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for regional population
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Introduction: Forecasting population dynamics is crucial for effective urban
and regional planning. Traditional demographic methods, such as Cohort
Component Analysis, often do not capture nonlinear interactions and spatial
dependencies among regions. To address these limitations, this study integrates
Lotka—Volterra prey—predator equations with a probabilistic adaptation of
the Gravity model, providing a more robust theoretical and methodological
framework for regional population forecasting.

Methods: We adapt the Lotka—Volterra model—originally rooted in ecological
theory—by introducing carrying capacities and region-specific parameters, then
embed a probabilistic Gravity model to capture interregional mobility. This
unified approach leverages population data and migration flows from three
major clusters in Quebec, Canada, calibrating model parameters to reflect
observed demographic trends. The resulting system of equations was iteratively
solved and tested using population data from 2021 through 2023.

Results: The combined model effectively captured competitive and cooperative
population interactions, revealing how spatial connectivity and resource
constraints shape long-term growth patterns across the three regions.
Calibrated forecasts aligned well with observed trends, demonstrating the
framework’s capacity to reflect real-world interdependencies in regional
population flows. Key findings highlight the importance of prey—predator—like
dynamics in producing stable or shifting equilibria, offering deeper insights into
regional competition, cooperation, and demographic sustainability.

Discussion: By merging ecological modeling principles with spatial interaction
theories, this work underscores the added value of grounding demographic
forecasting in well-established theoretical constructs. Compared to more
traditional approaches, the integrated Lotka–Volterra and Gravity model
provides a clearer picture of how regional populations evolve under
nonlinear and spatially linked influences. This approach is readily adaptable to
diverse contexts, potentially enhancing forecast precision and guiding policy
interventions in urban development, resource allocation, and strategic planning
on a broader scale.

KEYWORDS

prey-predator theory, Lotka-Volterra model, probabilistic gravity model, spatial
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1 Introduction

Accurately forecasting population dynamics, driven by natural
growth and mobility, is essential for effective urban planning
and territorial development. Traditional methods, such as Cohort
Component Analysis (CCA), primarily rely on historical data and
often overlook the nonlinear interdependencies among multiple
demographic parameters and interacting regions. Consequently,
these rigid frameworks can lead to outdated predictions and
overlooked implications (Rees and Wilson, 1977). To overcome
these limitations, this study benefits from the dynamic modeling
capabilities of an enhanced Lotka-Volterra model for human
population prediction, while simultaneously integrating a refined
probabilistic gravity approach. This integrated framework offers
a more precise and comprehensive tool for understanding and
predicting population dynamics, thereby improving the accuracy of
regional planning and policymaking (Lutz and Gailey, 2020).

Population estimates generally rely on the evolution of
various demographic components and prevailing trends (Reinhold
and Thomsen, 2015). CCA, pioneered by Whelpton (1928) in
Canada, remains widely employed for population enumeration
and projections. It is widely adopted in developed nations for its
effectiveness in capturing historical trends and the evolution of
natural parameters such as birth and death rates, classified by age
and gender (Chi, 2009;Wilson, 2016). CCAemploys straightforward
methodologies, assuming linearly independent impacts of
typical demographic attributes while often underrepresenting
population mobility and other abstract parameters influencing
regional dynamics (Smith et al., 2013). The complexity of
demographic forecasting essentially lies in interpreting these
interconnected mobility patterns (Lucas, 2015; Lutz and Gailey,
2019; Stawarz et al., 2021; Murayama and Nagayasu, 2021).

Interregional mobility is significantly influenced by individuals’
pursuit of improved housing, job opportunities, vibrant
communities, and higher social and environmental standards
(Greenwood, 1997; Teixeira, 2009; Seo et al., 2020). Anticipating
its socioeconomic consequences and demographic shifts is essential
for effective planning, management, and territorial development
(Champion and Fielding, 1992; Zoraghein and O’Neil, 2020).
Critical decisions on social welfare, economic resource allocation,
land use planning, property valuation, taxation, and public services,
especially transportation, depend on robust demographic insights
(Biswas et al., 2009; Terroso-Sáenz and Muñoz, 2022). However,
a static and reactive approach in isolated regions fails to harness
demographic trends effectively, exacerbating issues that require
strategic intervention for balanced regional development (Lichter
and Johnson, 2006). Such approaches often overlook dynamic
socioeconomic factors, leading to fragmented and suboptimal
development outcomes (Miao and Pojani, 2022). Integrated and
adaptive planning methods are essential for responding to changing
environmental and economic conditions, as rigid, isolated strategies
can hinder effective regional development (Özdilek, 2016; Wang
and Li, 2021).

Demography and migration inherently encompass
socioeconomic and geographic dimensions, making them amenable
to modeling cultural dynamics (Voss, 2007; Burton et al., 2010;
Matthews andParker, 2013;Wilson et al., 2021). To refine population

growth estimations, demographers have traditionally utilized age-
sex spatio-temporal life tables or actuarial probability matrices,
sometimes integrating origin-destination mobility data (Rau et al.,
2022; Malmberg et al., 2023). While many studies focus on internal
migration rates, interactions between neighboring regions—driven
by geographical disparities and socioeconomic ties—catalyze
complex inter-regional dynamics (Song et al., 2013; Huang et al.,
2018). The integration of spatial interaction models, particularly
those utilizing entropy-maximizing principles as established by
Wilson (1970), Wilson (2010), provides a robust framework
for incorporating spatial dependencies of socioeconomic and
migration patterns.

In recent years, advanced computational algorithms have
significantly enhanced demographic mobility estimates by
integrating interregional dependencies. Techniques such as
feedforward neural networks (Openshaw, 1993), agent-based
modeling (Billari and Prskawetz, 2003; Gopal, 2006), the radiation
model (Simini et al., 2021), and Graph Convolutional Network
(GCN) architectures (Wang et al., 2023a) have expanded the
analytical toolkit. These methodologies, ranging from time-
series analysis to Bayesian modeling and machine learning
approaches, improve the predictive capabilities of demographic
studies (Abel et al., 2013; Robinson and Dilkina, 2018; Sohst
and Tjaden, 2020). By accounting for spatial and temporal
interdependencies and the complex interplay of socioeconomic
factors, these advancements offer a more nuanced understanding of
population dynamics.

Various tools and specific programs enhance predictive
capabilities by integrating spatial and temporal data, making them
indispensable for modern demographic research and planning
(Wang et al., 2023b). These tools leverage programming and
simulation approaches to anticipate territorial development,
creating virtual spaces that facilitate hypothesis testing and
scenario development (Deng et al., 2023). For instance, Origin-
Destination REIMHS analysis supports traffic flow and population
movement predictions, providing insights into regional interactions
(Wang et al., 2019). MEPLAN, a land-use and transport interaction
model, integrates the economic impacts of transportation systems,
offering a holistic view of regional development (Pignataro et al.,
1998; Hunt et al., 2005; Cooke and Leydesdorff, 2006). The PECAS
model further refines understanding by simulating economic
and spatial interactions in urban areas, improving population
predictions (Ellam et al., 2018). Additionally, TELUM and
UrbanSim models simulate household and workforce location
behaviors under various land use scenarios, aiding in the analysis
of demographic trends and their impact on regional planning
(Waddell, 2002; Grant, 2002; Deng et al., 2023).

The global evolution of biological systems and other complex
phenomena necessitates nonlinear dynamical models to capture
space-time variations (Hofbauer and Sigmund, 1998; Burch, 2018).
The Lotka-Volterra model, employing differential equations within
a prey-predator dynamic framework, has found applications in
epidemiology and economics (Cockshott and Cottrell, 2009;
Hol et al., 2016). However, its direct use in human population
prediction remains less explored (Bischi et al., 2000). Despite its
theoretical robustness, demographic forecasting often relies on
accounting methods lacking a solid theoretical basis (Hudson, 1970;
Tranos et al., 2015a; Tranos et al., 2015b).TheLotka-Volterramodel’s
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mathematical foundation offers a promising avenue for advancing
demographic forecasting, providing a coherent framework for
understanding population dynamics and guiding effective resource
allocation (de Valk et al., 2022). Although not originally a
demographic model, the gravity model, based on Newton’s law of
gravitation, has been applied to study migration between competing
regions (Reilly, 1931; Zipf, 1949; Anderson, 2011), but requires
adjustments for social science contexts (Davis et al., 2013).

Integrating the Lotka-Volterra dynamic equations enables
models to more effectively capture interactions between competing
populations. Additionally, advanced gravity models, particularly
those based on entropy-maximizing principles (Wilson, 2008),
can enhance population prediction capabilities. However, even
integrated Lotka-Volterra and gravity models do not fully account
for all the complexities of population mobility and predictability.
Simplifications of parameters and phenomena make accurate
predictions of social behaviors, migration patterns, and population
growth challenging (Partridge et al., 2007). Moreover, factors
such as subjective decision-making, cultural influences, and policy
changes further limit the comprehensive predictive power of these
approaches (Billari and Prskawetz, 2003).

This study presents an innovative methodological framework
to address the intricacies of population dynamics across three
regional clusters in Quebec, Canada. While it focuses on regions
within the Quebec province, the presented model—its concepts,
data, and methodology—is sufficiently generalizable to other
geographic contexts, provided suitable data and identified clusters.
The integrated model’s ability to capture dynamic interactions
makes it highly adaptable. Future studies could apply this approach
elsewhere, considering local data and specific regional dynamics.

By incorporating concepts such as carrying capacity, multiple
interacting regions, and resource constraints, and by fine-tuning
parameters using historical data, our adapted model closely
simulates competitive and cooperative dynamics reflective of real-
world interactions. This comprehensive approach enhances the
accuracy and relevance of interregional migration fluidity and
provides a robust tool for demographic forecasting. Demonstrated
through illustrative examples and optimized using advanced
computational techniques, our model offers reliable, policy-
informing insights into regional population influences over time,
significantly advancing demographic forecasting and supporting
strategic planning and effective policy formulation.

2 Literature review

Effective demographic predictions hinge on concepts, data,
and mathematical approaches grounded in fundamental theories
(Bryant and Zhang, 2019). Current data-centric methodologies in
demography have not significantly advanced the field (Luhmann,
1995; Burch, 2018), largely due to the absence of a comprehensive
foundational framework. This often leads to the ecological fallacy,
where aggregate data is misapplied to individual behavior, failing to
reflect real-world complexities (Courgeau, 2007; Courgeau, 2012).
Consequently, the field has been slow to develop robust theories
that integrate social, economic, and geographic variables, frequently
drawing on insights from other disciplines without forging a
cohesive theoretical framework (Doran, 2000; Silverman et al., 2011;

Silverman et al., 2013; Courgeau et al., 2017a). This lack of a
unified approach hampers the ability to fully capture the nuances
of population dynamics (Burch, 2002).

The literature underscores the significance of concepts and
demographic parameters as the foundation for various methods
used to study population (Paul and Yeoh, 2020). Parameters such
as aging and birth/death rates, governed by biological rules, are
relatively predictable (Guillot, 2011). However, parameters related
to human judgment and behavior—such as fertility, lifestyle,
family composition, migration, and regional socioeconomic
disparities—are less predictable yet crucial (Kuate Defo, 2014).
For instance, individuals often relocate from high-unemployment
areas to regions offering lower unemployment rates (Myrdal, 1957;
Polese, 1981). Lee’s migration theory (1966, 1969) elucidates push
and pull factors by considering both attractive and repulsive regional
attributes. These components span biology, sociology, economics,
geography, politics, and physics (Rogers and Castro, 1981; Rogers
and Willekens, 1986; de Valk et al., 2022).

The economic impacts of utility parameters, explained by
Lancaster (1966) and quantified by Rosen (1974), provide a
framework for understanding decision-making through concepts,
data, and methods. Just as rational economic agents drive markets
toward equilibrium, individuals make demographic decisions
that influence population variations via migration dynamics
(Bloom et al., 2009; Aksoy et al., 2019). For instance, unemployment
significantly affects migration patterns (Wiginton, 2013). Tiebout’s
(1956) theory suggests that “people vote with their feet,” indicating
preferences for locations with better job availability and conditions
(McDonald, 2004; Walsh et al., 2011). Cultural and social disparities
highlight mobility dynamics, particularly from poorer to wealthier
areas (Kritz et al., 2013), as originally noted by the Chicago
School (Harris and Ullman, 1945). City size plays a crucial role,
with larger cities typically attracting more immigrants due to
broader opportunities and amenities, while smaller cities may
attract fewer migrants due to limited resources (Malecki, 2004;
Hyndman et al., 2006; Price and Benton-Short, 2008). Once
settled, immigrants often move from their initial cities to larger
urban centers (Newbold, 2007; Newbold, 2011). Governments
engage in optimally mitigating immigration policies to balance
total population evolution and ensure service provision and
economic growth (Green and Green, 2004).

Geographers and urban planners apply geographical theories to
assess location utility and rent (Alonso, 1960; Oates, 1969). Tobler’s
(1970) First Law of Geography states that “everything is related to
everything else, but near things aremore related than distant things.”
Spatial proximity and interregional relations affect flow intensity
(Ullman, 1954), typically measured by geographical distance
(Fotheringham, 1981). Migration flows represent geographically
embedded networks whose intensity correlates with population
movement (Lee, 1966; 1969; Batten and Boyce, 1987; Abel and
Sander, 2014). Demographers use a spatio-temporal probability
matrix to integrate mobility resulting from observed trends. The
stationary regional populations of such a life table serve as
inputs to numerical demographic calculations. Based on various
age-structured data like birth location and actual residence,
these matrices improve population growth estimates (Leslie,
1945; Rogers and Castro, 1981). In this perspective, geographers
and demographers draw on Newton’s law of gravitation to
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explain interaction and migration over space (Reilly, 1931; Zipf,
1949). The most commonly applied form of the gravity model
predicts migration interaction between two locations of differing
importance, factoring in distances between them (Poot et al., 2016).

The gravity model aligns well with migration theories and
offers straightforward predictive capabilities for population growth
(Stewart, 1950; Anderson, 2011). Based on Newton (1687)
Law of Universal Gravitation, the model suggests that regional
attractiveness increases flow intensity, with distance acting as a
cost factor (Haynes and Fotheringham, 1984). Enhancements
to the gravity model incorporate additional regional attributes
(Lewer and Van den Berg, 2008) and advanced iterations that
account for multiple push/pull factors and spatial spillovers
(Fik and Mulligan, 1998). These refinements consider internal,
interstate, and international migrations, providing a comprehensive
analytical tool for demographic studies (Karemera et al., 2000;
Peeters, 2012; Beine et al., 2016).

Recent advancements in demographic research underscore
the importance of integrating dynamic models and computational
techniques to better understand and predict population behaviors.
Burch (2018) emphasizes moving beyond traditional data-
centric approaches, advocating for models that capture the
complexity of human decision-making and interactions. Agent-
based models and system dynamics serve as essential tools for
integrating micro- and macro-demographic phenomena, offering
a comprehensive framework for analysis (Billari and Prskawetz,
2003). Courgeau et al. (2017b) suggest that adopting these methods
can lead to broader, model-based research programs with enhanced
explanatory power. The use of mathematical modeling and
simulation tools, such as the Lotka-Volterra model, is crucial for
reflecting non-linear interactions and dynamic mobility within
populations (Franck, 2002).

Dynamic models describe the temporal evolution of physical,
ecological, economic, financial, and social systems (Puu, 2000;
Bischi et al., 2000). Discrete time dynamic models, such as the
logistic map, exhibit complex, chaotic behavior characterized by
trajectories converging to attractor points or basins of attraction
(Gumowski and Mira, 1980; Bischi and Tramontana, 2010; Özdilek,
2022). The coexistence of multiple attractors necessitates spatial
delineation and equilibrium analysis, illustrating path-dependent
processes where long-term outcomes depend on initial conditions
(Liu and Xiao, 2006; Liu and Xiao, 2007; Blackmore et al., 2001).
Such complexities necessitate comprehensive global dynamical
modeling analyses, exemplified by the Lotka-Volterra equations,
akin to those used by Lorenz (1963) in weather prediction.

Smale (1976) demonstrated how ordinary differential equations
describe the dynamics of competing species, supported by Rescigno
and Richardson (1967) and May (1973). Gilpin and Feldman
(2017) showed how prey evolution in response to predation affects
population dynamics, influenced by temporal fitness landscapes.
Although natural selection progresses more slowly than population
dynamics, demographic shifts triggered by predator invasions or
environmental changes can occur swiftly (Hansen et al., 2013;
Cortez and Weitz, 2014). Thus, classical prey-predator models
must incorporate eco-evolutionary processes (Mougi and Iwasa,
2010). Even simple deterministic two-species models can exhibit
unstable cycling and chaotic interactions, as seen in microbial

communities following perturbations like pesticide treatment or
pathogen colonization (Hol et al., 2016; Remien et al., 2021).

The Lotka-Volterra framework posits that growth rates depend
on the quantities of other components. In a fox-rabbit system, for
example, the prey consumption rate by predators correlates with
prey abundance, influencing fox populations and vice versa. This
model assumes a fixed territory and exclusive prey, theoretically
allowing indefinite predator growth as prey decline, highlighting
an inherent power imbalance (Burch, 2018). Beyond ecology,
prey-predator models have explained competitive, cooperative,
and predatory strategies in various contexts, including industry
growth patterns and resource competition (Bischi and Tramontana,
2010; Dendrinos and Mullally, 1985; Nijkamp and Reggiani, 1992;
1998; Pijush et al., 2021).

The original Lotka-Volterra equations, describing predator-
prey dynamics through nonlinear first-order ordinary differential
equations and parameters like birth and death rates, can be adapted
to complex real-world relationships. By modeling populations
competing for common resources such as education, jobs, and
housing, these equations can extend to human demographic
projections (Lotka, 1925; Volterra, 1926). Although initially rooted
in animal population dynamics, careful justification and adaptation
enable examining human interactions and resource competition,
offering insights into population trends and dynamics.

While few studies have applied Lotka-Volterramodels to human
populations and socioeconomic contexts, most have not integrated
spatial mobility or focused on detailed population forecasting. For
instance, Bischi and Lamantia (2002) modeled competition and
cooperation among agents in natural resource exploitation without
emphasizing spatial aspects. Izquierdo and Hannachi (2018) used
Lotka-Volterra equations for urban dynamics, emphasizing complex
systems theory but not integrating gravity models or predictive
demographic modeling.

The gravity model, extensively employed in migration studies,
represents spatial interactions based on population sizes and
distances between regions (Wilson, 1970). Although Batty (2005)
and Stillwell et al. (2014) highlighted its role in understanding
urban growth and internal migration, these applications generally
operate independently of dynamic population models. Attempts
to combine Lotka-Volterra and spatial interaction models have
provided theoretical insights but not a unified framework for
practical human population prediction (Wilson, 2006; Wilson,
2008; LeSage and Pace, 2009; Wilson and Dearden, 2011). As
a result, existing models, while insightful, do not fully address
complexities like population mobility and predictability. Simplified
parameters, subjective decision-making, cultural influences,
and policy changes remain challenging to incorporate, limiting
comprehensive predictive power (Billari and Prskawetz, 2003).

Recent contributions emphasize that fully probabilistic and
Bayesian frameworks can rigorously capture uncertainty, moving
beyond deterministic trajectories toward probability distributions
of future demographic indicators (Keilman, 2018). Such forecasts,
as illustrated by Raftery and Ševčíková (2023) and adopted by
international agencies, provide predictive intervals clarifying likely
outcomes. Similarly, Wiśniowski et al. (2015) enhance the Lee-
Carter model with a Bayesian hierarchical approach, generating
posterior distributions rather than single estimates. At smaller
spatial scales,Wilson et al. (2021) highlight the need for probabilistic
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techniques to handle volatility and complexity, while Azose et al.
(2016) incorporate migration uncertainty so that all major
demographic components—fertility, mortality, and migration—are
probabilistically modeled.

These Bayesian and probabilistic frameworks excel at
uncertainty quantification, relying on statistical and data-driven
foundations. By contrast, this study employs a theory-driven,
dynamic model integrating Lotka-Volterra equations with a
probabilistic gravity concept to capture nonlinear interdependencies
and spatial interactions. While the current approach produces
interpretable trajectories and equilibrium points, it has yet to
provide full probability distributions. Futurework could incorporate
Bayesian inference for parameter estimation and credible intervals,
thereby melding the strong theoretical underpinnings with robust
uncertainty quantification, creating a more comprehensive and
adaptive forecasting tool.

3 Prey-predator demographic model

The population projection widely uses the Cohort Component
Model (CCM). Statistics Canada commonly predicts populations
1 year at a time by extending past trends based on CCM, with
slight differences between provinces. The CCM adopts a top-
down population estimation at the national level first, followed
by subnational projections, producing projections by age and sex
(Cameron et al., 2007; Cameron and Poot, 2010; Cameron and
Poot, 2011). The CCM’s Equation 1 rests on objective counting
of individuals in a population to sequentially build two basic
components in recursive form:

P(t+i) = P0 +PBD +PIO (1)

where P(t+i) is the population estimate at time (t+ i); P0 is the
initial population, PDB is the natural increase or the balance, for
instance between birth and death of population, and PIO is the
net internal in/out-migration or mobility which might include
interprovincial and international migration. The first term PBD is
quite well predictable with several demographic parameters like the
future fertility andmortality rates, benefiting from variousmodeling
approaches improving the accuracy of each of these parameters
(Archambault, 1999; Lapointe et al., 2006). However, the precision of
population projections mainly relies on the second component PIO,
which is rather complex and less predictable (Dunn, 2006).

Traditional demographic methods, such as the CCM, often
fail to capture the nonlinear interactions and dynamic spatial
dependencies inherent in population movements (Rees and
Wilson, 1977; Wilson, 2010). To overcome these limitations, this
study employs the Lotka-Volterra prey-predator model, which
effectively models competitive and cooperative interactions among
populations.The original equations of the Lotka-Volterramodel are:

dx(t)
dt
= ax(t) − g1x(t)y(t) (2)

dy(t)
dt
= −cy(t) + g2x(t)y(t) (3)

where x(t) represents the resource (prey) population and y(t)
represents the consumer (predator) population. In these equations,

a is the natural exponential growth rate of the prey x in the
absence of predators, indicating that the prey population grows
exponentially when not constrained by predation. The term
g1x(t)y(t) in Equation 2 represents the rate at which the prey
population is consumed by predators, with g1 being the interaction
coefficient that quantifies this effect.

The differential Equation 3 describes the dynamics of the
predator population. Here, c represents the natural mortality rate
of the predators in the absence of prey, indicating a decline in the
predator population over time without a food source. The term
g2x(t)y(t) captures the growth of the predator population due to
predation, with g2 being the interaction coefficient that quantifies
how effectively the predator population increases based on the
availability of prey.

In the absence of a predator (g1 = 0), Equation 2 simplifies to:
dx(t)
dt
= ax(t) and dx(t)

x(t)
= adt

Integrating this differential equation, we get the solution:

x = Keat (4)

This Equation 4 describes the exponential growth rate of prey in
the absence of predators, leading to an indefinite increase in the prey
population (birth process).

For the rate of decline of predators, Equation 3 in the absence
of prey (g2 = 0) simplifies to dy(t)

dt
= − cy(t) and dy(t)

y(t)
= − cdt.

Integrating this differential equation, we obtain:

y = Ke−ct (5)

This Equation 5 describes the exponential decline of predators
in the absence of prey (mortality process).

To adapt the Lotka-Volterra model for human demographic
applications, we incorporate a carrying capacity condition,
as originally proposed by Verhulst (1838), to account
for environmental constraints on population growth.
As shown in Equation 6, the logistic growth model describes
how populations expand in environments with limited resources
by incorporating the carrying capacity K, which represents the
maximum population size an environment can sustain indefinitely.

dx
dt
= ax(1− x

K
) = ax− a

K
x2 (6)

Here, x is the size of the prey population at time t, a is an inherent
per capita growth rate, and K is the carrying capacity. This model
maintains a maximum prey population size, different from the
original equations. When x = K, dx

dt
tends toward zero, and growth

ceases, indicating that carrying capacity restricts indefinite growth.
For two prey populations, x1 and x2, with logistic dynamics, the

competitive Lotka-Volterra equations are:

dx1

dt
= α1x1(1−

x1 + α12x2

K1
) (7a)

dx2

dt
= α2x2(1−

x2 + α21x1

K2
) (7b)

where α12 represents the interactive effect species 2 has on the
population of species 1 and α21 represents the effect species 1 has
on the population of species 2. All α-values are positive, indicating
harmful interactions. Each species can have its own growth rate and
carrying capacity (Bomze, 1995).
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This model can be generalized for any number of competing
species. Representing populations and growth rates as vectors and
α's as a matrix, the equation for any species i becomes (Equation 8):

dxi

dt
= αixi(1−

N

∑
j=1

αijxj

Ki
) (8)

When the carrying capacity is fully embedded within the
interaction matrix, the resulting system (see Equation 9) modifies
the standard expression accordingly:

dxi

dt
= αixi(1−

N

∑
j=1

αijxj) (9)

where N is the total number of interacting species. For simplicity,
self-interacting terms αii are often set to 1.

In adapting the Lotka-Volterra model to human demographic
contexts, we consider regions as interacting entities whose
populations influence one another through migration and other
socio-economic factors (Wilson, 2008; Wilson and Dearden, 2011).
We present a series of three equations representing two prey regions
and one predator region, based on the foundations of the Lotka-
Volterra model, with appropriate adjustments to account for the
particular dynamics of human population evolution.

Each of the following nonlinear equations represents a specific
geographical region.

{{{{
{{{{
{

Ẋ = AX−DX2 +GXZ+G1XY

Ẏ = CY−BY2 +G4YZ+G2XY

Ż = −EZ+G3Z2 + FXZ+G5YZ

(10)

These equations involve three categories of parameters derived
and fine-tuned to reflect intrinsic growth or decline rates, as well as
the interaction effects between regions X, Y, and Z.

The first category of computed parameters A, C, and E capture
the intrinsic growth and decline rates of populations in regions
X, Y, and Z, respectively. These parameters provide a baseline for
intrinsic population dynamics within each region, representing how
populations would behave under ideal conditions without external
influences. They are computed using fixed parameters D, B, and G3,
which are based on historical data and experiments. This ensures
that the intrinsic growth anddecline rates accurately reflect observed
trends in each region.

Parameters A and C represent the intrinsic growth rates of
prey regions X and Y, respectively, while parameter E reflects the
intrinsic decline rate of predator region Z. They are derived using
the formulas:

A = InitialPopulationX ·D

C = InitialPopulationY ·B

E = InitialPopulationZ ·G3

The second category of D, B, andG3 fixed parameters are crucial
in population dynamics model, representing density-dependent

effects within each region’s population. These parameters are fine-
tuned experimentally to ensure the model accurately predicts
populations for the years for which populations are already counted
(known). The process involves iteratively adjusting the values of
D, B, and G3 until the model’s predictions align very closely
with actual population data. This fine-tuning going under an
optimization process is essential for the robustness of the model in
predicting known populations to which corresponding parameters’
values are derived, necessary for accurately predicting the future
population. ParameterD represents the density-dependent factor for
the population in region X, where higher values indicate stronger
regulation, slowing growth as it nears carrying capacity. Similarly,
parameter B affects region Y, with higher values implying more
significant growth regulation. Parameter G3 pertains to region
Z, where increased values accelerate population decline as it
approaches carrying capacity.These parameters account for limiting
effects like resource and space constraints, ensuring the model
reflects realistic population dynamics.

The second category includes the fixed parameters D, B, and
G3, which represent density-dependent effects within each region’s
population. These parameters are fine-tuned experimentally to
ensure the model accurately predicts known populations. This
process involves iteratively adjusting the values of D, B, and G3
until the model’s predictions closely align with actual population
data. Such fine-tuning is essential for the robustness of the model in
predicting future populations. Specifically, parameter D represents
the density-dependent factor for the population in region X, where
higher values indicate stronger regulation, slowing growth as it
nears carrying capacity. Parameter BBB affects region Y in a
similar manner, while parameter G3 pertains to region Z, where
increased values accelerate population decline as it approaches
carrying capacity.

The third category of interaction parameters G, G1, G4, G2,
F, and G5 captures the dynamic interdependencies between the
populations of regions X, Y, and Z. These parameters quantify how
population changes in one region influence the others and are
derived using the annual growth rate (AC) values of the respective
regions, scaled by an adjusted gravity constant. By incorporating
these AC values, the model accurately reflects the probabilistic and
dynamic nature of population interactions. For instance, G and G1
capture the effects of region X on regions Z and Y, respectively,
while G2 and G4 reflect the reciprocal influences between regions
Y and X, and Y and Z. Similarly, F and G5 measure the impact
of region Z on regions X and Y. Integrating these parameters into
the adapted Lotka-Volterra equations ensures the model accurately
simulates and predicts future population changes, providing a robust
framework for understanding complex population dynamics and
inter-regional influences.

The interaction parameters in the above triadic Equation 10
are calculated based on Newton’s formula. The gravity model in
population dynamics is adapted from Newton’s law of gravity, where
the force between two masses is proportional to their sizes and
inversely proportional to the distance between them. In classical
physics, Newton’s law of gravity states:

The interaction parameters in the above triadic Equation 10
are calculated based on Newton’s formula. The gravity model in
population dynamics is adapted from Newton’s law of gravity, where
the force between two masses is proportional to their sizes and
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inversely proportional to the square of the distance between them.
In classical physics, Newton’s law of gravity is given by Equation 11,
which states:

F = K
m1 ·m2

d2 (11)

where F is the gravitational force, K is a fixed gravitational constant
value, m1 and m2 are the masses of the two objects, and d2 is the
distance between them.

Recognizing the limitations of the traditional gravity model,
Wilson (1970), Wilson (2010) introduced an entropy-maximizing
approach to spatial interaction, providing a theoretical foundation
that extends the gravity model by incorporating principles from
statistical mechanics. Wilson’s gravity model for interregional flows
can be written as Equation 12:

Tij =
OiDj f(cij)

∑kDk f(cik)
(12)

where:

• Tij is the flow from origin region i to destination region j.
• Oi is the total outflow from origin region i.
• Dj is the attractiveness (e.g., population size and economic

opportunities) of destination region j.
• f(cij) is the deterrence function based on the cost or distance

between regions i and j.
• The denominator ∑kDk f(cik) ensures that the total outflow

from region i is properly distributed among all possible
destionations.

Wilson’s model emphasizes that the interaction between regions
depends not only on their masses (analogous to population sizes)
and distances but also on the distribution of opportunities and the
constraints of the system, ensuring that the flows are consistent with
an entropy-maximizing principle.

In our approach, we adapt the gravity model to more accurately
represent regional population interactions by ensuring that derived
parameters closely reflect observed population dynamics. Unlike
Wilson’s entropy-maximizing model, which determines the most
probable distribution of flows under specific constraints, our model
introduces three significant modifications to the classical gravity
model. Additionally, we integrate the enhanced gravitymodel within
the Lotka-Volterra framework, thereby improving its realism and
applicability for population forecasting.

First, we replace the gravitational constant K with a probabilistic
gravity weight Grv, reflecting the relative population sizes of the
interacting regions.This changemakes themodelmore dynamic and
reflective of real-world population interactions, where the influence
between regions is not static but varies with their population
proportions.

Grvi =
Pi

Pi +Pj
(13a)

Grvj =
Pj

Pi +Pj
(13b)

Here, Grvi represents the probability of the population of region
i relative to the total population of regions i and j. Similarly, Grvj

represents the probability of the population of region j relative to
the total population of regions i and j. Notably, Grvi ≠ Grvj, and
Grvi +Grvj = 1, contrary to the original fixed constant in Newton’s
formula. For instance, in the differential Equation 10, the term
GXZ represents the consumption of Region X by Region Z. The
computation of the parameter G, in comparison to the parameter
F in the term FXZ, will have different Grv effects. The calculation of
Grvi and Grvj aims to distinguish between consumption effects on
the prey and nourishment effects on the predator, both subject to the
probabilities of population.

Second, to simplify computations, we set d2 to 1, assuming
that distances between regions are uniform or negligible. However,
it is possible to modify the distance term in various ways,
ranging from simple to more complex specifications. For instance,
Bernard et al. (2016) discussed the importance of refining distance
measures in gravity models to better capture internal migration
patterns, emphasizing how variations in distance decay can
impact the accuracy of migration predictions. Similarly, Lewer
and Van den Berg (2008) incorporated variations in socioeconomic
distance, such as differences in income levels, to improve the
explanatory power of gravity models in international immigration
studies. These modifications illustrate the potential for fine-
tuning the distance parameter to achieve more realistic modeling.
Nonetheless, our study maintains d2 = 1 to focus on the unified
integration of the Lotka-Volterra and Gravity models, ensuring
computational simplicity while effectively modeling population
dynamics and spatial interactions.

Third, instead of using the product of the masses m1 ·m2,
“population sizes” and their attractiveness or repulsiveness,
as considered by authors like Curry (1972), Biagi et al.
(2011), and Stillwell et al. (2014) or the attractiveness terms OiDj
in Wilson’s model, we utilize the annual growth rates ACi and ACj
of populations in different regions. This approach provides a more
accurate measure for several reasons:

• Annual growth rates account for temporal changes, reflecting
current demographic trends rather than static population sizes.
This aligns with the dynamic interactions in the Lotka-Volterra
equations.

• Using growth rates incorporates the probabilistic nature
of population changes, essential for refined and accurate
population forecasting.

• It allows differentiation between regions based on growth
potential, acknowledging that smaller but faster-growing
regions can have significant influence.

The annual growth rates are calculated as:

ACi =
∆Pi

Pi
(14a)

ACj =
∆Pj

Pj
(14b)

where ACi represents the probability of growth of the population in
region i; ACj represents the probability of growth of the population
in region j. ∆Pi is the population increase in region i and Pi is the
initial population in region i.

As illustrated by Equation 15, the interaction of two regions
is the product of their AC and Grv probabilities. Excluding
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these factors reduces the model to traditional methods that
rely solely on population size. The interaction parameters in
the triadic Equation 10, such as G are thus derived using
these probabilistic weights, providing a robust framework for
demographic analysis and future population predictions:

G = Grvi × (ACi × 100) × (ACj × 100) (15)

Here, G refers to the probabilistic rate of attraction (or repulsion)
between two regions i and j, considering both the probabilistic
constant Grv and the probabilistic growth rate of populations,
both integrated within the same law of gravity. This Formula 14
exemplifies the calculation for other interaction parameters such as
G1, G2, G3, G4, F, and G5.

To accurately estimate the parameters of the model and predict
population dynamics, we employed an optimization process using
Python programming. Specifically, we utilized the fsolve function
from the scipy. optimize library to solve the dynamical system
of equations. This function iteratively adjusts the values of X, Y,
and Z to find the roots of the equations, effectively identifying
the equilibrium points where the growth rates of the populations
balance out. The optimization involves adjusting the parameters
iteratively to minimize the error between the model’s predictions
and observed data.

While acknowledging the substantial contributions of
Wilson (1970), Wilson (2010) and others to spatial interaction
models, this study diverges from traditional gravity-based
frameworks by embedding them within a dynamic, probabilistic
context. Earlier approaches often relied on static parameters and
did not fully account for the nonlinear feedback mechanisms and
evolving spatial interactions that characterize human population
dynamics. By contrast, our method integrates a modified gravity
model with Lotka-Volterra equations, incorporating probabilistic
weights, dynamic growth rates, and carrying capacities. This unified
framework captures the complexities of population mobility and
interdependencies among regions, thereby offering a robust and
forward-looking tool for demographic forecasting.

This innovative integration bridges the gap between ecological
modeling and spatial interaction theories. Unlike previous
theoretical studies that treated Lotka-Volterra or gravity models
in isolation, we combine their strengths to produce more accurate
and realistic predictions of population trends. The resulting model
can simulate competitive and cooperative interactions among three
regions and predict their movement toward an equilibrium state.
Although extending the model to more regions is possible, it would
introduce significant analytical complexity. For now, focusing on
three regions provides a balanced, interpretable demonstration of
the model’s capabilities.

By enabling not only population predictions but also the
evaluation of equilibrium states, our approach increases both the
robustness and comprehensiveness of demographic analysis. This
improved representation of complex population behaviors supports
more effective strategic urban and regional planning (Echenique,
1994). Going beyond static or deterministic perspectives, future
developments could incorporate Bayesian inference to estimate
parameters and yield probability distributions, further enhancing
uncertainty quantification. In doing so, the model stands to advance
the field of demographic forecasting and contribute valuable insights

for policymakers and planners engaged in shaping sustainable
demographic futures.

While this study’s primary innovation lies in adapting the Lotka-
Volterra framework with a probabilistic gravity-based approach
to better capture human population dynamics, future refinements
could benefit from incorporating Bayesian inference as suggested
by Wilson et al. (2021) and Raftery and Ševčíková (2023). Rather
than altering the model’s foundational theoretical perspective,
Bayesian methods would complement and refine its parameters,
providing probability distributions and predictive intervals that
more accurately reflect uncertainty and variability in demographic
processes. By combining this strong theoretical core with advanced
probabilistic inference, the model could achieve greater robustness
and adaptability, offering a more nuanced and uncertainty-aware
perspective on regional population forecasting.

4 Data and results

In this section, we present a demonstration of population
prediction based on the Lotka-Volterra differential equations.
For this demonstration, we use data from the Insured Persons
Registration File (IPRF) of the Health Insurance Authority of
Quebec, collected and publicly shared by the Statistical Institute of
Quebec. Our model utilizes population data incremented annually
between 2021 and 2023 for regions X, Y, and Z, serving as
the baseline for future population estimates. Additionally, we
incorporate data on interregional migration, organized by age
groups, to capture nuanced mobility patterns.

Our model is grounded in established theories from ecological
modeling and spatial interaction, previously tested in various
contexts (Wilson, 2008; Wilson and Dearden, 2011). We validated
our model by comparing the predicted populations for 2021 to
2023 with actual historical data (Statistics Canada, 2023). The
close alignment between predictions and observed values confirms
the model’s accuracy and reliability. Detailed comparisons are
provided in Table 2 and discussed below.

The analysis of Table 1 highlights specific regional gains and
losses in 2021. For instance, Montreal experienced a population
loss of 63,615, about 31% of all provincial outgoing movements. Of
these, 41,633 people moved to its immediate periphery, represented
by western regions including Laval, Lanaudière, and Montérégie.
The central regions received 14,126 people, with Laurentides
standing out, followed by Estrie andMauricie. Another 4,836moved
eastward, concentrated around the Quebec City metropolitan area,
with Outaouais receiving 1,340 people.

Conversely,Montreal gained 29,146 interregional immigrants in
the same year, resulting in a net loss of 34,469 people. Specifically,
18,551 of these immigrants came from adjacent western cities.
This figure, less than half of what Montreal lost, indicates the
central area of Montreal is notably extending towards its peripheral
crown. Immigration to the central region whereMontreal is situated
included 6,247 individuals from the central region and 2,939 from
the eastern region.

Interprovincial migration trends since the 1960s indicate
that Quebec has traditionally lost population to other provinces
(Statistics Canada, 2010; Statistics Canada, 2013). However, over the
past decade, this outflowhas significantly slowed, nearly neutralizing
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FIGURE 1
Administrative region clustering in Quebec province.

the net balance. Data from theMinistry of Immigration andCultural
Communities show a consistent increase in net international
migration to Quebec (Statistics Canada, 2023). Both interprovincial
and international migration levels have remained relatively
stable, often cancelling each other out. In contrast, interregional
movements within Quebec strongly influence its population
dynamics. Our forecasting model thus focuses on interregional
mobility among the province’s 17 administrative regions.

As shown in Figure 1, to manage the complexity of multiple
equations and enhance analytical clarity, we grouped the data
into three main geographical divisions: the Montreal Metropolitan
Region (RMR Montreal), the Quebec Metropolitan Region (RMR
Quebec), and the Rest of the Province. These divisions are based
on historical development, geographical proximity, and socio-
economic similarities, providing a streamlined and insightful
analysis. Among these three regions, RMR Montreal is considered
the predator (Region West or Z), while the other two are considered
prey (Region Center or X and Region East or Y). As indicated
previously, unique conditions are integrated into each differential
equation for these groupings.

We used Python software to codify parameters and conduct
simulations to estimate the populations for regions X, Y, and
Z for the years 2021–2023, as well as for projections from
2024 to 2053. Table 2 provides a summary of these results, including

their evolutive parameter estimates, existing populations, and
projected populations. The model predicts the population dynamics
of regions X, Y, and Z over 30 years using the Lotka-Volterra
equations and the estimated parameters based on the gravity model.
The predicted populations are compared with known historical
data to validate the model. The close alignment of predictions
with known data indicates the model’s accuracy and robustness.
This validation process ensures that the model reliably captures the
population dynamics and interactions.

Also, with the increased population values in 2022 (reported on
the populations of 2021 as initial values for 2022), parameters D, B,
G3 and A, C, and E are recomputed. This allows us to predict known
populations for 2021, 2022, and 2023 and derive all parameters
and their trends over time. This iterative process of population and
parameter forecasts continues yearly from 2024 to 2053.

The analysis of parameter trends provides a detailed
understanding of population growth patterns across Quebec’s
regions, indicating stabilization in growth rates and reduced intra-
species competition. Table 2 presents the parameter values utilized
in the model, along with their derivation and calibration, ensuring
transparency and replicability. The results, supported by the data
and graphics, highlight distinct population trends for regions X,
Y, and Z from 2021 to 2053. For example, Region X is projected
to grow from 1,611,613 in 2023 to 2,142,541 by 2053, with an
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TABLE 2 Parameter and population estimates.

Parameter 2021 2022 2023 2024 2053

 D 1.732 1.446 0.850 0.811 0.0080

 B 1.100 0.925 0.545 0.515 0.0700

 G3 −0.552 −0.443 −0.291 −0.288 0.0300

 A 2.714 2.266 1.332 1.270 0.3400

 C 2.098 1.764 1.039 0.981 0.3400

 E −2.834 −2.271 −1.493 −1.478 0.1400

 G 0.336 0.272 0.176 0.175 −0.0600

 G1 0.519 0.464 0.234 0.219 −0.0040

 G4 0.216 0.171 0.115 0.114 −0.0400

 G2 0.631 0.561 0.281 0.264 0.0070

 F 1.101 0.885 0.569 0.547 0.1000

 G5 0.581 0.461 0.311 0.296 0.0400

 Region X 15,67,287 15,89,844 16,11,613 16,37,799 21,42,541

 Region Y 19,07,469 19,22,710 19,37,103 19,74,995 20,75,614

 Region Z 51,29,739 51,80,949 52,24,710 49,58,778 52,42,620

 Sum XYZ 86,04,495 86,93,503 87,73,426 85,71,572 94,60,775

 Δ Sum 0 89,008 79,923 -2,01,854 6,87,349

average annual increase of approximately 17,698 individuals. This
projection is consistent with historical growth trends for the region,
which benefits from its strategic location between Montreal and
Quebec City, attracting population influx due to its geographic and
socio-economic advantages.

Region Y, encompassing the eastern part of the province,
demonstrates a more modest increase in population. From 2023
to 2053, the population is projected to grow from 1,937,103
to 2,075,614 in Region Y, translating to an average annual
increase of 4,617 individuals. Despite significant increases in
previous years, the projection indicates stabilization in population
growth, reflecting historical out-migration patterns where younger
populations relocate to central and western regions.

Region Z, including the metropolitan area of Montreal, Laval,
and Longueuil, shows an almost negligible increase in population
from 5,224,710 in 2023 to 5,242,620 in 2053, with an average annual
increase of 597 individuals. The decreasing growth trend for Region
Z suggests that the population of the Montreal metropolitan area
is gradually dispersing to peripheral regions, particularly to Region
X, which offers better socio-environmental quality, less density and
congestion, and more affordable living conditions (for instance,
lower rents, housing prices, and taxes).

The analysis of population and parameter estimates provides
a comprehensive understanding of their dynamic growth patterns

in Quebec’s regions. Region X shows the most substantial growth,
reflecting its strategic geographical location and socio-economic
opportunities. Region Y demonstrates a stabilizing trend, indicating
minimal growth due to out-migration. Region Z sees its population
almost unchanged, potentially due to its population being drawn to
peripheral regions. Graphic 1A corroborates these findings, showing
convergence towards equilibrium points. This comprehensive
analysis underscores the robustness of the Lotka-Volterra model
in capturing complex population dynamics and providing reliable
predictions for future population trends.

In comparison to our approach, the Cohort Component Model
(CCM) results in Graphic 1B predict three different population
growth scenarios for Quebec until 2056 (ISQ, 2019). The reference
scenario projects the population to reach 9.9 million by 2056,
with other scenarios estimating a range between 7.8 million (weak
scenario) and 12 million (strong scenario). In comparison, our
model, which incorporates Lotka-Volterra equations integrated
with a probabilistic gravity model, predicts a total population of
approximately 9.5 million by 2053. Both models show a growing
trend, indicating that Quebec’s population is expected to increase
in the coming decades. The similarity in trends between the
two models demonstrates the robustness of our approach, which
considers interactions and competition between regions, providing
a more dynamic and nuanced prediction compared to the classic
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GRAPHIC 1
(A) Population Predictions for Regions X, Y, Z, and Total (2021-2053). (B) Population Growth Scenarios for Quebec (2016-2066).

CCM approach. The additional insights from the ISQ (2013); ISQ
(2019) study using the CCM approach highlight factors such as
fertility, migration, and natural increase, which are also implicitly
captured in our model through the interaction parameters and
regional dynamics.

We have thoroughly defined and explained the parameters in
the model specification section, including parameters such as A,
C, E, D, B, and G3, along with interaction parameters like G, G1,
and G2. These parameters form the foundation for the analysis of
population growth trends in Quebec’s regions, and their detailed
values are presented in Table 2. The analysis of these parameter
trends suggests a shift from competitive to cooperative interactions
over time, leading to stabilized growth rates and reduced intra-
species competition. The results, as specified in Table 2 and further
illustrated in the graphics, provide a comprehensive view of these
population dynamics across several years, as projected by the Lotka-
Volterra model.

The parameters D, B, and G3 show a general decline from 2021
to 2053. Specifically, D decreases from 1.732 in 2021 to 0.0080 in
2053, indicating a diminishing rate of intra-species competition or
density-dependent effects within the populations. The parameter B,
which relates to the intrinsic growth rate, also declines from 1.100
to 0.0700, suggesting a reduction in the natural growth rate over
time. The parameter G3, representing inter-species interactions,
transitions from a negative value (−0.552) to a slightly positive one
(0.0300), implying a shift from competitive to more neutral or even
cooperative interactions among the regions.

Parameters A, C, and E exhibit significant variability, with A
and C decreasing and stabilizing around 0.3400 by 2053, while E
shows a sharp reduction from−2.834 to 0.1400.This reflects changes
in external factors such as immigration and economic influences
affecting the growth dynamics of the regions.

The parameters G, G1, G4, G2, F, and G5 also show a decreasing
trend, stabilizing towards the end of the period. This indicates
that the inter-regional interaction coefficients are becoming less
influential over time, possibly due to a more balanced distribution
of population and resources among the regions.

The evolution of these parameters underscores the dynamic
nature of population interactions and the gradual stabilization of
regions. Over time, the parameters begin to stabilize, showing

lesser variability, which implies that the model has reached a more
robust and steady-state configuration. Parameters transitioning
from positive to negative or approaching zero suggest a shift
from strong interactions to more neutral or independent behaviors
among regions. The fact that the parameters tend to linearize and
stabilize suggests that the model’s predictive power is becoming
more reliable as it adjusts to the underlying population dynamics.
This comprehensive analysis provides valuable insights into the
long-term behavior and stability of the population dynamics model,
demonstrating how inter-regional interactions evolve over time and
impact overall population predictions.

The three graphics collectively provide a comprehensive picture
of the parameter estimates and population predictions over time
for the XYZ regions. Graphic 2A illustrates the stabilization
of parameter values over time, indicating reduced dynamic
interactions and suggesting the system governed by the Lotka-
Volterra model is reaching a quasi-equilibrium state. The lines
representing the parameters converge and stabilize, reflecting the
long-term balance achieved through inter-regional interactions and
internal growth constraints.

Graphic 2B shows the population predictions for regions X, Y,
and Z, with each region trending towards stabilization. Region Z,
which initially shows significant fluctuations, eventually stabilizes.
Regions X and Y also show trends towards stabilization, albeit
at different rates. The total population curve exhibits a consistent
growth trend, reflecting the stable and converging estimates over
the long term. This stability can be attributed to the stabilization of
parameter estimates, providing more consistent and reliable inputs
into the Lotka-Volterra equations.

Graphic 2C presents a 3D view of the population predictions,
showing how populations in regions X, Y, and Z evolve and converge
over time. The spiraling behavior towards a central point indicates
that the populations are interacting and adjusting to reach a stable
equilibrium point by 2053. The result obtained in 3D clearly shows
the convergence of X, Y, and Z from the wider periphery towards
the center, reaching an equilibrium point, as evidenced by the
spiral behavior observed. This convergence point is known as the
equilibrium or prediction point, with values of 2.14 million for X,
2.07 million for Y, and 5.24 million for Z in 2053.
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GRAPHIC 2
(A) Stabilization of Parameter Values Over Time. (B) 2D Visualisation of Population Predictions. (C) 3D Visualization of Population Dynamics and
Convergence.

The convergence point estimate in 2053 underscores the
robustness and validity of our model, effectively capturing
the interdependencies and interactions between regions. It
demonstrates that the populations of the three regions are not just
stabilizing independently but are also interacting in a manner that
leads to a collective equilibrium at the provincial scale. The model’s
robust predictions highlight its ability to reflect complex population
dynamics and accurately forecast long-term population trends. This
interaction and convergence are driven by the probabilistic nature of
the gravity model, which accounts for the relative attractiveness and
repulsiveness of each region, resulting in a balanced and dynamic
interaction.

By integrating advanced spatial interactionmodeling techniques
with the adapted Lotka-Volterra framework, our approach provides
a robust and theoretically sound basis for predicting human
population dynamics. It effectively addresses the complexities of
migration patterns and spatial interactions through an improved
probabilistic gravity model. The predictions from this unified
approach closely align with observed data, confirming both
its reliability and applicability to demographic forecasting. For
instance, the predicted population for Region X in 2023 was
within 1% of the actual recorded population, with similarly
high accuracy observed for Regions Y and Z. This calibration
not only validates the model’s theoretical assumptions but also
ensures its practical utility for long-term population projections by
accurately reflecting observed trends.

The convergence point itself is a conclusive and highly
satisfactory result, as it could have diverged towards non-
equilibrium points, yielding abstract and unrealistic outcomes. The
equilibrium shows a “demographic attractive point” towards which
the system evolves, similar to other complex systems like the Lorenz
(1963) attractor arising in a system of dynamic equations under
other types of forces (temperature difference, gravity, buoyancy,
kinematic viscosity, etc.). That point can be located in space as
an epicenter in Quebec province in 2053, allowing planners and
policymakers to take strategic decisions on resource planning
and sharing.

5 Conclusion

Accurate demographic forecasting is essential for strategic urban
planning and effective resource allocation, particularly in regions
characterized by complex, nonlinear population dynamics shaped
by socioeconomic factors and spatial interactions. Traditional
methods, such as the Cohort Component Model (CCM), tend to
rely on linear projections, which often fail to capture the intricate
interdependencies driving population fluctuations.

To address these limitations, this study presents an innovative
approach that integrates the Lotka-Volterra prey-predator
model—originally designed for ecological interactions—and
adapts it for human demographic forecasting, thus providing the
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theoretical and conceptual foundations often lacking in traditional
analyses. This adaptation is further strengthened by incorporating a
rigorously specified probabilistic gravitymodel, uniquely embedded
within the Lotka-Volterra framework. Bymerging these approaches,
we account for both competitive and cooperative dynamics shaping
population growth, as well as the spatial mobility between regions.

The application of the Lotka-Volterra model to human
demographic contexts enables a detailed representation of nonlinear
population dynamics and predictions. By incorporating a modified
gravity model—rooted in spatial interaction theories—this study
considers migration flows governed by geographic proximity and
socioeconomic attractiveness, offering a more refined approach
to understanding population mobility. This integrated framework
extends the existing literature in spatial interaction and urban
systems modeling, providing a more comprehensive method for
predicting regional population changes.

The model’s robustness and predictive accuracy are supported
by empirical findings. The close alignment between predicted
and observed population trends from 2021 to 2023, including a
prediction error of less than 1% for Region X in 2023, attests
to its reliability. Similarly high accuracy levels were observed
for Regions Y and Z. These results confirm that the model
effectively captures the complex dynamics driving population
changes in Quebec. The observed shift from competitive to
cooperative interactions in the parameter trends suggests stabilizing
growth rates and regional equilibrium—a hallmark of the Lotka-
Volterra framework—highlighting its applicability to demographic
forecasting.

Although this study focuses on three regional clusters in
Quebec, its theoretical and practical foundations are transferable to
other geographic contexts. By extending the Lotka-Volterra model
beyond its ecological roots and integrating it with the gravity
model, this flexible framework offers a valuable tool for analyzing
regional population dynamics in diverse settings. The methodology
provides actionable insights for strategic planning, addressing the
shortcomings of traditional models and delivering more accurate,
long-term projections of population changes. By combining the
Lotka-Volterra and gravity models, this approach yields more
realistic predictions of population trends and spatial interactions.

The findings also highlight themodel’s ability to identify distinct
population growth trends across regions: Region X is projected to
experience significant growth, driven by its strategic location and
socioeconomic opportunities; RegionY showsmoremodest growth,
influenced by historical out-migration; and Region Z, encompassing
the Montreal metropolitan area, exhibits minimal growth, reflecting
population dispersal to peripheral areas. These trends underscore
the model’s ability to capture interregional interactions and offer
critical insights for policymakers and urban planners, who can use
these predictions to inform infrastructure development, resource
allocation, and regional development strategies.

As with any complex model, there are opportunities for further
refinement. Incorporating additional variables, such as economic
indicators, policy changes, and more nuanced measures of distance,
could further enhance predictive accuracy. Moreover, integrating
micro-level dynamics, such as individual decision-making and
migration motivations, may improve the granularity of future
forecasts. Exploring advanced computational techniques, like agent-
based modeling or machine learning, could also increase the

model’s adaptability and precision, responding effectively to shifting
demographic and socioeconomic conditions. These advancements
contribute to more sustainable urban and regional development
strategies, underscoring the importance of innovative approaches in
meeting the challenges of modern demographic forecasting.

Looking ahead, while the current integration of Lotka-Volterra
dynamics with a probabilistic gravity model provides a theoretically
grounded, equilibrium-oriented forecasting framework, it also
suggests new avenues for refinement. At present, the model’s
predictive capacity relies on systematically adjusted parameters
and conditions guiding it toward realistic equilibria. Future
research could incorporate explicit probabilistic methods—such as
Bayesian inference—to better represent uncertainties in parameters
and evolving socioeconomic landscapes. Additionally, exploring
complementary methodologies, including entropy-based measures,
could enrich analytical depth. Rather than replacing themodel’s core
theoretical insights, these enhancements would refine its ability to
accommodate variability and change over time, ultimately offering
a richer understanding of complex demographic processes and
enabling more adaptable, regional planning–relevant forecasting.
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