1985 to 2015 (SRADDET, 2019). Since the 2000s, Rennes has
focused its efforts on slowing this sprawl and on densifying its
existing impermeable surfaces and the population density of the city
reaches 4500/km2 in 2020. This policy has had the effect of
promoting the growth of peri-urban cities, making the Rennes
region a model of an “archipelago city”. In total, the study area
comprises 18 cities (Figure 1; Table 1), including Rennes and its
smaller neighbors, which together host approximately
365,000 inhabitants in 352 km2. These small cities are
representative of the interior of Brittany with respect to

1 https://unhabitat.org 2 https://www.insee.fr/fr/statistiques/4250821
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FIGURE 1
Urban sprawl of Rennes and peri-urban cities in 2020, with the location of weather stations indicated. Sources: AUDIARD and Corine Land Cover
2018. Datum: RGF93.
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demographics, land pressure, and economics, and have grown
rapidly in recent decades due to the influence of Rennes and the
attraction of a “country” lifestyle. Specifically, this area features:

- One municipality of more than 200,000 inhabitants. Within
Brittany, the five cities with more than 50,000 inhabitants
(Rennes, Brest, Quimper, Lorient, and Vannes) represent 16%
of the total population (INSEE).

- One municipality of approximately 17,000 inhabitants. Cities
with a population between 10 and 20,000 inhabitants represent
12% of the population of Brittany.

- Eleven municipalities with a population between 5 and 15,000;
cities of this size in Brittany represent 19% of the regional
population.

- Five municipalities with a population between 2 and 5 000;
cities of this size account for 27% of the population of Brittany.

2.2 Climate data

Historically, only the UHI of Rennes was studied from up to
28 weather stations. The network of weather stations has been
densified inside the ring road of Rennes, reaching 51 connected
stations. In addition, the nearby peri-urban cities have also been
equipped to measure the intensity of UHI effects. In all,
127 connected stations are currently used to monitor the air
temperature. The Rennes Urban Network consists of 32 Davis

Vantage Pro2 (complete) weather stations connected by the
internet and 95 Rising HF stations (Temperature and Humidity)
connected by LoRaWAN, and is therefore available in real time3.
Measurement sites are selected based on the local climate zones
(LCZ), the choice of which is detailed in Dubreuil et al., 2022. The
recording time step for Rising HF stations is 15 min. These
temperatures are then averaged on an hourly basis.

To characterize the UHI, 93 Rising HF stations are used in this
study; two are excluded from the analysis because more than 20% of
their data are outliers or missing. The weather stations are only used
to fill in missing temperature data from the 93 Rising HF stations
(representing 6% of the dataset in 2022). Missing temperature are
filled in using stations with similar thermal behavior. To do this, a
Pearson correlation is first calculated between the stations. Second, a
linear regression is performed on daily minimum temperatures
between the station with missing data and the one with the
highest correlation. Next, the prediction of missing data is
obtained using the regression model.

The UHI is defined as a difference in air temperature between
urban and rural areas, and its presence is determined by a variety of
weather conditions (Oke, 1982; Cantat, 2004). The optimal
conditions for the formation of a UHI are a combination of low
average daily wind (≤5 m/s) and a clear sky. In Rennes, the UHI is

TABLE 1 Study cities and their overall population growth statistics. Sources: INSEE (2020 census), AUDIARD (data: “Urban sprawl”of Rennesmetropolis from
2020), and *Corine Land Cover 2018 (Copernicus program, European space agency).

Pop. in 2020 Total area (km2) Urban areas (%) Density evol. 1999–2020 (%)

Rennes 222,485 50.30 76.19 7.90

Cesson-Sévigné 17,316 32.13 34.88 20.79

Saint-Jacques-de-la-Lande 13,955 12.33 73.71 84.03

Betton 12,637 26.76 17.38 47.71

Pacé 12,004 34.96 12.66 52.14

Chantepie 10,236 11.96 27.64 50.64

Saint-Gregoire 9881 17.49 28.58 29.23

Le Rheu 9247 19.12 21.49 61.24

Thorigne-Fouillard 8584 13.60 21.04 29.45

Vern-sur-Seiche 8289 19.7 22.7 11.19

Noyal-Chatillon-sur-Seiche 7318 26.49 13.3 29.87

Melesse 7111 32.48 8.47* 37.73

Vezin-le-Coquet 6234 7.91 29.25 54.73

La-Mézière 4935 16.42 20.77* 57.57

L’Hermitage 4647 6.80 30.32 50.34

La Chapelle-des-Fougeretz 4628 8.73 18.79 39.65

Montgermont 3564 4.69 32.9 29.69

Chevaigné 2355 10.40 6.85 45.37

3 https://run.letg.cnrs.fr

Frontiers in Built Environment frontiersin.org04

Brabant et al. 10.3389/fbuil.2024.1455047

https://run.letg.cnrs.fr/
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1455047


nocturnal phenomenon (Foissard et al., 2019). The daily UHI is
estimated as the difference between minimum temperature recorded
by each station and the rural reference. This method incorporates
the coolest hour of the night, corresponding to the body’s recovery
phase after a hot day (Stéphan et al., 2005; Foissard, 2015). In order
to estimate the intensity of a UHI, it is critical to first define a pair of
urban-rural stations as references. Furthermore, with these reference
stations, it is necessary to take into consideration the local effects
inherent in their geographical situation (e.g., topographic hollow,
exposure on a crest) (Dumas, 2021); their climatic situation, from
the local scale to microscale (e.g., very localized rain, exposure to
prevailing winds) (Morris et al., 2001); and/or their direct
environment (e.g., large lake) (Mohsin and Gough, 2012). One
solution is to use several stations as references, accounting for
their direct environments and their location (north, east, south,
west) relative to the urbanized spaces (Santamouris, 2015). This is

especially important when a study focuses on a city at the bottom of
a valley with an accentuated topography (Dumas, 2021). Here, we
select the 3 rural stations (“La-Lice,” “La-Morinais,” “Melesse”
respectively station 1, 2, 3 on Figure 1) with similar thermal
behavior and identified as the coolest in the study area.

Next, we identified days in which a UHI is present, taking into
account the connections between this phenomenon, land-use, and
synoptic weather conditions. More precisely, the first step is to select
all the absolute minimum temperatures that occurred at night
(between 8 p.m. and 8 a.m.). We identified 191 days in which
weather conditions are optimal for the formation of a UHI (wind
speed ≤5 m/s and cumulative precipitation = 0 mm). Then, based on
the recommendations of Garcia (1996), we filtered these results to
retain only nights in which the UHI is at least of mediummagnitude
(≥2°C difference between the city center and rural reference). This
yielded a total of 138 nights in 2022.

FIGURE 2
Flowchart of the applied methodology.
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2.3 Interpolation methods

The purpose of interpolation techniques is to estimate unknown
values in all points of the study area. This becomes complicatedwhen, as
is the case here, the phenomenon studied varies in space. This spatial
variation can be separated into two components: the trend (first-order
variation) and the spatial dependence (second-order variation) (Zhang
et al., 2011). The trend can be modeled by spatial regression using
georeferenced data with secondary characteristics, in our case, land use,
urban morphology, or altitude. These data must be co-located with the
data to be interpolated (here, UHI effects from temperature
measurements). Instead, the spatial dependence can be characterized
using a covariance function that estimates a semi-variogram, as
proposed by kriging methods. The entire methodology is
summarized in Figure 2 and described in more detail below. We
first present MLR method and then kriging methods, including the
one applied on MLR residuals.

2.3.1 Multi-linear regression
MLR, also called multi-criteria spatial regression, is considered

an approximate global interpolation method. It provides the
estimate and its associated error based on a statistical model,
which can be expressed by Equation 1:

yi � β0 +∑
k

βkxik+εi (1)

where yi is the dependent variable, xik the explanatory variables (co-
variables), β0 the model intercept, and βik the coefficients of linear
regression; this part of the model represents the deterministic part,
i.e., the part of the system that always reacts in the same way to a
given event. Finally, εi is the error term at point i (residuals) and
represents the stochastic part of the model. MLR has been used
successfully for UHI spatialization in many studies (Steeneveld et al.,
2011; Szymanowski and Kryza, 2012; Amorim et al., 2015; Foissard,
2015; Theeuwes et al., 2017; Foissard et al., 2019; Burger et al., 2021).

This method utilizes land use information as potential co-variables,
which must be obtained from dense, accurate, and homogenous data
networks. Here, we obtained these data from the National Institute of
Geographic and Forest Information (IGN), which supplies geographical
data (every year, here for 2021) under a free license (Etalab 2.0). IGN

provides a variety of information on the ground surface, including the
height of buildings, the road network, water surfaces, cultivated areas,
and altitude. For information on vegetation in public and private areas,
we obtained a GIS classification layer characterizing the fine-scale
vegetation of the area from the services of “Rennes Métropole”
(for 2017).

Using these data, we obtained the following metrics as potential
co-variables (Table 2): built-up cover, height of buildings,
impervious surfaces, high and low vegetation cover, water
surfaces, distance to the center of Rennes (i.e., the distance to the
“Boul-Liberté” station -station 4 on Figure 1- with the most intense
UHI in Rennes), distance to the center of each city (distance to the
city center station) and altitude. In addition, the sky view factor
(SVF) is calculated based on altitude and the morphology of
buildings (height and surface area); this gives an indication of
building density and street geometry. SVF measures the diffuse
radiation emitted by the surrounding surfaces: a low SVF is
associated with increased net heat storage in buildings and
therefore an increased UHI. The final resolution of all metrics is 3 m.

As the land use surrounding the stations has a fluctuating
influence on temperature in both time and space (Voogt and
Oke, 2003; Amorim et al., 2015; Foissard, 2015), all metrics are
re-calculated using multiple buffer sizes around the stations.
Different radius sizes are tested, from 100 to 900 m with a step
of 100 m, to determine the global influence of each metric, and the
combination of metric and buffer size is subsequently called a co-
variable. A detailed description of the method is given in the
Supplementary material. This method is often used to determine
the influence of a surrounding area on the UHI. For example, the
influence of buildings on atmospheric temperatures is usually
defined using a circle with a radius of 500 m (Eliasson and
Svensson, 2003; Stewart and Oke, 2010; Zhao et al., 2011).

Finally, a linear regression model is built following the
procedure explained by Foissard et al., 2019. First, the co-
variables with the highest explanatory power are selected
(Bravais-Pearson test - R); the total number of co-variables is
limited to three in order keep the model as parsimonious as
possible. Collinearity is also tested from the Variance Impact
Factor and remains below 3 (maximum value = 2.17). Then, the
best model is applied to the selected rasterized co-variables.

TABLE 2 Summary of co-variates and their characteristics.

Potential co-variables Units Buffer Spatial resolution (m)

Distance to the center of Rennes m No 3

Height of buildings

Altitude 5

SVF index 0 to 1 Yes
100-900m

Surfaces Vegetation Total % 3

High

Low

Water

Built-up

Impervious

Frontiers in Built Environment frontiersin.org06

Brabant et al. 10.3389/fbuil.2024.1455047

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org
https://doi.org/10.3389/fbuil.2024.1455047


2.3.2 Kriging
When data on land use are not available or sufficiently

descriptive, or when the city is the finest scale of observation
possible, geostatistical methods can be used. Many methods exist
with various characteristics: stochastic or deterministic, local or
global, and exact or inexact.

The most commonly used method is krige (krige, 1951;
Matheron, 1967), which brings together a set of different
geostatistical interpolation techniques. This approach measures
the strength of statistical correlation as a function of distance,
i.e., it quantifies the principle that objects closer to each other
tend to be more similar than those farther away. Kriging assumes
that the distance or direction between sample points reflects a spatial
correlation that can explain variation in the parameter under study,
and therefore its spatial structure distribution (at a regionalized
scale). Kriging is considered an optimal and unbiased linear
estimation method that uses the structural properties of the
semi-variogram. In this study, if a variable is considered to be
stationary but of unknown mean, ordinary kriging (OK) is used
(Equation 2). The OK estimate is a linear weighted average of n
observations defined as:

Ẑ s( ) � ∑
n

i�1
λiΖ si( ) (2)

where Ẑ(s) is the OK estimate at location s, λi is the OK weight, and
si is the observation location. The objective of kriging is to minimize
the variance, with the predictor error variance (σ²) defined as:

σ2ok S0( ) � Ε Ẑ s0( )-Ζ s0( )( )2[ ] (3)

where Ε is the mathematical expectation in Equation 3 (detailed
information available in Lloyd, 2005). Parameters and functions are
optimized using the gstat and automap packages of R software.

2.3.3 Regression kriging
The two methods explained above (MLR and kriging) can be

combined to improve the results of the linear regression. Regression
kriging (RK) takes into account both the trend and the spatial
dependence. Regression (Equation 4) is used to fit the explanatory
variables (the trend component, the deterministic part), and simple
kriging (SK)with an expected value of 0 (the variable is stationary and of
known mean) is then performed to fit the residuals of the linear model
(the unexplained variation, the stochastic part), as follows:

RKUHIi � yi + εi (4)
where RKUHIi is the UHI effect calculated with SK on residuals for
grid i, yi is the UHI effect calculated from regression, and εi is the
regression residual interpolated with the SK approach. The
predicted SK value εi for location i calculated as follow in
Equation 5:

εi � ∑
k

λkεk (5)

Where εi is the new observation error term, λk are the
coefficients which weight the past error terms εk.

The mathematical process is similar to universal kriging or
kriging with external drift (KED), but the advantage of RK is the

ability to extend it to a range of other regression techniques (Li and
Heap, 2014). In addition, it is possible to interpret the two
components of the interpolation method separately. This
approach has been employed in many fields, for example, to
examine soil properties (Odeh et al., 1995; Hengl et al., 2004;
Zhu and Lin, 2010), remote sensing (Hengl et al., 2007; Kilibarda
et al., 2014), climate (Bostan et al., 2012), and urban climate
(Szymanowski and Kryza, 2009; 2012; Schatz and Kucharik,
2014; Touati et al., 2020; Colaninno and Morello, 2022; Ding
et al., 2023).

2.3.4 Quality and errors of estimates
The performance of each interpolation procedure is evaluated

and compared for both of the UHI variables considered (see below)
using cross-validation. Due to variability in land use across the study
area (urban versus rural), the leave-one-out method (LOOCV) is
chosen for cross-validation in order to analyze the optimal
performance of each interpolation method. LOOCV uses a
dataset of k = n-1 observations to calibrate the model on the
training set, and n iterations of k = 1 for the validation set. The
mean predictions from the validation dataset are compared to the
observed data for each of the 93 test datasets. The quality and
performance of interpolation are then evaluated based on the R2

value (or R2aj for multiple co-variables) as an indicator of the overall
quality of the model and the RMSE as an indicator of the quantity of
errors made by the model.

Given the RMSE’s sensitivity to outliers and the heterogeneity of
the territory, spatial autocorrelation is assessed using the global
Moran’s index and the tendency for clustering is evaluated with the
local Moran’s index. Spatial autocorrelation is an extension of the
principle of correlation between 2 variables, but takes into account
the spatial location of the variable. The global Moran’s index is used
to account for spatial correlation over an entire region. Its
calculation is based on a weighted matrix which depicts the
relationship between observations and their surroundings and
measures their similarities between them as the product of their
differences (Huo et al., 2012). Moran’s index provides insights into
the predictive capacity of the model and helps to identify the spatial
pattern of the UHI and any spatial outliers (Anselin, 1995;
Szymanowski and Kryza, 2012; Lu et al., 2014; Colaninno and
Morello, 2022). This index is calculated for both UHI variables
(Section 2.4) and their residuals after MLR and before RK.

The mean absolute error (MAE) is also calculated as an
indication of the overall quantity of errors from the model.
Finally, the residual values obtained by the cross-validation
process, extreme values, and their frequencies are studied in
order to understand the model’s tendency to over- or under-
estimate the UHI effect.

2.4 Spatially structured reconstruction
of UHI

In this study, the interpolation methods described above are
carried out using two estimates of UHI: the mean daily UHI in 2022,
which took into account all 138 nights in which a UHI is present,
and the mean of intense UHI in 2022, which is based on the
21 nights in which the UHI effect is ≥5°C (representing 6% of
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nights in 2022). The threshold of 5°C is chosen as a
compromise—Garcia (1996) used 4°C as the definition of intense
UHIs, but this yielded a much larger number of nights in Rennes in
2022 (18%), and ran the risk of smoothing out the local effects that
we are trying to represent. Conversely, a threshold of 6°C produced a
much smaller number of nights (only 6), which risked producing
exacerbated microscale effects.

To reliably represent the local scale in an urban context and take
the smallest buffer size into account (i.e., local variability), the spatial
resolution of the final grid is 100*100 m over 352 km2. The
parameters resulting from the analyses are then applied to each
cell in order to reconstitute a continuous field of the UHIs across
the territory.

3 Results

3.1 Meteorological conditions in 2022

From a climatic point of view, 2022 was an exceptional year
all over the world. In Rennes and its peri-urban cities,
temperatures were above normal (1991–2020), with a mean
temperature of 13.6°C (normal = 12.4°C) and a new heat
record of 40.5°C, reached on July 18. Typically, precipitation is
distributed throughout the year (cumulative annual average =
690 mm), but 2022 saw marked periods of drought: in March,
only half of the normal amount of precipitation fell (25 mm) and
in July it rained only 1 mm (normal = 44 mm). Over the entire
year, the cumulative rainfall total was 578.6 mm. In addition, a
new record was set for the amount of sunshine (more than
2088 h, with 1762 h as the historical average), and 73 days
experienced maximum temperatures of at least 25°C (normal =
43.5 days). There were therefore numerous, long, and intense
heat waves that first started at the end of March and finished at
the end of October. Although the temperate oceanic climate is
generally too variable to be favorable to the development of
intense UHIs, the year 2022 was hot, dry, and sunny. Overall,
52% of nights in 2022 were favorable—clear sky and low wind
(<5 m/s) —for the development of UHIs.

As a first step in comparing UHI data from 2022 with those
from 16 previous years (published in Dubreuil et al., 2020), we
calculated the annual mean difference between station 5 and
station 3. In 2022, this was 2.7°C, which corresponds to the
previous record (2.7°C in 2019). Such deviations do not
necessarily result from UHI conditions—synoptic weather
conditions may play a role—but may be relevant to long-term
monitoring efforts regarding UHIs and climate change. The high
mean can be partly explained by the number of days in which the
UHI effect was over 4°C, which was around one night out of four;
however, this frequency was not higher than that of 2011. What
appeared to have made the difference was the number of nights
with a UHI intensity ≥6°C, which represented 3.29% of
occurrences in 2022 compared with a historical average of
1.4%. Moreover, new UHI records were set on the night of
July 17–18, when there was a simultaneous maximum
difference of 9.5°C between station 5 and station 3 and 8.25°C
between the Rennes center and rural reference (the previous
record was 8°C in 2011-Figure 3).

3.2 Model evaluation

3.2.1 Co-variable selection for MLR
The first step in implementing MLR is selecting the most

significant covariables to be used as the linear regression
coefficients. To keep the results of the linear regressions
comparable between mean UHI and intense UHI, the same co-
variables are chosen in both cases. Both mean UHI and intense UHI
are found to be highly correlated with SVF and the amount of
impervious surfaces within a 600-m radius (R = −0.76 and 0.75) and
a low amount of vegetation within a 100-m radius (R = −0.72). In the
automated process, these metrics are selected most often for the
models with relatively similar buffer sizes (at least on the same
orders of magnitude). All three metrics are representative of the
urban environment, since they reflect the extent of artificial surfaces
and vegetation in a city along with its morphology and organization.

3.2.2 Evaluation of interpolation methods
Based on analysis of the LOOCV error, RK is the most accurate

method for spatial interpolation of both types of UHI (Table 3;
Figures 4C,F), with an R2 = 0.98. For mean UHI, the RMSE is low,
with only 0.15°C difference and residuals ranging from −0.60°C to
0.49°C. This degree of variability (under ±0.5°C) for residuals is
considered low because this is within the range of measurement
accuracy of the weather stations. Thus, RK demonstrated good
predictive ability, with just one value over-estimated. For intense
UHI, the RMSE remained low (0.25°C), with three extreme values,
and the MAE remained very low, indicating the good predictive
ability of the model. The variance explained by MLR under LOOCV
is 78% for mean UHI and 75% for intense UHI (Table 3; Figures
4B,E). Despite this, the spatial variability of the phenomenon is only
partially represented, as evidenced by the residuals which
represented 30% of the dataset for mean UHI and 53% for
intense UHI.

The least accurate results are obtained with the OK method
(Table 3; Figures 4A, 5D), which explained only about 50% of the
variance. The conditions in this study are not optimal for OK since
the spatial autocorrelation of both types of UHI is not uniform over
the entire territory (Figures 6D, 7D). This invariably leads to
prediction errors. Indeed, it has been stipulated that sampling
points must be equally distributed over a territory in order to
obtain satisfactory kriging (Hengl et al., 2007).

3.2.3 Moran’s I results
As expected, values of global Moran’s I are relatively strong for

both mean UHI and intense UHI (Table 4). However, this analysis
indicated that spatial autocorrelation is not uniform over the entire
territory (close to 0). Rennes forms a hot spot, defined as High-High
(Figure 5), while the vegetation belt around Rennes constitutes a
cold spot (Low-Low) based on local Moran statistics. For the MLR
residuals of both types of UHI, the global Moran’s I statistic reveals
spatial autocorrelation (p-value <0.05), an essential condition for the
use of RK. Furthermore, values of the Z-score of Moran’s I (Table 4)
indicated that the spatial relationships are not uniform across the
entire territory, supporting the existence of local dependencies or
heterogeneity in residuals (High-Low or Low-High). In other words,
theMLR performed well when predicting at a global scale (Moran’s I
near 0) but is less accurate at the local scale, with some residual
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aggregations. This is expected due to the non-stationarity of the
phenomenon arising from variability in land use within the territory
(Anselin, 1995; Szymanowski and Kryza, 2012). One of the
advantages of RK is that it is able to take into consideration the
local trend within the search window (distance of the semi-
variogram) by kriging non-stationary data (Li and Heap, 2014).

3.3 UHI spatialization

It is challenging to find a method that can estimate the spatial
distribution of a UHI over a heterogeneous territory. The differences
between the conurbation of Rennes, Cesson-Sévigné, and St-

Grégoire and the small, peri-urban cities in the study area can
cause difficulties with estimation, especially for the OK method.
Moreover, the sampling pattern is irregular throughout the territory,
which leads to the misestimation of peri-urban cities, non-
representation of urban parks, and overestimation of rural areas.

MLR is able to estimate the mean UHI of the peri-urban cities
and in Rennes (Figures 6A, 7A), with a clear gradient from the city
center to the periphery. The historic center of the city of Rennes is a
dense mix of midrise or low-rise buildings, with little vegetation
(LCZ 2). The further one moves away from the city center, the more
the city opens up into a tangle of individual and collective residential
districts (LCZ 6 and 9). This gradient is not uniform, since the
activity zones form certain hot spots that differed from urban or

FIGURE 3
Distribution of UHI days in 2022. The conditions represented are: UHI ≥2°C, precipitation = 0mm, andwind ≤5m/s. Dashed yellow line: average UHI
in 2022.

TABLE 3 Comparison of results between MLR, RK, and OK methods.

LOOCV statistics results Over-estimated Underestimated

R2 RMSE MAE Max. Res (°C) N. Res Max. Res (°C) N. Res

Mean UHI 2022 OK 0.51 0.73 0.55 −2.70 20 1.95 21

MLR 0.78 0.48 0.39 −1.14 14 0.86 14

RK 0.98 0.15 0.11 −0.59 1 0.49 0

Intense UHI 2022 OK 0.48 1.15 0.88 −4.26 27 3.11 30

MLR 0.75 0.79 0.64 −1.80 28 1.90 23

RK 0.98 0.25 0.18 −0.91 2 0.95 1
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suburban areas (ZA-West, ZA North, ZA-South-East around
Rennes, LCZ 8). In addition, these areas are also present in peri-
urban cities such as Groupe PSA, Bourdonnais, and La Rigoudière.
These highly artificialized and/or low-vegetation areas are
characterized by differences of more than 2°C compared to the
countryside. However, certain areas, such as the town of St-Grégoire
and the rural area to the east, are overestimated by more than 1°C.
Likewise, the “Prairies St. Martin” site, an urban park located in the
northern part of the city of Rennes (station 5 on Figure 1) is also
overestimated, with residuals of −0.89°C (mean UHI) and −1.18°C
(intense UHI). This site has always presented difficulties for
spatialization by MLR studies (Foissard, 2015; Foissard et al.,
2019). Nevertheless, it has positive values of local Moran’s I
(Low-Low) for both UHI types, while adjacent sites are
characterized as High-Low. This is evidence of the cooling effect
of this urban park at this spatial scale.

To the north of the study area, the cities of La-Mézière and
Chapelle-des-Fougeretz have problems of underestimation. In that
area, the spatial autocorrelation ofMLR residuals revealed clusters in
La-Mézière and Melesse (High-High), but only for intense UHI
(Figure 5). Compared to other cities of comparable size (Table 1),
these cities experience more-pronounced intense UHIs as a result of
their topographic situation: they are located on a ridge at the base of
higher ground (90 m versus 60 m - Figure 1), but higher than the
Rennes valley (30 m), and thus do not benefit as much from the cold
air that flows down into the valley and cools the countryside.
Moreover, the land use in this area is largely dedicated to
industrial zones and other activities known to store radiation

during the day and release it at night in the form of heat. The
southern districts of Rennes are also underestimated for both types
of UHI. In this case, the underestimation may be due to larger spatial
effects that could not be taken into account by the MLR, such as the
influence of the synoptic winds. Indeed, it appears likely that the
night wind has a structuring effect on UHI patterns: when the wind
speed (>2 m/s) and direction (north/northeast/northwest) are
favorable, the warm air moves from the city center towards the
southern districts (Brabant et al., 2022).

Concerning intense UHI, MLR is able to estimate the
phenomenon over the whole territory, but the errors are coarser
and more heterogeneous than for the mean UHI. Patterns of over-
and underestimation are the same as observed for the mean UHI.

The OK method is based on the principle of nearest-neighbor
resemblance; if the sampling points do not represent a feature space
with sufficient precision, then the spatial prediction will be poor
(Hengl et al., 2007) and it will not be possible to correctly estimate
the UHI.We find that this is particularly true when the phenomenon
is intense and more heterogeneous in space (Figure 7D), because the
spatial variability in the UHI represents a finer scale than can be
captured by the distance between the measurement points.

With the RK method, the incorporation of stochasticity in the
process of spatialization improved the results from both the
quantitative and visual points of view (Figures 6C, 7C; Table 3).
Similar errors that tended to cause clustering are eliminated, along
with nearly all over- or underestimated areas. Indeed, the UHIs of
the southern districts of the city of Rennes are more intense than
those observed with the MLR, while the cooling effects of green

FIGURE 4
Scatterplots of observed versus predicted UHI according to LOOCV. On the left: mean UHI, on the right: intense UHI. (A) and (D)OKmethod, (B) and
(E) MLR, (C) and (F) RK method.
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spaces and peri-urban towns are better defined. Only one residual
persisted for mean UHI (Station 5 on Figure 1: “Prairies Saint-
Martin”; −0.59°C) and three for intense UHI: “Postuminus” (station

6) is underestimated by 0.95°C, while “Saint-Denis” (station 7) and
“Prairies Saint-Martin” are overestimated by −0.54°C and −0.91°C,
respectively.

FIGURE 5
Statistically significant clustering tendency of Local Moran’s I for both types of UHI, (A) mean UHI, (B) MLR residuals; (C) intense UHI, (D)
MLR residuals.
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4 Discussion

4.1 Strengths and limitations of
interpolation methods

Our first objective was to test several interpolation methods and
determine which is best able to estimate UHI effects. In this study, we
investigated several methods for predicting UHI based on data from a
dense network of weather stations. We found that the most satisfactory

method is the hybrid approach that combinedmultiple linear regression
with kriging carried out on the residuals (RK). Our results demonstrated
that regression kriging performed better in predicting spatial UHI
patterns in and around Rennes than the previous method used in
this area (MLR). Indeed, the use of RK better highlights extreme values
that spatially form hotspots on the map. This makes it easier to identify
areas where action to mitigate UHI is a priority.

The superior performance of RK has been demonstrated in
numerous studies, but only a few have employed this method to

FIGURE 6
Interpolation of mean UHI. (A) MLR, (B) kriging on residuals of the MLR, (C) RK, (D) OK.
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analyze urban temperature (Colaninno andMorello, 2022; Ding et al.,
2023; Touati et al., 2020) or UHI phenomena (Szymanowski and
Kryza, 2009; Szymanowski and Kryza, 2012; Schatz and Kucharik,
2014). The drawback of this approach is that it requires a thorough
knowledge of the kriging process, as well as high-quality input data in
terms of number, geolocation, density, accuracy, and the spatial scale
of representation, as described in Hengl et al., 2007.

The power of RK lies in the fact that it summarizes both the
trend component (the deterministic part, explained by MLR) and

the spatial dependence (the remaining stochasticity). RK thenmakes
it possible to follow the spatial progression of a UHI (intensification
or reduction) based on changes in land use. However, regression
assumes the stationarity of the phenomenon, in other words, that the
predictor seen as a stimulus yields the same response over the entire
territory. For UHIs, this is not entirely true, as the local climate is
necessarily influenced by other spatial processes (e.g., wind). In this
study, the UHI is measured at numerous points, whose
characteristics are related to the city’s complexity and

FIGURE 7
Interpolation of intense UHI. (A) MLR, (B) kriging on residuals of the MLR, (C) RK, (D) OK.
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morphology. Auxiliary data are also of good quality (IGN) and fine
resolution, representing the fineness of the urban spaces (down
town, rural and surrounding small cities, see 4.2). The question of
the density of the network is also challenging: Ding et al. (2023)
show that the number of stations in the center of Guangzhou can be
reduced by 75% and that RK results remain similar. But for Foissard
et al. (2019) were not able to use RK with only one-third of the
stations we used for this study. As we added a greater area with new
urbanization contexts it is not obvious to be able to reduce
significantly the network density.

Szymanowski and Kryza, (2012); Schatz and Kucharik, (2014);
Colaninno and Morello, (2022) tend to favor the use of local
regression, and in particular, geographically weighted regression
(GWR) (Fotheringham et al., 2003) in order to observe local
variations in UHI. GWR produces MLR for every point in
space using a subset of information from nearby points, and
can therefore take into account the non-stationarity of the
phenomenon. In particular, Szymanowski and Kryza (2012)
demonstrated the utility of GWR for modeling UHI in the
presence of significant winds using regular mobile
measurements. Even in that case, though, GWR did not fully
recognize the role of wind in shaping the UHI effect. Similar to
the present work, those authors also showed that an analysis of
residual stochasticity considerably improved the results both for
MLR (RK) and GWR (GWRK). This provides a complementary
perspective to the current study, and suggests that GWR or GWRK
might be also relevant for estimating UHI in small and medium-
sized cities.

Furthermore, this study did not take into account the temporal
resolution of UHIs, only their intensity and annual averages. In
studies that have focused on modeling at high temporal resolutions
(infra-daily, hourly, day/night), the RK method has generally not
been the most suitable approach (Szymanowski and Kryza, 2012;
Schatz and Kucharik, 2014; Colaninno and Morello, 2022). One of
the limitations of regression and kriging is that they are global

methods. This means that they provide good results within a
climatologically coherent area. When interpolation is applied to
larger, more heterogeneous areas, the results are of lesser quality
(Joly et al., 2008). This is because interpolation can be disrupted by
the effects of opposing constraints, as is the case, for example, with
accentuated relief (opposition between plains and mountains). The
same is true at a more local spatial scale, where space is dependent
on possibly different UHI formation systems for the same
observation time window. In other words, the processes
responsible for spatial variations in UHI do not operate in
exactly the same way every time depending on meteorological
situations.

4.2 Medium and small cities particularities

Our second objective was to estimate the UHI effect in new
territory (small cities) and to find an effective method for
representing it as faithfully as possible in cities of different sizes.
As described above, MLR is able of estimating the UHI of peri-urban
cities, but the estimation errors due to the non-stationarity of the
phenomenon are in some cases quite significant, particularly when
the UHI is intense (Figure 7). In these situations, as well, RK is better
able to estimate UHI effects.

As far as we know, this is the first study to compare the UHI of
different-sized cities on a local scale. Although the peri-urban cities are
small, they exhibited detectable UHIs that are not necessarily related to
their size, as is the case for the towns of La-Mézière, Thorigné-Fouillard,
and St-Jacques-de-la-Landes (Figures 5–7). We hypothesize that these
towns are under the influence of more-local phenomena. For example,
the Rennes Forest (not shown here) to the north of Thorigné-Fouillard
may have a mitigating influence on synoptic winds from the north,
increasing the stationarity of the phenomenon over the city and
therefore its intensity. In the case of La-Mézière, its location on a
ridge may have resulted in a higher amount of impervious surfaces

TABLE 4 Values of Moran’s I statistic, with Z-score, and local Moran’s I. p-value <0.05 for each test.

Local spatial correlation type Global

Insignificant Low-Low Low-High High-Low High-High

Mean UHI dataset I Moran 0.1510 −0.3076 0.5823 0.0682 0.4164 0.1757

Z-score 0.2428 −3.1464 3.2478 2.6855 4.4954 6.5400

% of spatial type 32.26 17.20 6.45 11.83 32.26

Mean UHI MLR Residuals I Moran 0.0643 −0.2312 0.4780 −0.4631 0.4011 0.0681

SD Moran 0.2395 −1.0234 2.7568 −2.2221 2.3954 2.77

% of spatial type 86.02 4.30 3.23 2.15 4.30

Intense UHI dataset I Moran 0.1534 −0.3266 0.4243 0.0195 0.3769 0.1383

SD Moran 0.2835 −3.0106 2.8883 2.7873 4.0001 5.2200

% of spatial type 33.33 17.20 6.45 12.90 30.11

Intense UHI MLR Residuals I Moran 0.0188 −0.3537 0.3650 −0.0362 1.4997 0.0731

Z-score 0.0020 −2.0511 2.1875 −2.3309 2.3174 2.9500

% of spatial type 91.40 1.08 3.23 1.08 3.23
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being present and thus exacerbated its UHI, which is sometimes as
intense as in Rennes. The question of temporal distribution also arises:
In small cities, are the times of formation and peak intensity the same as
in larger cities?

In Rennes, the UHI effect is particularly strong in 2022, setting
a new record (8.25°C hotter in the city center than in the rural
area). Within the city, the density of the measurement points
increased the effectiveness of RK estimation; RMSEs are small and
there is a better representation of the UHI over the southern
districts and of the cooling capacity of the northern part of the city.
This density enables us to better describe disparities between
neighborhoods. It is well known that an interpolated surface is
more variable where the sample density is high (Hengl et al., 2007;
Li and Heap, 2014). This is illustrated here with Prairies St Martin
(station 5 on Figure 1), which stood out as a true cooling island
even when the UHI is intense (Figure 7). However, in the peri-
urban cities, the low density of sampling stations hinders our
understanding of the spatialization of this phenomenon and the
processes involved.

5 Conclusion

This research explores the capabilities of several interpolation
methods for estimating average and intense UHI in cities of
different sizes around Rennes, France. The method has been
carried out here to annual averages. It improves on the results
for estimating the spatial distribution of previous studies of this
city, which so far have only taken trend area into account, whereas
here, spatial dependence is also used. Regression Kriging is the
most suitable method for estimating the intensity of both UHIs,
and also for reliably determining spatial patterns over the entire
territory. This global method is widely used for a multitude of
process observations but not so common for UHI mapping and
monitoring. Moreover, as far as we know, this is the first study to
take account of several cities of different sizes in a single
interpolation.

In the continuity of the program in which this work is integrated,
this method will be automated and tested in order to spatialize the
UHI in real time. This will address new challenges for our
methodology: for example, the MLR takes vegetation into
account in its calculation, but if the UHI is studied on a finer
temporal scale (seasonal, monthly, daily), so it will be necessary to
input in our modeling the annual phenology of deciduous
vegetation. Using auxiliary variables from remote sensing data on
the greening of cities could provide additional relevant information.
Indeed, studies estimating the UHI in winter have shown that the
impact of deciduous vegetation is low, since it is dormant at this time
of year. The integration of variables such as wind speed and
direction could also provide additional insights, especially for
daily UHI mapping.

In Rennes and surrounding cities, this could help in decision-
making and intervention during heatwaves. Indeed, it reveals that
even small cities experience UHIs of varying degrees of severity. This
can lead to a cumulative effect of UHI and heat, putting the most
sensitive populations (children, pregnant women, the elderly, etc.) at
risk. For peri-urban cities, this work provides an initial basis for
precise monitoring of their evolution. In particular, it can help

decision-making on the future morphology of these cities, in order
to reduce the intensity of UHIs as much as possible especially in
small municipalities where this risk is often underestimated. With
the increasing urbanization, and in view of climate change, our study
can help to find solutions to anticipate and control the intensity of
UHIs. In France, the Zéro Artificialisation Nette law aims to slow
down and compensate for the artificialization of land. Initially, the
aim is to halve the rate of artificialization by 2030 and, in a second
phase, to halt the process altogether by 2050. This law therefore
presumes to reduce the horizontal expansion of cities in favor of
verticality and urban densification. However, the growing number of
people living in urban areas, and a demographic increase of 0.4% per
year (between 2014 and 2019), means that maintaining a certain
level of comfort and adaptation will remain a challenge for
the future.
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