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A smarter approach to
liquefaction risk: harnessing
dynamic cone penetration test
data and machine learning for
safer infrastructure

Shubhendu Vikram Singh and Sufyan Ghani*

Department of Civil Engineering, Sharda University, Greater Noida, India

This paper presents a novel approach for assessing liquefaction potential by
integrating Dynamic Cone Penetration Test (DCPT) data with advancedmachine
learning (ML) techniques. DCPT offers a cost-effective, rapid, and adaptable
method for evaluating soil resistance, making it suitable for liquefaction
assessment across diverse soil conditions. This study establishes a threshold
criterion based on the ratio of the penetration rate to the dynamic resistance
(e/qd), where values exceeding four indicate high liquefaction susceptibility.
ML models, including Support Vector Machine (SVM) optimized with Particle
Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), Genetic Algorithm
(GA), and Firefly Algorithm (FA), were employed to predict the e/qd ratio using
key geotechnical parameters, such as fine content, peak ground acceleration,
reduction factor, and penetration rate. The SVM-PSO model demonstrated
superior performance, with high R2 values of 0.999 and 0.989 in the training
and testing phases, respectively. The proposedmethodology offers a sustainable
and accurate approach for liquefaction assessment, reducing the environmental
impact of geotechnical investigations, while ensuring reliable predictions. This
study bridges the gap between field testing and advanced computational
techniques, providing a powerful tool for geotechnical engineers to assess
liquefaction risks and design resilient infrastructures.

KEYWORDS

liquefaction risk, dynamic cone penetration test (DCPT), machine learning, sustainable
infrastructure, seismic risk assessment, resilient infrastructure

1 Introduction

Liquefaction poses a significant threat to infrastructure even in low-magnitude
earthquakes. Soil liquefaction susceptibility was assessed through a multifaceted approach,
considering historical earthquake occurrences, the geological origin of the soil deposit,
its compositional makeup (grain size distribution and presence of fines), and the current
state of the soil (density, saturation level). Furthermore, the evaluation of liquefaction
potential assessment (LPA) helps engineers and designers mitigate ground conditions in
the case of seismic hazards. A clear understanding of liquefaction susceptibility and the
minimum magnitude threshold for triggering are crucial for comprehensively induced
seismic risk assessments (Green et al., 2019).There are several factors that affect liquefaction,
such as soil type, groundwater table, relative density, and particle size distribution, which,
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in progression above their permissible limits, cause settlements,
subsidence, and lateral spreads, making the structure unable
to withstand its capabilities. (Ghani and Kumari, 2021b). The
liquefaction potential of soil can be evaluated using various
techniques. One commonly used approach is the Standard
Penetration Test-based empirical procedures, such as the Seed and
Idriss method (Seed and Idriss, 1971). These methods consider
factors such as soil type, fines content, and effective overburden
stress to estimate the likelihood of liquefaction occurrence.
Seed et al. (1983) established a method for assessing the liquefaction
potential of sandy soils by using field data from various sites with
known liquefaction during earthquakes in different countries.
The results of this study were extended to earthquakes of other
magnitudes by incorporating a magnitude scaling factor when
evaluating the cyclic stress ratio induced at a specific depth. This
procedure has undergone significant modifications to improve its
effectiveness and accuracy (Youd and Idriss, 2001; Umar et al., 2018;
Ghani and Kumari, 2021a). By incorporating several refinements,
the procedure delivers improved effectiveness and competence.
Several researchers have mainly relied on empirical correlations and
conservative statistical analyses derived from field tests. Juang et al.
(2002) leveraged logistic regression to assess the association of the
Standard Penetration Test (SPT) blow counts and Cone Penetration
Test (CPT) tip resistance (qc) with liquefaction resistance. Based
on this concept, Cetin et al. (2004) developed a framework that
combines probabilistic and deterministic models using a Bayesian
approach with SPT data. Moss et al. (2006) applied a statistical
approach to Bayesian frameworks to incorporate cone penetration
test (CPT) data for liquefaction assessment. Idriss and Boulanger
(2006) further advanced this field by refining SPT-based triggering
relationships and probabilistic approaches. These advancements
have set up a foundation for incorporating probabilistic methods
with traditional in situ testing methods, leading to more precise
liquefaction potential evaluations.

An analysis of the liquefaction potential assessment
methods listed in Table 1 reveals a significant shift in focus from
empirical correlations to more sophisticated probabilistic and
machine learning (ML) based methods. The commitment of the
geotechnical community to enhancing the accuracy, efficiency, and
adaptability of liquefaction prediction techniques is evident in the
transition from empirical correlations to more advanced methods.

Liquefaction has been extensively studied using various in situ
tests and empirical correlations. For decades, geotechnical engineers
have relied on established in situ testing methods, such as the
SPT and CPT, to evaluate the susceptibility of soil to liquefaction
during earthquakes (Cetin et al., 2004; Idriss and Boulanger, 2006;
Moss et al., 2006). However, these methods have limitations such
as being time-consuming, costly, and sometimes overly conservative
in their estimations (Ghani and Kumari, 2022a; Kumar, Samui, and
Burman, 2023). As research in this field has evolved, so have
the computational methods employed, with researchers increasingly
utilizingmoreadvancedtechniques.Kayenetal. (2013)appliedBayesian
regression and structural reliability methods to shear wave velocity
(Vs.) data, thereby expanding the toolkit for liquefaction assessment.
The introduction of ML has led to a significant shift. Javdanian,
(2017) employed a neuro-fuzzy group method with a gravitational
search algorithm for the triaxial tests. Zhang and Goh (2018) utilized
backpropagation neural networks with a comprehensive laboratory

database. Hu and Liu (2018, 2019) compared Bayesian models using
peak groundacceleration (PGA), SPT,CPT, andVs. data.Most recently,
Ghani et al. (2023) showed thepowerof ensemble-basedsoftcomputing
algorithms such as AdaBoost and XGBoost, integrating SPT, PGA,
and fine content (FC) data. The integration of ML algorithms with
geotechnical data has shown promising results. Ghani et al. (2022)
utilized artificial neural networks (SVM) coupled with metaheuristic
algorithms to predict liquefaction behavior in the Indo-Gangetic
region, achieving high accuracy. Similarly, Kumar, Samui, Burman,
et al. (2023) employed various deep learning models, with an
(RNN) demonstrating superior performance in predicting liquefaction
potential. This progression highlights the growing recognition of the
potential of the geotechnical community to capture complex soil
behaviors and improve liquefaction predictions.

Considering the aforementioned literature, the present research
introduces a novel methodology for evaluating liquefaction potential
by integrating fieldmeasurements from theDynamicConePenetration
Test (DCPT)withadvancedMLtechniques.This innovative framework
addresses a significant gap in the existing literature by effectively
combining a cost-efficient and expeditious in situ testing method,
namely, DCPT,with state-of-the-art computational tools. By leveraging
thestrengthsofbothfielddataandMLalgorithms, thisstudyinvestigates
the potential to substantially enhance the accuracy, efficiency, and
adaptability of liquefaction assessments across diverse soil conditions,
with the aim of revolutionizing the liquefaction potential evaluation by
synergizing theDCPTwith cutting-edgeMLalgorithms.This approach
not only capitalizes on the DCPT’s advantages of being cost-effective
and rapid but also harnesses the power of advanced computational
techniques to process and interpret field data. In doing so, it addresses
the limitations of traditional methods and paves the way for more
comprehensive and nuanced liquefaction assessments. The integration
ofMLallows for the identificationof complexpatterns and relationships
within DCPT data that may not be apparent through conventional
analysis methods. Furthermore, this innovative framework has the
potential to significantly improve the adaptability of liquefaction
assessments under a wide range of soil conditions. ML algorithms
can be trained on diverse datasets, enabling them to recognize and
account for site-specific factors that influence liquefaction susceptibility.
This adaptability is particularly valuable in geotechnical engineering,
where soil properties can vary greatly even within small geographic
areas. By combining the simplicity and practicality of DCPT with the
sophisticated analytical capabilities ofmachine learning, this study aims
to provide geotechnical engineers with a powerful tool that enhances
both the accuracy and efficiency of liquefaction potential evaluations,
ultimately contributing to more reliable and cost-effective geotechnical
designs and risk assessments.

2 Research significance

The significance of this research lies in its innovative approach
to address the challenges of earthquake-induced liquefaction.
Conventional methods for liquefaction assessment, although effective,
are often time-consuming, costly, and conservative in their predictions.
By utilizing the DCPT, a time-efficient and adaptable test method, in
conjunction with advanced ML models, this study provides a more
responsive and accurate tool for assessing liquefaction potential. This
approach not only enhances seismic resilience but also promotes
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TABLE 1 Literature survey for liquefaction assessment methods.

Sl. No Study Method Test type Key details

1 Juang et al. (2002) Logistic Regression SPT, CPT Related blow counts and qc to liquefaction
resistance via logistic regression

2 Cetin et al. (2004) Probabilistic and Deterministic Model SPT Developed probabilistic and deterministic models
within a Bayesian framework to assess
liquefaction initiation risk

3 Moess et al. (2006) Probabilistic Model CPT Correlations were developed using a Bayesian
framework

4 Idriss and Boulanger (2008) Empirical Correlations SPT Updated SPT-based triggering relationships and
probabilistic procedures

5 Kayen et al. (2013) Probabilistic Model Vs. Bayesian regression and structural reliability
methods

6 Javdania (2017) Energy Approach Triaxial
Test

Neuro-fuzzy group method of data
handling–gravitational search algorithm
(NF-GMDH-GSA)

7 Zhang and Goh (2018) Capacity Energy Concept Experimental
Data

Back-propagation neural Networks BPNNs and a
wide-ranging database of laboratory tests

8 Hu and Liu (2018) Probabilistic Model SPT Two Bayesian Models using PGA and arms are
compared

9 Hu and Liu (2019) Probabilistic Model CPT and Vs. Two Bayesian Models using arms are compared

10 Ghani et al. (2024a) Machine Learning Techniques SPT Five ensemble-based soft computing algorithms
AdaBoost, and XGBoost regressors are used and
compared

11 Kumari and Ghani (2024) Hybrid Machine Learning Techniques SPT Four hybrid ANN models are developed and
compared to predict FOS

12 Ghani and Kumari (2024) Hybrid Machine Learning Techniques SPT Three hybrid AFS models are developed and
compared to predict Pf

sustainable infrastructure practices by reducing costs and improving
resource efficiency.Thecapacity to predict liquefaction riskwith greater
accuracy enables engineers to design structures that are better prepared
for seismic events, ultimately contributing to safer and more resilient
urban environments. The integration of ML with geotechnical testing
methods represents a significant advancement in thefieldof earthquake
engineering. This novel approach has the potential to revolutionize the
assessment and mitigation of liquefaction risks in seismic-prone areas.
Furthermore,theimprovedaccuracyandefficiencyofthismethodcould
lead tomore targeted andcost-effective soil improvement strategies that
enhance overall urban resilience.

3 Methodology

This section explores the methods for evaluating liquefaction
potential. Primarily, the simplified approach proposed by Idriss
and Boulanger (2006) that utilizes SPT-N values was discussed,
followed by an examination of liquefaction assessment techniques
based on DCPT analysis. Furthermore, the details and functionality
of the computational model are discussed. Finally, the section
concludes with a discussion of the data processing procedures

and various statistical parameters used to evaluate the effectiveness
of these computational analyses. A comprehensive description
of the adopted methodology is shown in Figure 1. Essential
geotechnical data from Cetin et al. (2018) were collected. The rate
of penetration (e) and dynamic resistance (qd) of the soil were
then assessed using these data through the DCPT according to
the guidelines outlined in BS EN ISO 22476-2. Subsequently, to
determine liquefaction susceptibility, the critical e/qd ratio was
calculated. Soil liquefaction susceptibility is classified as high or low,
depending on the e/qd ratio. Additional geotechnical characteristics,
including FC (%), PGA, rd, and the previously determined e
and e/qd ratios, were used to conduct further comparisons. The
ML models were ultimately used to confirm the entire evaluation
procedure, ensuring the accuracy and reliability of the liquefaction
susceptibility assessment. To ensure consistent scaling, the data were
normalized before being input to the hybrid model. To select the
optimal predictive model, the performance indicators, scores, and
scatter plot visualization were compared.

A reliable instrument for evaluating the risk of soil liquefaction
is provided by this structured methodology, which successfully
combines cutting-edge computational modelling approaches with
conventional geotechnical testing methods.
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FIGURE 1
Workflow of data collection, processing, and evaluation for SVM-Based ML models.

3.1 Simplified procedure using SPT-N
values: Idriss and Boulanger approach

This method utilizes a ratio between two key parameters: the
cyclic resistance ratio (CRR), which reflects the soil’s ability to resist
liquefaction, and the cyclic stress ratio (CSR), which represents the
level of stress imposed by earthquake shaking and is expressed as

CSR = 0.65(
σvoamax

σ′v0
)

rd
MSF

1
Kσ

(1)

Youd and Perkins, 1978 introduced a factor of 0.65 to convert
the irregular earthquake load into a comparable uniform stress cycle
shown in Equation 1. The reduction coefficient (rd) is not constant
and varies depending on the depth z Equations 2–4 by Idriss (1999).

rd = exp (α(z) + β(z)M) (2)

α(z) = −1.012− 1.126 sin( z
11.73
+ 5.133) (3)

β(z) = 0.106+ 118 sin( z
11.28
+ 5.142) (4)

where σvo represents the total effective overburden pressure, σ′vo
represents the effective vertical overburden stress at depth z, amax
represents the peak ground acceleration in the horizontal direction,
MSF represents the magnitude scaling factor that provides the
combinational effect of relative amplitude and the number of

load cycles Equations 5 and 6 for sand and clay, respectively. Kσ
represents the correction factor for the effective overburden, as
shown in Equations 7, 8.

MSF = 6.9 exp(−M
4
)− 0.058 ≤ 1.8; (5)

MSF = 1.12 exp(−M
4
)+ 0.828 ≤ 1.13; (6)

Kσ = 1−Cσ(
σ′

Pa
) ≤ 1.1 (7)

Cσ =
1

18.9− 2.55√(N1)60cs

≤ 0.3 (8)

The mathematical Expression to evaluate CRR in Equation 9
generated from the corrected blow count (N1)60 is as follows:

CRR = [{
(N1)60CS

14.1
}

1
+{
(N1)60CS

126
}

2
−{
(N1)60CS

23.6
}

3
+{
(N1)60CS

25.4
}

4
− 2.8] (9)

SPT-N values are tuned to an equivalent clean sand value
using Equation 10 comprised of (N1)60 along with corrections
mentioned in Equation 11, and variation Δ(N1)60 with FC (%) is
estimated using Equation 12.

(N1)60Cs = (N1)60 +Δ(N1)60 (10)
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FIGURE 2
Schematic diagram of standard DCPT.

(N1)60 = NMCNCECBCRCS (11)

where NM = Measured standard penetration resistance, CN =
Overburden correction factor, CE = Correction of hammer energy
ratio, CB = Correction of borehole diameter, CR = Correction of rod
length, CS = Correction of samplers with or without liner.

Δ(N1)60 = exp(1.63+
9.7

F.C+ 0.1
−( 15.7

F.C+ 0.1
)

2
) (12)

Finally, in Equation 13, the expression used to evaluate the safety
factor of safety (FOS) against liquefaction is described as follows: if

the safety factor is less than 1, there is a liquefaction potential. If the
safety factor is greater than one, there is no liquefaction potential.

FOS = CRR
CSR

(13)

3.2 Dynamic cone penetration test

The current study distinguishes itself by focusing on DCPT,
a method that is less commonly used in liquefaction studies but
offers significant advantages over traditional tests. DCPT is more

Frontiers in Built Environment 05 frontiersin.org

https://doi.org/10.3389/fbuil.2024.1495472
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Singh and Ghani 10.3389/fbuil.2024.1495472

FIGURE 3
Illustration of the kernel trick in SVM.

time-efficient, cost-effective, and adaptable to various soil types
(Benz Navarrete et al., 2022; Park G. et al., 2023). Its dynamic
nature and real-time data-collection capabilities make it particularly
suitable for rapid and accurate liquefaction assessments (Duan et al.,
2023a). The adaption of susceptibility studies based on DCPT
is mainly due to its dynamic and adaptable characteristics, as
it stands out as a valuable tool in the geotechnical engineer’s
toolkit. Notably, one of its primary advantages over traditional
SPT is its superior time and cost efficiency. DCPT offers a
remarkable reduction in testing time owing to its rapid deployment
capabilities (Benz Navarrete et al., 2022). Unlike the SPT, which
involves a slower and more labor-intensive process, the dynamic
penetration of DCPT into the soil allows for a quicker assessment
of soil strength. This time efficiency is particularly advantageous
in conditions where swift decision making is crucial, such as
liquefaction estimation.

Moreover, DCPT requires minimal drilling and presents a
significant cost-saving advantage. The direct dynamic penetration
of the cone into the soil eliminates the need for extensive
borehole preparation, reduces associated costs, and minimizes the
environmental impact. This makes the DCPT a more economical
alternative for liquefaction assessment, contributing to the overall
project cost-effectiveness (Park I. et al., 2023).

The real-time data-collection capability of the DCPT further
enhances its appeal. This feature allows for on-site analysis,
enabling immediate decision making based on accurate and up-
to-date information. In scenarios where time-sensitive projects
demand rapid liquefaction assessments, DCPT proves to be an
invaluable asset (Duan et al., 2023b). The simplified equipment
setup and ease of operation of the DCPT also translate into
reduced equipment and personnel costs. With a smaller team
and more economical equipment requirements compared with
the SPT, the DCPT offers an attractive cost-effective solution for

geotechnical investigations. Additionally, the DCPT demonstrated
enhanced accuracy and consistency in data collection (Park G. et al.,
2023). Its dynamic nature generates more reliable and repeatable
results compared to the SPT and CPT, contributing to a more
precise characterization of soil behavior. Moreover, the adaptability
of the DCPT to various soil types further underscores its
versatility and applicability in diverse geological settings. This
heightened accuracy and wide range of soil adaptability improve
the reliability of the results, making the DCPT a preferred
choice for liquefaction assessments. In essence, by capitalizing
on the advantages presented above by the DCPT, this study
aims to revolutionize the methodology for estimating liquefaction
potential in soils.

The DCPT was designed to penetrate soils up to a depth of 1 m,
utilizing a 20 mm diameter and a 60-degree cone, along with an 8 kg
hammer, as depicted in Figure 2. The soil dynamic resistance (qd) at
each test point was determined using the DCPT data (BS EN ISO
22476-2) as follows:

qd =
m

m+m′
∗

mgh
A∗ e

(14)

Where A cone tip area, e is the rate of penetration at each drop,
and m and m' are the masses of the anvil, rods, and drop hammer,
respectively. From Equation 14, by dividing one/e, Equation 15 can
be obtained. The rearranged equation, From Equation 14, we can
calculate e/ qd as

e
qd
= 1

m
m+m′
∗ mgh

A

(15)

Consequently, the fine-grained soil equation is
as follows (Gholami et al., 2022):

NSPT = 5.76∗ qd
0.74 (16)

Frontiers in Built Environment 06 frontiersin.org

https://doi.org/10.3389/fbuil.2024.1495472
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Singh and Ghani 10.3389/fbuil.2024.1495472

FIGURE 4
Workflow for optimizing SVM regression hyperparameters using GWO, GA, FF, and PSO algorithms.

3.3 Background of applied ML techniques

ML has transformed the landscape of civil engineering and
has presented innovative solutions to intricate challenges. Applied
extensively in civil engineering tasks,ML techniques span predictive
modelling to decision support systems (Thapa and Ghani 2024a;
Ghani and Chhetri Sapkota, 2024; Mustafa et al., 2024). ML
algorithms meticulously scrutinize extensive datasets, uncovering
patterns and trends that yield valuable insights into structural
behavior, material performance, and project management. In
the realm of structural engineering, ML is instrumental in
forecasting the structural health and lifespan of bridges and
buildings using real-time monitoring data (Ghani et al., 2023;
Gupta et al., 2024; Shrestha et al., 2023; Thapa et al., 2024a).
Geotechnical engineering reaps the benefits of ML in soil

classification, slope stability analysis, ground settlement prediction,
and liquefaction assessment (Ghani et al., 2024b; Ghani and
Kumari, 2022a; 2022b; 2023b; 2023a; N; Kumar and Kumari,
2024; Mahmoodzadeh et al., 2022; Thapa and Ghani, 2023;
Thapa and Ghani, 2024). Several researchers have promoted the
application and adaptability of ML for liquefaction assessment
(Hanandeh et al., 2022; Sui et al., 2023). Moreover, optimizing
ML models with metaheuristic optimization algorithms has shown
promising results in enhancing the accuracy and reliability of
liquefaction prediction results (Duan et al., 2023a; Ghani et al.,
2022). The ML model’s hyperparameters are fine-tuned by the
optimization algorithm, resulting in more accurate predictive
results. A concise summary of the optimized ML models utilized is
provided below. For a comprehensive background on these ML and
optimization methods, readers can consult the pertinent literature
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TABLE 2 Liquefaction cases data.

S. No. Earthquake Magnitude Number of
sites

1 1944 Tohnankai 8.0 3

2 1948 Fukui 7.3 2

3 1964 Niigata 7.5 6

4 1968 Tokachioki 7.9 3

5 1971 San Fernando 6.6 2

6 1975 Haicheng 7.3 3

7 1976 Guatemala 7.5 1

8 1976 Tangshan 7.8 5

9 1977 Argentina 7.4 3

10 1978 Miyagiken-Oki 6.7 1

11 1978 Miyagiken-Oki 7.4 14

12 1979 Imperial Valley 6.6 4

13 1981 WestMorland 5.6 3

14 1983
Nihonkai-Chubu

7.7 13

15 1987 Superstition
Hills

6.6 1

16 1989 Loma Prieta 7.0 17

17 1990 Luzon 7.6 1

18 1993 Kushiro-Oki 8.0 2

19 1994 Northridge 6.7 3

20 1995
Hyogoken-Nambu

7.2 26

21 1964 Niigata 7.5 1

22 1976 Guatemala 7.5 1

(Asteris et al., 2021; Davoodi et al., 2023; D. R; Kumar et al., 2022;
Nagaraju et al., 2023).

3.3.1 Support Vector Machine
Supervised learning tasks, particularly classification problems,

can benefit from the application of SVM’s, an algorithm initially
introduced by Vapnik for classification (Cortes and Vapnik, 1995).
The SVM framework has since been extended to encompass
regression and other prediction tasks, as demonstrated by recent
advancements (C. Chen et al., 2024). SVMs operate on the principle
of structural risk minimization, which aims to strike a balance
between fitting the training data and ensuring a good generalization

TABLE 3 Non- liquefaction cases data.

S. No. Earthquake Magnitude Number of
sites

1 1964 Niigata 7.5 4

2 1968 Tokachioki 7.9 2

3 1976 Guatemala 7.5 1

4 1976 Tangshan 7.8 2

5 1977 Argentina 7.4 2

6 1978 Miyagiken-Oki 7.4 19

7 1979 Imperial Valley 6.6 4

8 1980 Mid-Chiba 6.1 2

9 1981 Westmorland 5.6 4

10 1983
Nihonkai-Chubu

7.7 5

11 1987 Elmore Ranch 6.2 2

12 1987 Superstition
Hills

6.7 9

13 1989 Loma Prieta 7.0 7

14 1990 Luzon 7.6 1

15 1993 Kushiro-Oki 8.0 1

16 1995
Hyogoken-Nambu

7.2 30

performance to unseen data. In this investigation, we employed
a Gaussian Radial Basis Function (RBF) kernel to transform the
data from its original lower-dimensional feature space to a higher-
dimensional space where linear separation between classes becomes
possible. This allows SVM to learn a linear decision boundary in
the transformed space, which can be expressed by the following
Equation 17:

f(x) = ⟨ω ⋅φ(x)⟩ + b (17)

where, ⟨∙⟩ represents the dot function, and φ(x) denotes a
transformation that takes the input feature and maps it to a higher-
dimensional feature space. The parameter vector of the function,
referred to as model bias, is denoted by b. The minimum values of ω
were obtained using the following Equation 18:

min imize[1
2
∥ ω∥2 +C

n

∑
j−1
(ξj + ξj∗)] (18)

subjectedto{yj −ω ⋅φ(Xj) − b ≤ ε+ ξjω ⋅φ(Xj) + b− yj ≤ ε+ ξj
∗ξj,ξj
∗} ≥ 0

(19)

The variables ξj and ξ
∗
j in Equation 19 represent slack variables,

and C denotes the regularization parameter. The insensitive

Frontiers in Built Environment 08 frontiersin.org

https://doi.org/10.3389/fbuil.2024.1495472
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Singh and Ghani 10.3389/fbuil.2024.1495472

FIGURE 5
Map of the study area for Liquefaction cases in the study area as per Table 2.

FIGURE 6
Map of the study area for Non-Liquefaction cases in the study area as per Table 3.

loss function ε quantifies the error between the predicted and
test values, with yj representing the test value. Variable n
corresponds to the number of samples in the context of a

given scenario. Figure 3 illustrates the working architecture of
the SVM. This figure explains how the kernel trick allows the
SVM to handle non-linearly separable data by transforming it
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TABLE 4 Properties of soil.

Properties Value

Sand Silty sand

SG 2.66 2.68

LL - 32.84

PL - 19.41

PI - 13.43

MDD (kN/m3) 18.68 17.6

OMC - 13.7

Cu 4.1 80

Cc 1.08 2.59

D50 0.33 0.07

into a space where linear separation is possible, thus improving
classification accuracy.

3.3.2 Metaheuristic optimization algorithms
Inspired by the social hierarchy and hunting strategies of

grey wolves, the Grey Wolf Optimizer (GWO) algorithm mimics
the pack structure. Alpha wolves (leaders), betas (assistants),
deltas (subordinate hunters), and omegas (lowest ranking)
guided the search process. This population-based approach has
found widespread application in various engineering fields,
offering a valuable tool for task optimization, as demonstrated
in recent research (Ghani and Kumari, 2022a; Thapa et al.,
2024a). Particle Swarm Optimization (PSO) serves as a global
optimization approach employed in fine-tuning hyperparameters
within machine-learning models. Drawing inspiration from the
collective behavior of bird swarms and fish schools (Gad, 2022),
the PSO algorithm has proven its efficacy. In a comparative
study of five optimization algorithms, namely, PSO, ant colony
systems, genetic algorithm (GA), shuffled frog leaping, and the
memetic algorithm, PSO emerged as the superior technique
(Pham and Nguyen Dang, 2024). Inspired by Darwin’s theory
of natural selection, GA utilizes a population of initial solutions
encoded as chromosomes. These chromosomes, which are
often represented as binary strings, act as candidate solutions.
Through an iterative evaluation using fitness functions, the
algorithm identified promising solutions. These solutions are then
combined (crossover) and slightly altered (mutation) to create new
generations, ultimately leading to an improvement in the overall
population towards optimal solutions, which has proven successful
in solving complex problems, including those in civil engineering
(Ghani and Kumari, 2022b). Firefly (FF) is a population-based
metaheuristic optimization approach. It emphasizes light variety
and enticing formulas, mirroring the use of light by fireflies
for mating, prey detection, and swarm awareness (Ghani and
Kumari, 2022b). Figure 4 presents the workflow for optimizing
the hyperparameters of an SVM regression model using the

four optimization algorithms adopted in this study, as discussed
above.

4 Data collection and data processing

The database was obtained from a comprehensive record of
numerous earthquake events, detailing their magnitudes, specific
sites affected, and the occurrence of liquefaction at each location.
Tables 2, 3 present data on various earthquakes, detailing their
magnitudes, number of affected sites, and occurrence and non-
occurrence of liquefaction. Figures 5, 6 illustrate the global map
highlighting the locations from which the liquefied and non-
liquefied soil data were collected. Notable events include the 1944
Tohnankai earthquake with a magnitude of 8.0 affecting three
sites and causing liquefaction; the 1976 Tangshan earthquake
with a magnitude of 7.8 impacting five sites and leading to
liquefaction; and the 1995 Hyogoken-Nambu earthquake with a
magnitude of 7.2 affecting 26 sites and resulting in liquefaction.
Tables 2, 3 provide a concise overview of seismic events and
their associated impacts on the liquefaction of ground sites. This
structured format facilitates an easy comparison and analysis
of liquefaction incidents across various seismic events and
locations.

Table 4 outlines the various properties of the soil types
encountered, that is, sand and silty sand from the study area. Overall,
the table presents and compares the density,moisture characteristics,
and particle size distribution of sand and silty sand, highlighting the
significant differences in their properties. Figure 7 shows the grain
size distribution of sandy soil and silty sand soil from the study
area.

For the processing of data to incorporate ML techniques,
normalization is a crucial preprocessing step that significantly
improves the accuracy of computational models. It addresses the
issue of variable scaling by transforming data values into a common
range, often between zero and one. This mitigates the influence
of features with larger scales on the learning process, ensuring
that all variables contribute equally during the model training. By
normalizing the data, we prevent features with inherently larger
values from dominating the model, and achieve a more balanced
representation of the underlying relationships within the data. This
paves the way for the development of more robust and generalizable
models.

aNORMALISED = (
a− amin

amax − amin
) (20)

The minimum and maximum values of aNORMALIESD are
represented by amin and amax, respectively as shown in Equation
20. This technique is called the min-max normalization
technique.

5 Results and discussion

5.1 Threshold criteria for liquefaction
assessment from field data

In the present investigation, the focus was on the capabilities
of the DCPT method in evaluating the liquefaction susceptibility.
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FIGURE 7
Grain size distribution of sand and silty soil.

FIGURE 8
Distribution of safety factor (e/qd) for liquefied and non-liquefied samples with the critical separation threshold (e/qd = 4).

A pivotal aspect highlights the significance of the e/qd ratio in
gauging the likelihood of liquefaction-induced failures. Termed the
safety ratio, this ratio outlines the relationship between the rate
of penetration (e) and cone resistance (qd), thereby emerging as a
pivotal factor in evaluating the potential for soil liquefaction. The

DCPT method employs Equation 14 to calculate the soil dynamic
resistance (qd). This equation incorporates key factors such as the
equipment mass, gravitational force, and cone tip dimensions. By
rearranging this formula, Equation 15 expresses the ratio of the
penetration rate to the dynamic resistance (e/qd), which is often
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TABLE 5 Liquefaction susceptibility criteria based on e/qd ratio.

Safety ratio criteria Susceptibility

e/qd ≤ 4 No Liquefaction

e/qd > 4 Liquefaction

referred to as the safety ratio. This parameter offers valuable insights
into the soil behavior under dynamic stress conditions. Generally, a
higher e/qd value suggests an increased susceptibility to liquefaction,
as it indicates the tendency of the soil to yield more readily under
applied forces. To bridge the gap between the DCPT results and
more conventional soil-testing methods, Equation 16 establishes a
correlation between qd and the Standard Penetration Test (SPT) N-
value for cohesionless fine-grained soils. This relationship enhances
the applicability of the DCPT by allowing comparisons with
widely used SPT data, thereby facilitating a more comprehensive
assessment of the liquefaction potential across various soil types and
conditions.

The establishment of a threshold criterion, illustrated in Figure 8,
proved instrumental in determining the soil liquefaction
susceptibility based on the e/qd ratio. The sample index was plotted
along the y-axis, representing the different soil samples analyzed.
The Safety Factor is plotted on the x-axis, indicating the ratio
between the rate of penetration and dynamic resistance for each
sample. The red vertical line at e/qd = 4 represents the critical
threshold separating the liquefied and nonliquefied zones. Samples
with e/qd ≥ 4 were classified as liquefied (LQ) and are represented by
orange bars. Samples with e/qd < 4 were classified as non-liquefied
(NLQ) and are shown as blue bars. The Liquefied Zone on the right
side of the red line indicates that the soil samples falling within
this region are more likely to experience liquefaction. The graph
visually demonstrates the separation between the liquefied and
non-liquefied cases based on their e/qd values, providing insight

into the safety margins for various soil samples under dynamic
loading conditions.This classification is based on the understanding
that soils with higher e/qd ratios generally exhibit lower resistance
to liquefaction, which increases the risk of failure under seismic
loading conditions.

This differentiation is briefly summarized using the tabular
liquefaction susceptibility criterion, as shown in Table 5. Figure 8
serves as a visual aid to elucidate the relationship between the
e/qd ratio and the liquefaction prediction. Figure 9 provides
a quantitative assessment of the accuracy of liquefaction
predictions derived from the e/qd ratio obtained using the
DCPT method. Notably, the accuracy rates for the liquefied
and non-liquefied scenarios were 82.7% and 86.5%, respectively,
as shown in Figures 9A, B.Theoverall accuracy of the prediction rate
for liquefied and non-liquefied conditions highlighted the precision
of the proposed method.

The results of this study underscore the pivotal role of the
e/qd ratio in fortifying our understanding of soil liquefaction. The
e/qd ratio is a key component that provides crucial information
for projects involving engineering and construction, particularly in
areas with high seismic activity. Through meticulous analysis and
empirical validation, the present findings underscore the efficacy of
employing this safety ratio within the DCPT framework, offering
a robust and novel tool for evaluating liquefaction susceptibility at
different locations.

5.2 Relation between inputs and safety
factor (e/qd)

Figure 10 illustrates the connection between the input variables
and the e/qd ratio through four subfigures: FC (%), PGA, rd, and e.
The amount of finer particles in the soil, known as FC (%), affects
its vulnerability to liquefaction. An increased FC usually results in
a higher e/qd ratio, indicating a higher likelihood of liquefaction.
PGA is the seismic factor acting on the soil, which directly affects
the e/qd ratio. With an increase in PGA, the e/qd ratio increased,

FIGURE 9
(A) Liquefied cases and (B) Non-Liquefied cases.
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FIGURE 10
Relationship between input and output variable (A) FC (%), (B) PGA, (C) rd and (D) e.

indicating a greater likelihood of liquefaction. rd accounts for the
depth-related weakening of seismic energy; smaller rd values are
linked to greater e/qd ratios, suggesting that deeper layers are at an
increased risk of liquefaction. The penetration rate (e) in the DCPT
test is an important factor. A higher e/qd ratio indicates a weaker
soil strength when the penetration rate is increased. Figure 10 shows
how variations in FC, PGA, rd, and e affect the e/qd ratio, thereby
impacting the soil liquefaction potential. Comprehending these
relationships assists in evaluating the engineering characteristics of
soil and its response to seismic forces.

5.3 Hyperparameter tuning process

The present study employed grid search as the primary
hyperparameter tuning method to optimize the performance of

our ML models. The grid search performs an exhaustive search
over a predefined parameter space, allowing us to systematically
evaluate different combinations of hyperparameters. For the SVM
model, the regularization parameter (C), which controls the trade-
off between maximizing the margin and minimizing classification
errors, and the kernel coefficient ( gamma) for the Radial Basis
Function (RBF) kernel, which determines the influence of a single
training example were tuned (Ghani et al., 2021; Ghani et al.,
2024a; Guan et al., 2022; Jamal et al., 2021; Ghani et al., 2024b;
Talamkhani et al., 2023; Wang et al., 2023). The grid search process
was performed in combination with the k-fold cross-validation
to ensure robustness (Man et al., 2023; Roy et al., 2023). This
cross-validation technique divides the dataset into k subsets, where
the model is trained on k-1 subsets and tested on the remaining
subset. The process is repeated k times, and the results are averaged
to minimize overfitting and ensure that the model generalizes
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TABLE 6 Summary of datasets (count = 288).

Features Symbol Max Min Mean Median Mode SD Variance

Fine Content FC 62.00 3.00 24.51 22.00 13.00 12.19 148.56

Peak Ground Acceleration PGA 1.00 0.03 0.27 0.21 0.12 0.21 0.04

Reduction Factor rd 0.97 0.70 0.88 0.89 0.83 0.07 0.00

Rate of penetration e 23.49 2.24 8.07 6.65 17.40 4.75 22.60

Safety Ratio e/qd 51.38 0.47 8.17 4.12 28.20 10.38 107.79

FIGURE 11
Frequency of variables FC (%), PGA, rd, e and e/ qd.

well to the unseen data (Ghani and Kumari 2022; Thapa et al.,
2024b; Ghani and Kumari 2021b; Shrestha et al., 2024; Mustafa
and Ahmad 2024). The grid search explored a range of values for
C (0.1–100) and gamma (0.001–1). After tuning, we observed a
significant improvement in the model performance. The optimized
SVM model, for instance, demonstrated a reduction in the root
mean square error (RMSE) and an increase in the coefficient
of determination (R2). These enhancements were crucial for
achieving higher accuracy in predicting liquefaction susceptibility,
as the tuned parameters allowed the model to better capture
the complex nonlinear relationships between the input variables
and liquefaction outcomes. In addition to the grid search, we
also experimented with a random search for other models,
such as decision trees and neural networks, where we randomly
sampled the hyperparameter space. Although random search is
less computationally expensive, a grid search was chosen for
the SVM model to ensure a more precise optimization of the
hyperparameters. The results from hyperparameter tuning clearly
demonstrate thatmodel performance is highly sensitive to the choice
of parameters.The fine-tuned SVMmodel outperformed the default

settings, confirming the effectiveness of the proposed grid search
strategy.

5.4 Computational analysis using ML
models

Furthermore, this study focuses on developing a data-drivenML
model for utilizing DCPT test data utilizing four key variables: fine
content (FC), peak ground acceleration (PGA), reduction factor (rd),
and rate of penetration (e). Table 6 presents a statistical summary
of the input and output variables for the entire dataset. To gain a
deeper understanding of the relationship between key parameters
influencing safety, Figure 11 presents the frequency distribution
of the normalized values for FC, PGA, rd, e, and e/qd. Figure 12
illustrates the relative frequency distribution of the five key variables
affecting the soil liquefaction susceptibility. The distributions were
mostly right-skewed, indicating that most data points fell within
the lower ranges for each parameter. For instance, fine content
predominantly lies between 10% and 30%, whereas PGA values
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FIGURE 12
Relative Frequency Distribution of Key Parameters Influencing Liquefaction Susceptibility in Soils (A) Fines Content, (B) Peak Ground Acceleration, (C)
Reduction factor (D) Rate of Penetration, and (E) Safety Ratio.

are mainly low, with a significant portion of samples having low
seismic activity.The reduction factor values cluster around 0.8 to 0.9,
suggesting amoderate energy reductionwith depth.The penetration
rate (e) showed a concentration of approximately 5–15, indicating

moderate resistance in the soil. Finally, the safety ratio (e/qd) values
were low for most samples, indicating that the majority of the soils
tested had lower liquefaction potential.These distributions highlight
the critical role of these variables in assessing the liquefaction risk.
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TABLE 7 Performance index of training and testing datasets.

Index R2 RMSE Adj.R2 MAE VAF IOA a20-index IOS MSE

Training

SVM-GWO 0.965 1.224 0.986 0.833 98.633 0.997 0.944 0.148 1.498

SVM-GA 0.912 1.161 0.987 0.854 98.706 0.997 0.940 0.147 1.349

SVM-FF 0.972 1.106 0.834 0.734 83.983 0.959 0.803 0.520 1.862

SVM-PSO 0.999 0.220 0.999 0.194 99.956 1.000 0.987 0.027 0.048

Testing

SVM-GWO 0.942 1.172 0.987 0.854 98.706 0.997 0.940 0.147 1.349

SVM-GA 0.885 1.224 0.986 0.833 98.633 0.994 0.943 0.148 1.498

SVM-FF 0.963 0.452 0.998 0.344 99.804 1.000 0.975 0.057 0.204

SVM-PSO 0.989 1.082 0.989 0.430 98.909 0.997 0.968 0.137 1.172

Hybridized ML models were used to evaluate e/qd. Both
the model construction and validation phases were specifically
addressed to provide a comprehensive understanding of the
effectiveness of the ML model. The primary focus of the discussion
was model performance during the training and testing phases.
Table 7 presents the statistical performance of the model during
the training and testing phases. Table 8 presents a thorough
examination of the various models using multiple indices to
determine the scores. The performance of each model was assessed
during both training and testing stages. The scores represent
the extent to which each model predicts the e/qd ratio. In the
testing phase, the SVM-FF model demonstrated superior predictive
ability by achieving the highest total score of 36, surpassing all
other indices. In contrast, the SVM-GA model had the lowest
score of nine in testing, indicating less accurate predictions.
The SVM-PSO model consistently achieved high scores in both
the training and testing stages. This in-depth score analysis
helps to pinpoint the strongest and most dependable models
for predicting soil behavior in different situations, guaranteeing
precise evaluations of soil liquefaction potential. The SVM-
FF model showed high accuracy in predicting e/qd with R2

values of 0.999 and 0.998 and low RMSE values of 0.332 and
0.452 in the training and testing stages, respectively, achieving
the highest score of 66. This was followed by the SVM-PSO
model, which also showed high accuracy in predicting e/qd
with R2 values of 0.999 and 0.989 and low RMSE values of
0.220 and 1.082 in the training and testing stages, respectively,
achieving a score of 63. The SVM-GA model, being the poorest
performer, still had an R2 value above 0.83 in both the training
and testing phases with a score of 21, whereas the SVM-
GWO model showed good predicting capability, obtaining R2
above 0.98 in both the training and testing phases, obtaining a
score of 39.

Figure 13 shows the actual and predicted scatter plots, where
the orange dot represents the actual value, and the green dot

represents the predicted e/qd values. Figure 14 illustrates the
error graph of the prediction models, where the green triangle
represents the training dataset and the orange square represents
the testing dataset. From Figures 13, 14, the SVM-FA and SVM-
PSO models have the best accuracy because of the presence
of 95% of the dataset in the ideal line and an error of less
than 30%.

Figure 15 presents a detailed evaluation of the general
performance of the model using the Pearson correlation coefficient
(R), standard deviation (SD), and root mean square error (RMSE)
measurements. The Taylor diagram included information from
the training and testing datasets. Evaluating the effectiveness
of the model is simpler compared to the benchmarks of R = 1
and RMSE = 0. During both the training and testing stages, the
proposed models accurately predicted the actual value (e/qd),
as shown in Figure 15. Throughout both stages, the SVM-PSO
model excels significantly, approaching the reference point near
the red square. To validate the performance improvements of the
hybrid models, we conducted a paired t-test. This test evaluates
whether the observed differences in key performance metrics,
such as R2, RMSE, and MAE, are statistically significant. The
paired t-test was used to determine whether the mean difference
between the performances of the two models was significantly
different from zero. The relationship for the paired t-test is shown in
Equation 21

t = d
sd
√n

(21)

Where:
d is the mean of the differences between paired observations

(e.g., the RMSE values of the two models), sd is the standard
deviation of the differences, and n is the number of paired
observations.

We applied the test to the performance metrics of each model
across the same datasets with a significance level of 0.05. If the
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TABLE 8 Score analysis of training and testing datasets.

Training Index SVM-GWO SVM-GA SVM-FF SVM-PSO

R2 3 2 4 4

RMSE 2 1 3 4

Adj.R2 3 2 4 4

MAE 2 1 3 4

VAF 2 1 3 4

IOA 3 2 4 4

a20-index 2 1 3 4

IOS 2 1 3 4

MSE 2 1 3 4

Total 21 12 30 36

Testing Index SVM-GWO SVM-GA SVM-FF SVM-PSO

R2 2 1 4 3

RMSE 2 1 4 3

Adj.R2 2 1 4 3

MAE 2 1 4 3

VAF 2 1 4 3

IOA 2 1 4 3

a20-index 2 1 4 3

IOS 2 1 4 3

MSE 2 1 4 3

Total 18 9 36 27

Total Training and Testing Score 39 21 66 63

resulting p-value is less than 0.05, we reject the null hypothesis
and conclude that the performance improvement of the hybrid
models over the standalone models is statistically significant. The
results show that for key metrics, such as RMSE and R2, the
improvements in the hybrid models (e.g., SVM-PSO and SVM-
FF) are statistically significant compared to the standalone models,
confirming the superiority of the hybrid models in liquefaction risk
prediction.

This statistical analysis reinforces the validity of the enhanced
performance of the hybrid models.

This demonstrates how the model’s forecasting accuracy
validates its potential for accurately predicting e/qd in real-world
applications. However, the study’s dataset, while comprehensive
for the specific region and soil type analyzed, may not adequately
represent soil variability across diverse locations, potentially limiting

the model’s applicability in substantially different conditions.
The generalizability of the model across regions and soil profiles
necessitates further validation with more heterogeneous datasets.
Uncertainties in the DCPT data, the primary input, may
introduce variability that affects the predictive accuracy. Despite
measures to mitigate overfitting, the relatively limited dataset
size presents a potential risk, necessitating additional validation
on larger and more diverse datasets to ensure robustness and
scalability.

In conclusion, this study not only contributes to the evolving
landscape of liquefaction potential assessment, but also bridges
the gap between field testing and advanced computational
techniques. The integration of these advanced computational
models with DCPT data, specifically the e/qd ratio (rate
of penetration to cone resistance), represents a significant
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FIGURE 13
Actual versus predicted plot of SVM hybrid models.

advancement. The DCPT, known for its rapidity, cost-effectiveness,
and versatility across soil types (Rollins et al., 2021), provides
a practical and efficient field-testing method. The e/qd ratio,

when exceeding a threshold of 4, signifies a high likelihood
of liquefaction and offers a quick and reliable assessment
tool.
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FIGURE 14
Error plot of the hybridized ML models.

6 Computational efficiency and
practicality for real-time geotechnical
analysis

The practical application of the proposed ML models in real-
time geotechnical analysis is contingent on their computational
efficiency. This study utilized machine-learning techniques to
predict liquefaction susceptibility using DCPT data. These models
were selected because of their ability to achieve an optimal balance
between high predictive accuracy and computational efficiency,
rendering them suitable for practical implementation.

6.1 Processing time and resource usage

The computational efficiency of the models was evaluated by
assessing the mean training duration and resource utilization across
multiple trials. Table 9 presents the average training time (in min)
and memory consumption (in GB) for each ML model.

As shown in Table 1, the SVM-PSO model demonstrated
low memory and CPU usage, proving its efficiency in real-
time applications. While models such as SVM-GA and SVM-FA
require marginally more training time, their resource consumption
remains within acceptable bounds and is suitable for deployment in
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FIGURE 15
Taylor diagram of the hybridized ML models (A) training and (B) testing.

TABLE 9 Computational efficiency of ML models.

Model Average training time (Minutes) Average memory usage (GB) CPU usage (%)

SVM-GWO 4.2 1.5 35

SVM-GA 6.1 2.2 40

SVM-FF 5.8 2.1 38

SVM-PSO 3.7 1.2 30

FIGURE 16
Comparison of training and prediction times for different SVM models.
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FIGURE 17
Comparison of Environmental Impact Between SPT and DCPT-ML approach.

resource-limited environments such as in-field devices or real-time
monitoring systems.

6.2 Model deployment and real-time
suitability

In addition to resource utilization, we evaluated the temporal
requirements of each model to process the novel data inputs after
training. Figure 16 shows the prediction duration (in seconds) for
each model when processing the new DCPT data points. This
demonstrates that the prediction time for all models was less than
15 s, which underscores their capacity for real-time analysis. This
capability is particularly significant for applications, such as post-
earthquake site assessments, where rapid and accurate predictions
of liquefaction susceptibility are essential.

6.3 Integration with real-time geotechnical
analysis

The integration of these ML models with DCPT data
presents a streamlined approach for liquefaction assessment.
In contrast to traditional methods, which may require labor-
intensive and time-consuming data collection and processing,
DCPT provides real-time data inputs that can be immediately
analyzed by ML models. This renders the proposed methodology
particularly valuable in field scenarios in which real-time
risk assessment is crucial. The combination of efficient
processing times and low resource consumption renders these
machine-learning models suitable for deployment in both
real-time and near-real-time geotechnical applications. Their

capacity for integration with lightweight hardware systems
further enhances their applicability to real-world engineering
projects.

7 Environmental impact and
sustainability considerations

The proposed methodology, which integrates DCPT data
with ML models, offers substantial environmental advantages
over conventional methods, such as SPT. These methods require
extensive drilling, borehole preparation, and heavy equipment
utilization, resulting in high energy consumption and significant
soil disturbance, which can potentially disrupt habitats, induce
soil erosion, and contaminate the groundwater. In contrast,
DCPT is a portable and lightweight alternative that requires
minimal drilling and equipment. The direct soil penetration
approach minimizes borehole preparation, thereby reducing
both site time and environmental disturbances. DCPT’s real-
time data acquisition capability of DCPT shortens the testing
duration, consequently reducing the energy consumption
and emissions from machinery operation. The integration of
DCPT with ML enhances the predictive accuracy without
necessitating additional field tests, thus promoting resource
efficiency. This approach not only reduces costs, but also
decreases the environmental footprint of geotechnical assessments.
It supports sustainable infrastructure practices by facilitating
the design of earthquake-resilient structures, with minimal
environmental degradation. In conclusion, the DCPT-ML
framework provides a sustainable and accurate method for
liquefaction assessment, mitigating the environmental impact
of geotechnical investigations, particularly in ecologically
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sensitive areas, while ensuring reliable predictions of the liquefaction
potential. Figure 17 illustrates and compares the environmental
impact and sustainability considerations between two geotechnical
investigation methods: the SPT process and Dynamic Cone
Penetration Test integrated with Machine Learning (DCPT-
ML) process.

8 Summary and conclusion

This study presents an innovative approach that combines
Dynamic Cone Penetration Test (DCPT) data with advanced
machine learning (ML) algorithms to improve the accuracy,
efficiency, and environmental impact of liquefaction risk
assessments. This study marks a significant leap in geotechnical
engineering by shifting from traditional, time-consuming, and
resource-intensive methods such as the Standard Penetration Test
(SPT) to a more sustainable, rapid, and adaptable solution. Through
the use of DCPT, this method offers real-time data acquisition and
minimizes soil disturbance, energy consumption, and emissions,
making it not only cost-effective, but also environmentally friendly.
The integration of ML techniques, specifically optimized SVM
models, demonstrated outstanding predictive performance, with
the SVM-PSO model achieving high R2 values of 0.999 and 0.989
during training and testing, respectively. This level of accuracy
highlights the robustness of the proposed method in capturing
the complex soil behaviors and liquefaction susceptibility. The e/qd
ratio, which compares the penetration rate to dynamic resistance,
was shown to be a critical threshold for predicting the liquefaction
potential, with values exceeding four indicating a high likelihood
of failure.

Overall, this study provides a powerful, data-driven tool that
geotechnical engineers can use to assess liquefaction risks more
accurately and efficiently. The ability to train ML models on
diverse datasets enables site-specific adaptations, thereby enhancing
the practical applicability of this method across various soil
types and seismic conditions. Furthermore, the use of minimal
drilling and lightweight equipment contributes to the reduction of
environmental impacts, aligning with the sustainable infrastructure
development goals. This research not only advances the field of
liquefaction risk assessment, but also sets a new standard for
the intersection of geotechnical engineering, sustainability, and
computational efficiency.

9 Limitations and future work

Future research should expand this methodology to different
soil types and geographical locations to validate its broader

applicability. Enhancing the computational efficiency using
streamlined algorithms or advanced optimization methods
will improve the model’s processing speed for large datasets
or real-time applications. Integrating the model with real-
time data from tools such as the DCPT can support the
continuous monitoring of soil stability, enabling proactive
maintenance and early warning systems for geotechnical
hazards, ultimately improving infrastructure resilience and
safety.
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