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This study integrates e-scooter vibrational data with smartphone sensors,
employingmachine learning to evaluate road surfaces. The goal is to classify the
road surface roughness level(s) equivalent to the high cycle fatigue threshold(s)
experienced by the e-scooter. This information is fundamentally critical in
determining the remaining service life prior to repairing or reconditioning
the e-scooter. Three machine learning models—Random Forest Classifier,
Extreme Gradient Boosting (XGBoost), and Support Vector Machine (SVM)
with k-means clustering—were tested using various hyperparameter tuning,
post-processing, and data splitting strategies. The models achieved high
accuracies above 95%, with the SVM and k-means clustering model consistently
reaching up to 100% accuracy and processing times under 700 ms, indicating
potential for real-time applications. Despite challenges in data collection
and preprocessing, the top SVM configuration using 5-fold cross-validation
demonstrated substantial promise. An 80/20 data split initially resulted in lower
accuracies due to inappropriate sequencing, which was rectified by adjusting
data handling methods. The most successful model has promising applications
in monitoring rider comfort and support preventative maintenance for e-
scooters. For instance, a sudden change in classification outputs (e.g. derived
from large ampitude vibrations) of an e-scooter could indicate maintenance
needs, enabling timely interventions. This approach aligns with data collection
efforts by companies such as Beryl and could be integrated into existing
infrastructures. Future research could expand on these findings by examining
a wider variety of surfaces and speeds and incorporating regression analysis to
advance the models from classification to predictive analytics.

KEYWORDS

machine learning, random forest, extreme gradient boosting, support vector machine,
e-scooter, road surface roughness level, remaining asset life

1 Introduction

1.1 Background on E-scooters and urban mobility

E-scooters have rapidly become an integral component of urban mobility, promoting
a shift toward more sustainable and efficient transportation solutions. As cities struggle
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with escalating traffic congestion and pollution, e-scooters offer
a valuable solution with their low emissions and minimal spatial
footprint. This accelerated shift towards eco-friendly methods of
travel has prompted cities worldwide to reconsider their urban
transit infrastructures to better integrate e-scooters and ensure a
seamless blend into the transportation matrix (Gössling, 2020).

1.2 Smartphone sensors in environmental
and infrastructure monitoring

Smartphones have revolutionized the approach to
environmental monitoring and data collection within urban
environments, thanks to their ubiquity and the sophisticated
sensors they house. This study aims to show the potential for
smartphones in real time data collection and analysis, and the
potential for crowd-sourced data to vastly improve ease of data
collection; smartphones which are often used for navigation,
could easily be utilized simultaneously for their sensor technology.
Advancements in signal processing techniques and improvements
in data interpretation capabilities are critical to unlocking the full
potential of smartphone-based monitoring systems.

1.3 Vibrational analysis techniques and
applications

This study capitalizes on the latest advancements in
machine learning to enhance the field of vibrational analysis,
specifically applied to e-scooters used as probe vehicles in
urban settings (Cafiso et al., 2022). Traditionally focused on
cars, road surface assessment from the perspective of e-scooters
offers a novel view of passenger comfort and road conditions.
Products, such as ARAN, have been used with inertial profilers to
measure vertical displacement and provide data for the calculation
of International Roughness Index (IRI), providing a quantitative
measure of road surface roughness. On the other hand, this study
uses the smartphone’s built-in accelerometer to collect data in a
much more accessible, efficient and less resource intensive way.

In addition, employing advanced feature extraction methods
such as Root mean square (RMS), skewness, kurtosis, Interquartile
Range (IQR), and standard deviation to provide a comprehensive
and precise characterization of road surfaces.

This approach is designed to advance the application of micro-
mobility vehicles in urban settings by improving the understanding
of their interaction with various road types. The project’s aims
include developing an effective sensory data system, enhancing our
understanding of road impacts on rider comfort, and usingmachine
learning insights to support urban infrastructure management.

1.4 Machine learning in surface assessment
and data analysis

This study leverages machine learning to analyse e-scooter
vibrational data, aiming to enhance the assessment of urban road
surfaces using cost-effective sensor technology. Machine learning
is a branch of artificial intelligence (AI) that enables computers

to learn and make predictions or decisions based on data; in this
context it is used to classify test data from road surfaces based on the
distinguishable textural characteristics of the different surfaces it has
learned during training. Machine learning techniques have already
shown great promise in previous road surface assessment studies,
with accuracies easily exceeding 90% (Martinez-Ríos et al., 2022)
however this study brings a new perspective measuring vibrational
data from an e-scooter and bringing light to rider comfort, which is
directly affected by the e-scooter’s usage condition.

The research employs a combination of supervised and
unsupervised learning techniques, focusing on models such as
Random Forest Classifier, XGBoost, and SVM combined with k-
means clustering. 0Each model was chosen for its specific strengths
in addressing the challenges of analysing diverse road surfaces.
Random Forest was selected for its robustness in handling noisy
and imbalanced data while providing insights through feature
importance. XGBoost was chosen for its computational efficiency
and ability to model non-linear relationships, making it highly
suitable for complex datasets. SVM, when combined with k-
means clustering, excels in high-dimensional data environments and
creates optimal decision boundaries for classification tasks.

By focusing on the evaluation of machine learning models and
exploring their theoretical implications, this research contributes
to urban planning strategies, potentially informing future
infrastructure management applications for e-scooters through
enhanced data analysis techniques.

1.5 Aims and objectives

This section outlines the primary aims and specific objectives
of the study, providing a clear framework for the research and
guiding the subsequent methodology and analysis. The goal is to
classify the road surface roughness level(s) that is equivalent to
the high cycle fatigue threshold(s) experienced by the e-scooter. In
fact, this information is indispensable to determining the remaining
life of the asset prior to either repairing or reconditioning the e-
scooter. The study thus aims to develop and evaluate an e-scooter-
based sensory data system capable of classifying road surfaces
using advanced machine learning techniques. Specifically, Random
Forest Classifier, XGBoost, and SVM with K-means clustering will
be utilized to optimize model configurations for this purpose. By
advancing the application of micro-mobility vehicles, such as e-
scooters, in assessing urban road surfaces, the project seeks to
enhance the understanding of how these surfaces impact rider
comfort and overall experience. The insights gained from applying
these machine learning models to urban road analysis will lay the
groundwork for future infrastructure management applications.

To achieve these aims, the project will first involve the collection
and processing of e-scooter acceleration data across a variety of road
surfaces, thereby creating a robust dataset for subsequent machine
learning analysis. Each machine learning model’s performance will
be rigorously evaluated using various data partitioning strategies,
including an 80/20 split, five-fold, and ten-fold cross-validation,
accompanied by comprehensive hyperparameter tuning to optimize
the models. The findings will then be disseminated, highlighting
how the integration of machine learning with micro-mobility data
can enhance e-scooter maintenance strategies through detailed
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urban surface analysis. Additionally, the project will explore the
theoretical implications for urban infrastructure management,
focusing on how refined models can inform future research and
potential applications in this field.

2 Methodology

2.1 Dataset

2.1.1 Flowchart describing methodology
Figure 1 covers the different stages in this study, from initial data

capture to cleaning, feature engineering, analysis, anomaly correction
and final performance evaluation. After one configuration is tested
with a certainmachine learningmodel, dataset split, hyperparameters
and post-processing, another configuration is then tested to see
compare the accuracies of different configurations.

2.1.2 Challenges faced in acquiring the dataset
Acquiring a comprehensive dataset presented significant

challenges. Data collection at 10 mph was considered unsafe for
some of the surfaces chosen for analysis, leading to a reduction to six
mph for consistent and safe measurements. High pedestrian traffic
on concrete and personal risks using an e-scooter on asphalt roads
necessitated the selection of less trafficked areas for data collection.
The dataset was often affected by surface irregularities such as twigs
and potholes, which introduced noise into the dataset that clouded
the road surfaces true texture qualities within the vibrational data.

Thus, the need for precise feature extraction and data analysis was
underscored in this study, to analyse road surface condition while
ignoring excessive random noise (Wang et al., 2023).

Travelling on less trafficked surfaces avoided the need for
turning manoeuvres, enhancing the accuracy of data representing
each road surface type as turning would have altered the
angle of inclination needed to convert raw data into vertical
acceleration data.

2.1.3 Data collection
Data collection process was meticulously planned to accurately

represent the characteristics of the road surfaces under investigation,
including concrete, asphalt, grass, and cobblestone. This ensured
that a wide range of travel conditions were evaluated. Specific
measureswere implemented to reduce issues related to environmental
conditionsduringdatacollecting.Pedestriantrafficwasavoidedduring
the evening collections to ensure smoother scooter movement and
minimise interruptions.Thismethod also introducedweather-related
data variability, which was intentionally incorporated to enable the
machine learning models to differentiate between travel surfaces
when minor nuances were present in the dataset. By managing
these environmental variables, thedataset preservedconsistencywhile
accurately representing realistic conditions.

This study evaluated four surface types (shown in Figure 2):
concrete [A], asphalt [B], grass [C], and cobblestone [D],
using a smartphone mounted on an e-scooter. The smartphone
was mounted at a fixed angle, measured at approximately
36.4° (shown in Figure 3) from the axis perpendicular to ground,

FIGURE 1
Flowchart of data processing stages for machine learning analysis of road surface conditions.
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FIGURE 2
Comparison of different road surface types [concrete (A), asphalt (B), grass (C), cobblestone (D)].

FIGURE 3
Diagram illustrating the fixed smartphone angle of 36.4 degrees from
the perpendicular axis to the ground.

which had to be accounted for in pre-processing. This fixed angle
was chosen to ensure consistent data alignment with the scooter’s
motion. This approach minimized potential discrepancies caused
by varying device orientations, thereby improving the reliability of
the collected data. Learning the distinct textural characteristics of
each surface type was critical for enabling the machine learning
algorithms to effectively discriminate between them.

Using a smartphone with a sampling rate of a hundred
samples/second, a robust dataset comprisingover 1,000datapoints for
each10-straversalsegmentwasgenerated, facilitatingacomprehensive
feature extraction process to minimize classification errors and
enhance prediction accuracy (James et al., 2013). In total 480 data
samples were taken (120 from each travel surface) so the data would

be large enough to filter out anomalies and establish clear vibrational
patterns for each surface for machine learning analysis. Data integrity
was ensured by adhering to adhering to consistent driving practices
and steering clear of major disruptions like large debris (as opposed
to minor irregularities expected in travel surfaces).

The data collection speed was standardized at approximately six
mph across all surfaces, a safe and effective rate confirmed by a
risk assessment, minimizing personal and public safety risks and
ensuring uniform data acquisition. Each surface type was mapped
out to maximize data collection area, with necessary adaptations
for spatial constraints, such as the more frequent turns required
on the limited 35-m cobblestone routes. These manoeuvres helped
maintain data consistency across various surfaces.

The mobile app “Phyphox” from RWTH Aachen University
(Kohavi, 2001) was used, installed on an iPhone mounted at a fixed
angle on an e-scooter from Beryl. The measured parameter “linear
acceleration without g” captured accelerations in the x, y and z-axes
(illustrated in Figure 4), excluding gravitational effects to prevent
skewing the data with a constant acceleration reading of −9.81 m/s2

even when the scooter is stationary. This comprehensive approach
ensured robust, reliable datasets for subsequent machine learning
analysis of road surface characteristics.

Figure 4 shows the clear a sample of ten data samples collected
from concrete, asphalt, grass and cobblestone respectively (from
left to right). The distinction in the magnitude of acceleration
experienced by the e-scooter while travelling over the different road
surfaces can clearly be seen, especially in the linear acceleration in
the y and z-axes. Data was also collected through an alternative
app called Physics Toolbox Sensor Suite to validate that the linear
acceleration measured by the smartphone was accurate and it
exhibited similar ranges of magnitudes of linear acceleration over
the four different evaluated surfaces.

2.1.4 Preprocessing
To facilitate data analysis, an Excel template book was prepared,

configured to automatically compute all linear acceleration values in
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FIGURE 4
Linear acceleration data across different road surfaces recorded by E-scooter [concrete (A), asphalt (B), grass (C), cobblestone (D)].

the axes perpendicular to ground (referred to as vertical acceleration
in the data analysis). These vertical acceleration values were of
primary interest for the project, focusing on assessing e-scooter
comfort and monitoring the vibrations experienced by the scooter
and user during operation.

Equation 1 was used to calculate the vertical acceleration
for each data point, considering the sum of vertical
components in the measured linear acceleration in the y
and z-axes.

av = ay . cos (34.6) + az . sin (34.6) (1)

Using Equation 2, RMS values were also extracted individually
for each data sample:

RMS = √ 1
n
.∑n

i=1
a2
v,i (2)

Other values such as 20th percentile, 50th percentile, skewness,
kurtosis, etc., Were coded within the format of an excel template
book, so that the features would automatically be extracted from
the raw data. These features were then collected into an aggregate
dataset prepared for machine learning analysis, containing features
from each of the 480 data samples that make up the dataset.

Figure 5 displays empty cells designated for pasting time and
linear acceleration data in the x, y, and z vectors as well as absolute
acceleration. Once data is entered into columns A to E, these
cells will automatically be used to compute values for vertical
acceleration, vertical acceleration squared (for RMS calculation),
and other specified features. Currently, these cells display ‘0’ because
they are formula-driven and no data has been input yet, as shown by
the displayed formula in cell F2.

In the preprocessing stage of this study, crucial steps were
implemented within the code to prepare the dataset for effective
machine learning model application. Initially, any missing values
within the dataset were addressed using a SimpleImputer; a
strategy to fill gaps with the mean of the available data, ensuring
completeness and consistency across observations. Additionally,
categorical variables were numerically encoded using LabelEncoder,
facilitating the algorithms’ requirement for numerical input.

For the models that utilized SVM and k-means clustering, it
was crucial to conduct feature scaling, which standardized the range
of continuous initial variables, as SVM models are sensitive to
the scale of input data. Feature scaling was implemented using
standardization, where continuous variables were scaled to have a
mean of zero and a standard deviation of one. This preprocessing
step ensured that all features contributed equally to the classification
process, particularly for SVM models, which rely on distance-
based calculations to define decision boundaries. By standardizing
the data during preprocessing. The risk of features with larger
numerical ranges dominating the model was mitigated, thereby
improving accuracy and stability. This approach was applied prior
to implementing SVM and K-means clustering.

Finally, the dataset was methodically divided using both
a traditional fixed training-testing split and cross-validation
approaches. This partitioning was vital to not only leverage
the wealth of data for model training but also to ensure an
unbiased evaluation of the model’s predictive performance on new,
unseen data.

In summary, this rigorous preprocessing protocol sets a robust
foundation for the subsequent modelling phase.

2.1.5 Dataset split
This study evaluates the effectiveness of three dataset splitting

strategies for validating machine learning models in road surface
classification:

The 80/20 split provides a straightforward and quick assessment
method by allocating most of the data to training and the rest
to testing (Boashash, 1992) five-fold cross-validation improves
robustness by cycling four-fifths of the data for training and one-fifth
for testing across five iterations.

Ten-fold cross-validation, the most rigorous, rotates the dataset
into ten subsets, each tested once, ensuring all data is used for
both training and testing. This minimizes performance estimate
variance and is particularly effective for complex models or
limited datasets (Ramspek et al., 2020). This comparative analysis
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FIGURE 5
Template for data entry and automated calculation in vibrational data analysis.

TABLE 1 RMS value averages for different surfaces.

Surface type RMS averages No. of samples

Concrete 1.568,022 120

Asphalt 2.195,893 120

Grass 4.922,986 120

Pavement 7.140,745 120

seeks to identify the most effective method to accurately predict
road surface.

2.1.6 Feature extraction
Dimensionality reduction through feature extraction is crucial

in machine learning (Mladenić et al., 2005), utilizing specific
characteristics derived from vertical linear acceleration data to
delineate surface conditions.

RMS is used as an aggregate measure to show the average
vibration levels experienced by the scooter on different surfaces,
highlighting terrain roughness (Durst et al., 2011). Table 1 illustrates
the clearly distinguishable difference between RMS values for the
different surfaces after feature extraction, validating the smartphone
accelerometer’s ability to effectively capture distinct levels of
vibration from varied terrains.

Extremum values define the vibrational spectrum range,
indicating the impact levels on ride comfort. Percentiles reflect
variance in rider experiences with outer percentiles like the 20th and
80th providing essential insights on surface irregularity. Skewness
and kurtosis describe data distribution asymmetry and extremity,
revealing tendencies towards surface irregularities (Joanes and Gill,
1998).These statistical descriptors enhance prediction robustness by
capturing essential aspects of the riding experience.

2.2 Utilizing different machine learning
models

2.2.1 Random Forest Classifier
The Random Forest Classifier improves accuracy and mitigates

over-fitting by utilising ensemble techniques. The algorithm

generates multiple decision trees, with each tree being trained on
a random subset of features taken from aggregate dataset for the
respective data sample. The Random Forest algorithm constructs
each tree separately which enables computational efficiency by
taking advantage of parallel processing (Breiman, 2001). The
algorithm then combines the predictions of these trees to make a
decision based on themajority vote, thusmaking it so that erroneous
predictions can be outweighed by other correct trees and outliers
can be effectively handled (as illustrated in Figure 6); thus, themodel
is robust in handling the classification of road surfaces.

2.2.2 Extreme Gradient Boosting (XGBoost)
XGBoost is considered effective for managing large, nonlinear

datasets due to its sequential tree building and model validation,
optimising performance incrementally. This machine learning
model is particularly suitable for the task of classifying road surfaces
from vibrational data analysis due to its sophisticated boosting
technique, where each new tree is built to correct errors made
by the previous one (Chen and Guestrin, 2016), thus refining
the model’s accuracy over time. In XGBoost, contrary to the
Random Forest Classifier where each tree’s vote is treated with equal
importance in the final classification, each tree’s output is weighted;
in each stage of boosting, features that make the most significant
improvement to the model’s performance are split on more often
(illustrated in Figure 7), effectively giving these featuresmore weight
in the final classification.

2.2.3 SVM and K-means clustering
This machine learning model explores the power of combining

unsupervised learning (K-means) and supervised learning (SVM)
combining the strength of both methods.

SVM with K-means clustering first simplifies the dataset before
using the SVM for classification. Each extracted feature (RMS,
skew, kurtosis, etc.) represents a different dimension within a
multidimensional feature space. K-means clustering calculates the
Euclidean distance between points within this space to identify which
points are similar, thereby discovering inherent clusters in the data (as
shown in Figure 8). The objective of this clustering is to minimize the
variance within each cluster (Jain et al., 1999), effectively reducing the
complexity of the dataset and isolating any anomalies.

Accuracy of the SVM classifier is thusly enhanced as it
allows the SVM to focus on well-defined data groups, thereby
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FIGURE 6
Random Forest Classifier model visualisation, modfied from (Breiman, 2001).

FIGURE 7
XGBoost model visualisation, modified from (Chen and Guestrin, 2016).

maximizing the separation margin during analysis (Cortes and
Vapnik, 1995). After data has been clustered and projected into
a higher dimensional space, the best hyperplane that separates
different classes (maximising the margin between the nearest data
points of each class) can easily be found, thus SVM can provide
precise and robust classification based on this structured input.

2.2.3.1 Silhouette and elbow plot
Determining the optimal number of clusters for the K-

means algorithm is crucial for the effective segmentation of

data (Dhanachandra et al., 2015). Plotting the elbow method,
as shown in Figure 9, showed an “elbow” at k = 2where the decrease in
WCSS slows down significantly, indicating that adding more clusters
does not yield a significant improvement in compactness of clusters.

Complementary to the elbowmethod, silhouette analysis further
substantiates the selection of two clusters. The silhouette plot shows
the highest silhouette score at k = 2 which indicates that with two
clusters, each data point is, on average, closer to its own cluster centre
than to the centres of other clusters.Thus, k = 2 gives good separation
and cohesion during clustering.
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FIGURE 8
K means clustering visualisation, modified from (Cortes and Vapnik, 1995).

Both the graph for the elbow method and the silhouette score
were plotted for each configuration of the SVM with K-means
clustering models to ensure that the optimal number of clusters was
always used, in order to get maximum separation margin possible
and optimize each model.

2.2.4 Hyperparameter tuning
The selection and tuning of hyperparameters played a

significant part within this study in helping to optimize machine
learning models, allowing them to adjust to the nuances of
the dataset (Probst et al., 2019). A grid search method was used
for its systematic exploration of the parameter space, building and
evaluating a model for each parameter combination. This approach
aids in finding the most effective model parameters across the
high-dimensional vibrational data to optimise model accuracy. For
example, for the hyperparameter of “n_estimators”, it was found
that the optimum number of trees for a Random Forest Classifier
model was fifty as it represented the best balance of performance
and computational efficiency.

This rigorous tuning process ensures that the models meet
the specific demands of urban road surface assessment with high
precision and accuracy.

2.2.5 Post processing
In this study, post-processing techniques refined the outputs

of classification models. A one-dimensional median filter, using
a commonly applied kernel size of five, was utilized to smooth
predictions after the initial classification (Huang et al., 1979);
this filter works by replacing each prediction with the median
of its neighbouring values, effectively reducing the impact of
outliers or noise.

Smoothing is crucial for applications like road surface
assessment, where sensor data may include significant noise. The
enhanced consistency of the median filter results in more reliable
and interpretable outputs, thus making the results of the machine

learning models more useful for practical use infrastructure
maintenance.

2.2.6 Shared python libraries
Across all the models’ configurations, there was a suite of

shared libraries that provided the scaffolding for most data
science tasks, from preprocessing to visualization. “Pandas”
was a staple throughout for its powerful data structures,
excellent for data manipulation and analysis. “Numpy” excels at
numerical and mathematical operations, particularly when working
with arrays. Evaluation metrics were crucial for assessing the
performance of each configuration, and “sklearn. Metrics” offered
functions like “accuracy_score” and “confusion_matrix” for this
purpose. The “scipy.signal” library, with its “medfilt” function
during the post-processing stage. Finally, visualization libraries
“matplotlib.pyplot” and “seaborn” proved indispensable for their
graphing capabilities, making the results more accessible through
the use of confusion matrices.

2.2.7 Performance evaluation using confusion
matrices

Confusion matrices provided a visual representation of model
performance, illustrating the classification accuracy for different
road surfaces—labelled as concrete (1), asphalt (2), cobblestone
(3), and grass (4). These matrices clearly highlighted successful
predictions and misclassifications, offering a more detailed insight
than a singular accuracy figure.

A confusion matrix has been shown to display the performance
of a classification algorithm. The accurate and precise classification
will be demonstrated by the intensity along the diagonal cells. For
example, in the confusionmatrix above on the left of Figure 10, it can
be seen that three instances of asphalt are misclassified as grass, four
instances of grass were misclassified as cobblestone. Even with some
misclassifications, the machine learning models retained extremely
high accuracies.
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FIGURE 9
Elbow method and silhouette score analysis for determining optimal cluster count.

The accuracy can be calculated from the confusion
matrix using Equation 3:

Accuracy = TP+TN
TP+TN+ FP+ FN

(3)

Accuracy is based on the number of true positives (TP), true
negatives (TN), false positives (FP) and false negatives (FN).

2.2.8 Challenges with software
The machine learning models underwent training using a

dataset comprising diverse road surfaces. Google Colab, with
its provision of Tesla T4 GPUs, was instrumental in enhancing
computational speed. The platform’s generous cloud RAM (12 GB)
and disk space (78 GB) (Bisong, 2019) further contributed to
efficiency facilitating shorter training durations compared to CPU-
based processing.

The consolidation of each data sample into the aggregated
dataset containing all 480 samples facilitated efficient data reading in

one pass, necessitating only an initial batch size of one and a single
epoch of training.

This innovative approach to data management resulted in a
significant reduction of training time underscoring the efficacy of
this study’s approach to handling the dataset and optimizing the
machine learning models.

3 Results

Theresults of this investigation intomachine learningmodels for
road surface classification reveal significant achievements in model
accuracy and highlight the importance of methodical refinement.
The analysis encompassed Random Forest Classifier, XGBoost, and
a combined SVM with K-means clustering model, each subjected
to an array of training-testing configurations, cross-validation
methods, and enhancement techniques including hyperparameter
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FIGURE 10
XGBoost confusion matrices (10-fold CV, hyperparameter tuning and post processing implemented).

TABLE 2 Results for random forest classifier.

Process 80/20 split 5-Fold cross validation 10-Fold cross validation

By Itself 0.91666 (91.67%) - 0.512 s 0.94583 (94.58%) - 2.842 s 0.93541 (93.54%) - 2.613 s

Hyperparameter tuning 0.91666 (91.67%) - 235.6 s 0.94375 (94.38%) - 272.516 s 0.94375 (94.38%) - 475.474 s

Post-processing 0.46875 (46.88%) - 4.37 s 0.46875 (46.88%) - 1.437 s 0.99166 (99.17%) - 3.215 s

Tuning and post-processing 0.45833 (45.83%) - 369.81 s 0.99166 (99.17%) - 265.326 s 0.99166 (99.17%) - 305.946 s

tuning and post-processing, as shown in Table 2–4 below. Our
literature review reveals that these deep learning approaches are
more suitable to the vibration tensor datasets. They perform faster
while yielding acceptable accuracy. On this ground, they have been
chosen for customisation in this study. Apparently, the results in
Tables 2–4 confirm that the data cross validation has improved
the capability of the machine learning to improve data pattern
recognition. Considering the 80:20 split (or two folds), the cross
validation for this split is relatively limited, resulting in a poorer
performance compared to higher folds of data. Our study has
modified the traditional deep learning via the optimisation of
hyperparameter tuning and K-means clustering. The details of the
modification codes are available in Supplementary Appendix.

For the Random Forest models, the application of five-fold
cross-validation in tandem with post-processing culminated in an
exemplary peak accuracy of 99.17% with a processing time of
only 1.437 s; this was found to be the most useful configuration
for Random Forest Classifier. When hyperparameter tuning was
involved, there was no noticeable increase in accuracy, but as
expected, searching for the best hyperparameters significantly
increased computational time.

In contrast, XGBoost realised its optimal performance,
also at 99.17%, when five-fold cross-validation was synergised
with hyperparameter tuning and post-processing. However, this
came at the expense of computational time, taking 202.4 s to
output classification results. An alternative arrangement which
incorporated ten-fold cross-validation with post-processing,
presented a good compromise between accuracy (at 98.96%) and
time (taking only approximately 7.3 s).

Outstandingly, the SVM and K-means clustering models
consistently delivered 100%accuracy acrossmultiple configurations,
predicting all 120 data samples from each travel surface correctly.
The most efficient of these configurations being a five-fold cross-
validation including hyperparameter tuning, demanded only 3.719 s
to execute, with the 10-fold counterpart achieving the same accuracy
in a still brisk 13.062 s. Although marginally less accurate, the sole
use of five-fold cross validation in the machine learning model gave
an output accuracy of 98.13% in only 687 m.

The post-processing steps taken in this study proved to be highly
effective when paired with machine learning programs that were
configured with cross-validation, leading to clear improvements in
accuracy and a visible reduction inmisclassification in the confusion
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TABLE 3 Results for extreme gradient boosting (XGBoost).

Process 80/20 split 5-Fold cross validation 10-Fold cross validation

By Itself 0.90625 (90.63%) - 0.425 s 0.93125 (93.13%) - 1.243 s 0.93125 (93.13%) - 1.726 s

Hyperparameter tuning 0.91666 (91.67%) - 265.358 s 0.9375 (93.75%) - 445.016 s 0.9375 (93.75%) - 483.351 s

Post-processing 0.45833 (45.83%) - 1.357 s 0.97708 (97.71%) - 0.676 s 0.99858 (99.86%) - 7.228 s

Tuning and Post-Processing 0.45833 (45.83%) - 129.021 s 0.99166 (99.17%) - 202.4 s 0.98541 (98.54%) - 120.875 s

TABLE 4 Results for SVM and K-means clustering.

Process 80/20 split 5-Fold cross validation 10-Fold cross validation

By Itself 0.89583 (89.58%) - 0.972 s 0.98125 (98.13%) - 0.687 s 0.98125 (98.13%) - 1.19 s

Hyperparameter tuning 0.90625 (90.63%) - 6.695 s 1.0 (100%) - 3.719 s 1.0 (100%) - 12.636 s

Post-Processing 0.45833 (45.83%) - 1.655 s 0.99583 (99.58%) - 1.65 s 0.99583 (99.58%) - 1.65 s

Tuning and Post-Processing 0.45833 (45.83%) - 7.984 s 1.0 (100%) - 4.447 s 1.0 (100%) - 13.062 s

matrices. On the other hand, applying the median filter to models
that used an 80/20 training/testing split produced a stark decline
in accuracy, declining to approximately 45% for all three machine
learning models. This outcome signals a notable discrepancy from
the models’ otherwise good performances.

In summary, the empirical data in Table 2 underscores the
superiority of complex cross-validation and post-processing over
simpler splits like the 80/20 ratio. Utilizing these techniques
for optimization, the SVM with K-means clustering model
demonstrated commendable efficiency and precision, proving to
be far more accurate and computationally efficient than the other
machine learning models.

4 Discussion

In this study, the SVM with K-means clustering model was
established as a benchmark in urban infrastructure assessment
through the use of e-scooter vibrational data, achieving 100%
accuracy in multiple configurations, far surpassing the industry
standards of 80%–95% for road condition analysis (Martinelli et al.,
2022). In addition, the output accuracy of 98.13% in only 687 m
(when using 5-fold cross validation) shows promise in the potential
for this machine learning model to be implemented into real-time
road surface assessment and maintenance strategies.

Compared to other models like the multi-layer perceptron,
a neural network which was used to achieve an approximate
accuracy of 92% in other studies (Basavaraju et al., 2020), SVM
with K-means clustering excelled. Optimal cluster determination
through silhouette and elbow plots proved highly effective (Ghojogh
and Crowley, 2023). Although the XGBoost model also showed
impressive results, SVM with K-means clustering generally
provided more reliable and useful outcomes across the various
configurations tested.

Hyperparameter tuning, improved the accuracy onlymarginally
in Random Forest Classifier and XGBoost models (increase of
less than 1%) however in the SVM with K-means clustering
models, its implementation led to an increase of 1.87%. This
is because SVM is particularly sensitive to hyperparameter
changes as it adjusted its margins between data points in
different clusters.

The implementation of five-fold as well as ten-fold cross
validation was critical, enhancing performance evaluations
and mitigating overfitting risks (European Commission. Ethics 
Guidelines for Trustworthy AI, 2021); an improvement over
traditional road condition data analysis. By systematically rotating
the dataset through both training and testing phases, the study
maximized the use of all data, thereby validating the reliability,
accuracy, and efficiency of the models’ performance.

Feature extraction from vibrational data, including RMS,
skewness, and kurtosis, was vital for precise classifications, helping
to distinguish subtle differences in road textures. Post-processing
using amedian filter was highly successful in significantly improving
accuracy and facilitating swift, efficientmachine learningmodels for
road surface classification, however it proved to be ineffective when
using an 80/20 split for training and testing, stressing the importance
of ordered data processing to avoid adverse outcomes.

This study also addressed potential dataset biases from
e-scooter user behaviour and data collection methods,
enhancing model robustness with noise-resilient algorithms
and preprocessing techniques like data cleaning and outlier
detection.

The developed machine learning models in this study, including
the selected best model for road surface classification (which utilises
SVM with K-means clustering and 5-fold cross-validation as the
data splitting method), proved to be robust according to the Ethics
Guidelines for Trustworthy AI (Jahanian, 1992) set out by the EU:
The model does not have its own autonomy and can be overridden
or modified by humans, which prevents it from making harmful
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or unethical decisions, so there is human oversight; the model
maintains consistent outputs with high accuracies which is essential
when dealing with applications affecting human lives and a high
quality, relevant and well documented dataset is used ensuring
model responsibility.

Overall, the findings affirm the effectiveness and robustness
of the advanced machine learning techniques used in this study,
specifically SVM with k-means clustering, and the importance
of methodological precision in road surface classification. These
techniques demonstrated higher accuracy and efficiency than
traditional data analysis methods, suggesting substantial potential
for future real-time monitoring applications. The readiness of these
models for operational use could greatly benefit urban infrastructure
with timely and accurate road assessments.

4.1 Future applications: Electric scooter
maintenance strategies

The high accuracy of the SVM with K-means clustering model
(98.13%) in real time processing speeds (687 m) underscores
the potential of these this model to inform real-time urban
infrastructure analysis (Beryl. Impact Report, 2023). Integrating
these algorithms into city maintenance operations, as proposed in
collaboration with Beryl’s extensive data collection efforts described
in the Beryl Impact Report 2023 (Sarstedt and Mooi, 2019), could
facilitate proactive road quality monitoring. The machine learning
model proposed in this study could also play a crucial role in
e-scooter maintenance strategies. By utilizing the data collection
and feature extraction methods detailed in this study, insights
into rider comfort can be gained through the analysis of RMS
values. Companies like Beryl can leverage this data to evaluate
user experiences related to vibrations on roads. This analysis
could inform decisions to adjust the suspension and damping
systems of e-scooters, particularly if vibration levels are found to be
excessively harsh.

Furthermore, the machine learning model can be effectively
used to monitor the condition of individual scooters. If the model
shows high accuracy in classifying road surfaces across multiple
scooters, but significantly lower accuracy for a particular scooter,
it could indicate excessive wear and tear on that scooter’s tires, or
potential issues with its suspension and damping systems leading
to uncharacteristically high levels of vibration. This predictive
capability would allow for timely maintenance interventions,
preventing potential e-scooter failures and ensuring that the scooters
continue to provide a comfortable user experience. Given that Beryl
continuously collects data through various sensors, including GPS
and accelerometers in their scooters, integrating such a system into
their existing infrastructure is not only feasible but also beneficial.

Moreover, the integration of regression analysis into the future
applications of the SVM and K-means clustering algorithms for
classifying road surfaces could substantially enhance their utility.
By transitioning from simple classification to predictive modelling,
regression analysis can offer nuanced insights into road and
e-scooter conditions (Silva et al., 2017), enabling the development of
sophisticated decision support systems that anticipate maintenance
needs and optimize operational efficiency.

4.2 Limitations and areas of improvement

Data collection at a uniform speed of 6mph does not
fully represent the variability in e-scooter operation speeds.
Future research should incorporate variable speeds to enhance
regression models’ accuracy in predicting road surface impacts,
thus improving anomaly detection (Elhadidy et al., 2021). The
project currently evaluates only four road surfaces. Expanding
this to include a wider range of surfaces would boost the
model’s applicability and robustness, especially for monitoring e-
scooter condition across urban areas. Incorporating regression
analysis would further refine this by quantifying each surface
type’s impact on ride quality, offering deeper insights into surface
characteristics (Page et al., 2025).

The data processing method, which involves manual steps
such as data consolidation into an Excel workbook followed by
separate coding, could be streamlined. Developing an algorithm for
direct raw data classification and analysis would reduce errors and
increase processing efficiency (Sadeghi andGoli, 2024) Additionally,
employing regression techniques could automate the prediction
of continuous variables like road roughness or durability from
sensor data.

The study’s limited scope regarding varying weather conditions
such as snow or ice also affects the accuracy of road property
assessments. Including these factors in future studies would enable
regression models to evaluate environmental impacts on road
surfaces more comprehensively. Another aspect to improve in
future research is the impact of small obstacles such as twigs
and potholes, which can introduce noise and variability into the
collected data. To mitigate these issues, preprocessing techniques
such as obstacle filtering and terrain classification will be explored.
These methods aim to refine the dataset by isolating noise
caused by such irregularities, ensuring that the machine learning
models focus on meaningful patterns. Enhancing these aspects
and integrating regression analysis would transform the project
from basic classification to a comprehensive predictive framework,
which would not only improve precision, but also expand the utility
in predictive maintenance and urban transportation management,
making it a potent tool for smart city applications.

Challenges in the scaling of this technology include weather
conditions, the necessity of additional calibration, and maintaining
accuracy in roughness classification. Weather variables, like
variations in temperature or humidity, can affect sensor data and
may result in inaccuracies in detection. The integration of data
from several sensors can be complex and often require further
calibration to guarantee consistency and reliability. Therefore,
achieving accurate roughness classification is challenging when
technology needs to handle a diverse fleet of e-scooterswith differing
models, ages, and software configurations. These challenges should
be addressed before scaling this technology.

5 Conclusion

This dissertation has successfully developed and evaluated a
novel sensory data system utilizing e-scooters for the classification
of road surfaces through the application of machine learning
algorithms, specifically Random Forest Classifier, XGBoost, and
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SVM with K-means clustering. This research marks a significant
advancement in leveraging micro-mobility vehicles for urban road
surface assessment and data collection.

The findings of this study highlight the exceptional performance
of the SVM with K-means clustering model, which achieved
an impressive 100% accuracy across multiple configurations,
surpassing the prevailing industry standards. Notably, the
model demonstrated robust real-time processing capabilities,
with an accuracy of 98.13% achieved in 687 milliseconds
using 5-fold cross-validation. This performance underscores
the model’s substantial potential for real-time road surface
assessment, thereby fulfilling the project’s objectives and setting
a foundation for future advancements in urban transportation
strategies.

New Findings.

• SVM with K-means Clustering: The SVM with K-means
clustering model achieved 100% accuracy, showcasing superior
performance and real-time processing capabilities. This
indicates considerable potential for the model’s application in
real-time urban infrastructure analysis.

• Advancements in Urban Infrastructure: The research has
enhanced the understanding of how road surface conditions
impact rider comfort, providing valuable insights for
developing improved maintenance and operational strategies
utilizing e-scooter
vibrational data.

• Ethical Compliance and Future Research: The model
adheres to the Ethics Guidelines for Trustworthy AI,
ensuring necessary human oversight. Future research
should focus on incorporating variable speeds, a broader
range of road surfaces, and environmental factors to
further enhance the model’s predictive accuracy and
applicability.

This study not only achieves its intended objectives but also
paves the way for integrating advancedmachine learning techniques
with micro-mobility data, potentially transforming urban
transportation management. The machine learning innovation can
help asset managers to determine the fatigue threshold (from the
road roughness).This paves the significant progress in predicting the
remaining life of the asset prior to either repairing or reconditioning
the e-scooters.
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