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3D imaging solution
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Masonry retaining walls are prone to bulging and leaning failures which require
high accuracymeasurements tomonitor. Current assessments of retaining walls
rely on qualitative visual inspections that inform overall condition ratings. The
site and surface conditions of retaining walls make them challenging objects to
3D image with SfM. SfM is prone to radial distortion, doming, which has resulted
in research into mitigation strategies. This study assesses the best practices for
implementing Uncrewed Aerial Systems (UAS) to conduct Structure fromMotion
Photogrammetry (SfM) onmasonry retainingwalls as amore objective, accurate,
and accessiblemeans of inspection. The efficacy of domingmitigation strategies
when applied to masonry retaining walls was explored in the current study. This
was carried out through the duplicate imaging of two sample retainingwalls with
terrestrial laser scanning (TLS) and SfM. The TLS generated 3Dmodels were used
as baselines to compare the trial SfM generated 3Dmodels with CloudCompare.
SfM models not initially exhibiting doming displayed an average of 5.8 mm (0.23
in) root mean square error (RMSE) when compared to TLS baselines. The errors
in SfMmodels that exhibited doming were improved with the addition of ground
control points, resulting in a 46% reduction in error. Findings and the best
practices for SfM image networks and ground control point inclusion for two
retaining walls are provided based on results of this research. The benefits and
inherent limitations of SfM as used for retaining wall 3D imaging to contribute
to the growing applications of SfM in infrastructure inspections are discussed.

KEYWORDS

structure from motion (SfM), terrestrial laser scanning (TLS), retaining wall inspection,
3D imaging, uncrewed aerial systems (UAS), doming

1 Introduction

The National Park Service’s Wall Inventory Program (NPS WIP) represents one of
the most robust wall inventory initiatives undertaken by a government agency, aiming
to define and quantify wall assets in terms of their location, geometry, construction
attributes, condition, failure consequence, cultural value, apparent design criteria, and cost
of structure maintenance, repair, or replacement (DeMarco et al., 2009). By 2008, over
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3,500 retaining walls in 34 national parks in 27
different states across the United States were inventoried
(Emeritus Members of the Steering Committee, 2008; NPS, 2015).
The inventory of these structures included newly constructed assets
to walls over 80 years old (Federal Highway Administration, 2008).
Preliminary findings of the NPS WIP indicate that 29% of all
retaining wall structures assessed are in of needmaintenance, repair,
or replacement (Emeritus Members of the Steering Committee,
2008). There are many types of retaining walls such as gravity
walls, cantilever walls, and mechanically stabilized earth (MSE)
walls. Stone masonry retaining walls are unique in that they are
mortarless structures, relying entirely on friction between the faces
of interlocking surfaces under self-weight for structural integrity
(Clayton et al., 2013). Stone masonry walls make up 70% of all walls
assessed in the NPS WIP (CTC and Associates, 2013). The inherent
variability of this type of structure makes it challenging to predict
performance and draw trends in routine inspections. DeMarco
(CTC and Associates, 2013; Anderson Scott et al., 2012), an expert
associated with the NPS WIP, indicated that walls were likely
overlooked during their inventory due to the structures’ secluded
locations and scarcity of as-built records. Isfeld-Corresponding et al.
(2016) also shared that damage assessment is a challenge for
masonrywalls in their analysis of grout injection repairs. Inspections
of these structures still rely upon antiquated methods.

In a traditional inspection, an inspector makes a qualitative
assessment and later converts it to a numerical rating. This is
supported by hand drawings and field measurements (Butler et al.,
2016; Hain and Zaghi, 2020). Traditional inspection methods
have significant limitations as the collected information is largely
subjective, challenging to reproduce with precision, and may vary
greatly depending on the individual experience of the inspector.
The practice of numeric structural rating also carries the inherent
risk of masking critical developing issues within a structure that
are balanced out in the rating by overall acceptable performance.
Additionally, there is no standardized structural rating scale, further
contributing to the ambiguity that these ratings may convey
(Butler et al., 2016). Three-dimensional (3D) imaging helps to
solve these shortcomings by providing quantitative measurements
of an entire structure that enables the detection of growing issues
within a structure. Recent advances in 3D imaging technology and
computing have lowered costs and improved processing speeds.
As a result of these improvements, 3D imaging has become
more viable for the inspection of civil infrastructure, including
masonry retaining walls. Light distance and ranging (lidar) and
SfM are among the most used methods (Oats et al., 2017;
Yust et al., 2017; Kaartinen et al., 2022).

Lidar is an active form of 3D scanning that offers high
accuracies and is best suited for rapid and large-scale data collection
(Gregersen, 2023). Scanning units using lidar based terrestrial
laser scanning (TLS) can capture structures with 1.3 mm (0.05
in) accuracies within 27 m (88.6 ft) as compared to total station
measurements but at very high costs (Psimoulis et al., 2022). SfM
is a passive means of 3D imaging that presents a cost-effective and
accessible alternative to TLS with standard SfM equipment costing
10% its TLS counterparts. This is because TLS requires highly
specialized and precise equipment to collect data while SfM models
can be producedwith images taken using virtually any commercially
available camera.Thegreater accessibility of SfMequipmentmakes it

amore approachablemethod of 3D imaging compared to traditional
TLS. While this gap in equipment availability is shrinking as basic
lidar sensors now exist in some modern smartphones, their uses for
this application are limited. One recent study from the United States’
Federal Highway Administration assessing the use of smartphone
based “pocket lidar” for MSE retaining wall assessments found
limitations in local accuracy and the ability to monitor defects such
as bulging (Corrigan, 2024). While the advent of pocket lidar is a
step towards improving the affordability and accessibility to lidar
based imaging, the reliable accuracy of TLS justifies the cost inmany
cases. The implementation of SfM or TLS offers benefits to retaining
wall monitoring that are otherwise unattainable using conventional
inspection methods. When used properly, the 3D imaging data
generated through TLS or SfM is accurate, precise, and reproducible.
These technologies can be used to identify cracks and surface
abnormalities, track movements over time, and provide detailed
sectional slope analysis of retaining wall structures (Butler et al.,
2016; Yust et al., 2017; Mohammadi et al., 2019). The identification
of such irregularities enables timely and effective maintenance and
repair measures to be taken.

In recent years, there have been laboratory and field evaluations
using SfM to collect data on retaining walls. Two studies from
Oats et al. (2017) and Oats et al. (2019) found SfM to be
accurate within 1.5 cm (0.59 in) when compared to total station
measurements and that accuracies can be improvedwith the optimal
inclusion of control points. One proof of concept study from Hain
and Zaghi (2020) found SfM capable of producing comprehensive
3D models of entire retaining wall structures that can identify local
areas prone to failure, providing a firm baseline for subsequent
inspections that enable detailed deterioration monitoring. Further
work from Wondolowski and Motaref (2024) affirmed that SfM is
a useful tool for retaining wall inspections, accurate within 5 mm
(0.19 in) in certain retaining wall trials. However, Wondolowski and
Motaref (2024) found 3Ddistortions such as the “banana effect” (i.e.,
doming) to negatively impact the accuracy of retaining wall surface
models in certain portions their study. SfM is known to be prone to
issues such as doming that create curved and radial distortions in 3D
models (Eltner et al., 2016). This type of SfM distortion is correlated
to image calibration, parameterization, the inclusion of Ground
Control Points (GCPs) and the geometric configuration of images
(Eltner and Schneider, 2018; Magri and Toldo, 2017). Jaud et al.
(2018) were unable to fully eliminate doming distortions in their
study of linear coastal landforms but saw a reduction in magnitude
when optimizing the distribution and density of tie points andGCPs
with diverse image orientations and ranges. Nesbit and Hugenholtz
(2019) found that the imaging angle has large impacts on the
accuracy of SfM results and that the incorporation of oblique images
to a nadir only image set will yield improved accuracies, though
no decisive optimal combination of angles were determined. While
many studies have evaluated means of mitigating this effect in aerial
SfM, there is very little research on its impacts to the inspection of
vertical structures such as retaining walls.

This study evaluates the efficacy of close-range, manually flown,
aerial based SfM for retaining wall 3D imaging. A specific focus was
evaluating the prevalence and mitigation of doming distortions on
retaining wall imaging using SfM modeling. For this purpose, the
field study of two masonry retaining walls are presented. Data was
collected using a TLS unit and an uncrewed aerial system (UAS)
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for SfM. SfM was assessed for both accuracy and feasibility by
considering site access constraints as well as the cost and availability
of the necessary equipment. The accuracy of close-range SfM
measurements were determined by comparing them to ground truth
measurements established using TLS in this paper. SfM accuracy
was measured using Cloud to Cloud (C2C) comparisons between
SfM point clouds and ground truth TLS point clouds. The reliable
accuracy of TLS makes it a great candidate for establishing ground
truths for this type of comparison. TLS has been used in this capacity
in recent literature assessing infrastructure inspection techniques
(Chen et al., 2019; Byrne et al., 2017). The time required for both
field data collection and post-processing was recorded to provide
insight into the feasibility of implementing SfM-based inspection
protocols at scale.

2 Materials and methods

This section outlines the methodology used to assess the
performance of SfM for the inspection of retaining walls using
TLS as a baseline. The materials and methods are structured to
report a comprehensive view of the experiment’s design, imaging
technologies implemented, data collection procedures deployed,
and data processing steps. The methods described in this section are
intended to be replicable and relevant to asset managers aiming to
integrate 3D imaging into routine retaining wall inspections.

2.1 Study overview

This work presents a controlled field trial comparing SfM
and TLS methods on two representative retaining walls. The
section begins by outlining the objectives of the investigation,
followed by a description of the selected site characteristics.
This overview provides essential context for the methodological
approach described in the remainder of the section, clarifying the
rationale behind the experimental design.

2.1.1 Objectives
Afield trial was designed to accomplish threemain objectives, 1)

assess the accuracy of SfM compared to a TLS baseline 2) evaluate
the doming effect in SfM measurements of two different masonry
wall types, and 3) develop preliminary guidelines of best practices
for 3D imaging retaining walls. Two sites were imaged using TLS
and aerial SfM photogrammetry. TLS-generated models served as
the reference against which SfM models were directly compared.
The study also assessed the practical benefits and drawbacks of using
each imaging method. Findings of this study may assist 3D imaging
technicians to make informed decisions when choosing inspection
protocols for a variety of retaining wall inspections.

2.1.2 Overview of sample retaining walls
Site 1 looked at a 24.7 m (81 ft) section of a 1.5 m (5 ft) tall dry-

stone masonry retaining wall. Figure 1A shows an overall view of
the wall while Figure 1B shows a close up of the wall surface. This
structure had a dynamic surface, typical of dry-stone masonry, and
was selected as a representative structure of the multitude of dry-
stone masonry walls that require inspection and maintenance in the

United States. This site had no vegetation impacting the study area.
While the overall structure was curved the section of the wall being
studied had negligible curvature. It was investigated if the unique
surface of the dry-stone masonry wall at Site 1 yields more accurate
SfM results due to decreased doming effects.

Site 2 examines amasonry retainingwall constructed of uniform
concrete masonry units as shown in Figures 1C,D. This study
collected data on a 24.7 m (81 ft) long section of the 3.1 m (10 ft) tall
structure. This type of wall with a uniform surface was selected to
assess the prevalence of SfM distortions on a structure. In addition,
the impact of the site’s vegetation on the overall quality of the SfM
models produced was studied. Trees partially obstructing a portion
of the wall on Site 2 are shown highlighted in red in Figure 1C.
These trees presented physical obstacles for lidar and SfM data
collection and casted shadows across the wall for the duration of the
experiment.

2.2 Overview of imaging technologies

This section provides background on the functions and
applications of each imaging method utilized in the study. It also
details the specific equipment and software employed during data
collection and processing.

2.2.1 Terrestrial laser scanning (TLS)
Terrestrial laser scanning (TLS) refers to a ground based and

typically tripod mounted implementation of lidar. In principle, lidar
works by shooting pulsed beams of light at an object and measuring
the amount of time it takes for that light to travel and reflect
back to a sensor within the scanner, yielding something known
as a time-of-flight measurement, shown in Equation 1 (Neoge and
Mehendale, 2020).

D = c∆T
2

(1)

Equation 1 uses the time between the laser pulse and measured
return (∆T) in combination with the constant speed of light (c) to
derive the distance to the target (D). Lidar scanners create 3Dmodels
of the objects being scanned by repeating this process a number of
times tomeasure individual points on the surface of the object which
are then cataloged and displayed in a 3D model known as a point
cloud (Neoge and Mehendale, 2020; Raj et al., 2020). These repeated
measurements with multiple returns often allow lidar to penetrate
or filter out vegetation in the scans (Liao et al., 2021; Brodu and
Lague, 2012).

2.2.2 TLS equipment
The Leica RTC360 TLS unit was chosen to capture high quality

3D models of the walls to serve as the baseline for the accuracy
comparison in this study. It was selected as a baseline due to its
high accuracy and reliable usage inmodern engineering applications
(Moberg, 2023). The RTC360 produces point clouds with 360°
horizontal and 300° vertical fields of view with point accuracies of
1.9 mm at 10 m (0.07 in at 32.8 ft) and 2.9 mm at 20 m (0.11 in at
65.6 ft) (Leica Cyclone Register 360, 2025). The scans are collected
at a maximum point density of 3 mm (at 10 m). The scanner is
also capable of real-time point registration (Leica RTC360, 2025). A
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FIGURE 1
(A) Wide view of Site 1, (B) Close-up view of Site 1, (C) Wide view of Site 2, (D) Close-up view of Site 2.

preliminary 3D model can be created and displayed which enables
user to make decisions to improve the quality of collected data while
still in the field. These features and specifications are invaluable
to a 3D imaging technician but come at a high cost compared to
SfM equipment. The RTC360 costs $75,000 (2025 pricing) which
includes only the scanner and its processing software, Leica Cyclone
Register 360.

2.2.3 Structure from motion photogrammetry
(SfM)

SfM is a 3D imaging method that constructs a 3D model
by triangulating the position of features captured by overlapping
images of an object (Eltner and Sofia, 2020). SfM software, such as
RealityCapture or Pix4D, accepts an input set of images captured
of an object from varying, overlapping angles and produces point
clouds. SfM has a critical limitation as it needs scaling information.
The point clouds generated contain only relative geometry that must
be assigned scale using objects of known dimensions within the
object’s region (Mubanga, 2025).

2.2.4 SfM equipment
The DJI Mini 3 Pro camera drone was chosen to capture images

to assess the quality of manually flown aerial SfM in this study. This
drone takes images with a maximum quality of 48 megapixels. It
offers the advantage of Global Navigation Satellite System (GNSS)
connectivity, enabling images to be automatically georeferenced
(DJI Mini 3, 2023). It is also equipped with obstacle detection
systems that can aid inspectors in safe operation by warning them
of obstacles relative to the UAS. The Mini 3 Pro retails for $600
and was chosen to represent a low-cost drone capable of capturing
high quality images that 3D imaging technicians might consider
purchasing to capture 3D models of subjects that are challenging
to access with TLS and traditional cameras. It is not only low

cost but also compact, with a takeoff weight of 249 g (8.7 oz) and
only 25 × 362 × 70 mm (9.9 × 14.2 × 2.7 in), making it highly
maneuverable in tight quarters. This study used RealityCapture for
all SfM model processing. An unlimited license for RealityCapture
can be purchased for $3,750 (2025 pricing) though pay-per-input
pricing is also available (RealityCapture, 2024).

2.3 Data collection

The following section outlines the workflows used to collect TLS
and SfM data. TLS data was collected first on each site immediately
following site preparation with alignment targets, image locations,
and scale rods. This ensured that accurate point clouds could be
collected and used as ground truth. Images for SfM reconstruction
were then collected at predetermined locations.

2.3.1 TLS and GNSS data collection
The collection of quality TLS data was critical in the current

study as it served as the baseline upon which all conclusions on SfM
accuracywere drawn. To ensure highly accurate baseline 3Dmodels,
the Leica RTC360 terrestrial TLS scanner was used to measure each
wall at 3 separate stations. TLS scans were collected 4.6 m (15 ft)
from the subject’s surface to maximize the accuracy of the RTC360
(Leica RTC360, 2025). This also assured that critical details were
captured at a maximum of 45-degree oblique angles to minimize
distortions in individual lidar returns (Laefer et al., 2009). These
stations were carefully positioned so the full structures could be
imaged without any blind spots. All TLS data was also collected
well within 10 m (32 ft) of the structure to ensure the baseline data
was accurate to 1.9 mm (0.07 in). Full dome scans were captured at
each station on both sites. Two redundant scans were collected at
each station on Site 2 so that the unavoidable foot traffic through
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FIGURE 2
(A) Data Collection Plan for Site 2, (B) Close-up of Alignment Target, (C) Close-up of scale rod.

the study region could be effectively removed from the final TLS
cloud. TLS data collection required approximately 30 min per site.
This time included the initial setup of the equipment, the collection
of six total scans each taking approximately 3 min, repositioning
of the TLS unit between stations, and the breakdown and stowage
of the equipment. The position of each scanning station was
documented using a Leica GS18TGNSS antenna. All TLS andGNSS
equipment used in this study was rented from the National Science
Foundation’s Natural Hazards Engineering Research Infrastructure
RAPID facility (NSF NHERI Rapid Facility, 2025).

2.3.2 SfM data collection
The data collection plan was developed as shown in Figure 2A.

This plan shows the locations of TLS scans, image collection passes,
alignment targets, and scale rods. While Figure 2A only shows the
plan for Site 2, the same procedure was executed on both sites.
Figure 2A notably includes the path of two image collection passes.
The first path, shown in light blue, collected images at a range of
3.04 m (10 ft) from the wall. Within this “close pass” photos were
taken of the wall every 0.91 m (3 ft) horizontally and vertically.
The “far pass” shows the path where images were collected at a
range of 9.14 m (30 ft) from the wall. At this range, images were
spaced 2.74 m (9 ft) horizontally and 1.82 m (6 ft) vertically. All
image locations were laid out and flagged prior to data collection
to ensure consistent spacing. To ensure a robust SfM model, images
of the subject must be captured at many overlapping angles. Image
spacing was selected to provide sufficient image overlap for optimal
SfM accuracy (Wang et al., 2022; Obanaw et al., 2020). Images were
collected at vertical angles normal to the surface of the wall and
with ±5, ±15, and ±30-degree offsets from normal to investigate the
impact that oblique views of the subject have on the prevalence of
doming. Additional images were collected of the scale rods at close
range to ensure sufficient data quality for SfM model scaling. SfM
data collection on each site took approximately 5 h. The collected
datawas employed to generate four distinct SfMmodels for each site.

This suggests that SfM data collection intended solely for inspection
purposes can typically be completed in an estimated 1–2 h per site.

It is critical to carefully consider the requirements of both the
site and imaging method prior to collecting data for 3D imaging.
This study included the use of alignment targets on the subject
wall, shown in Figure 2B. These alignment targets are useful to the
user during the data processing phase of SfM as they present hard
points that can be used as tie points and control points within
the SfM model. In this context tie points are visibly identifiable
points within the subject region that can be manually selected from
multiple camera angles. These tie points help inform the SfM model
and improve its overall accuracy. These targets can also be used as
temporaryGCPs by assigning them local coordinates within the SfM
model that were collected through othermeans (e.g., survey or TLS).

Scale rods are included in this study to provide artifacts of
knowndimensionswithin the subject region to scale the SfMmodels
and shown in Figure 2C. A pivotal distinction between TLS and
SfM-generated 3D models lies in the inherent inclusion of scale
when utilizing TLS, whereas SfM lacks automatic scaling capability.
SfM models are scaled during data processing by manually creating
tie points to define objects of known distance. Survey scale rods were
used to scale the SfMmodels. Additional imageswere captured of the
scale rods to ensure sufficient image coverage to enable the creation
of manual tie points for scaling.

2.4 Data processing

This section details the steps taken to process TLS and
SfM data into point clouds. Preliminary TLS data processing
took place in the field during data collection and was later
finalized in Leica’s companion software. SfM data processing
followed a multi-step workflow that included camera calibration,
image alignment, and manual refinement. Post-processing steps
including trimming, registration, and cloud comparisons are also
detailed below.
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2.4.1 TLS data processing
Processing TLS data collected with Leica’s RTC360 scanner

began in the field during data collection. Leica’s Cyclone FIELD
360 software allowed for automatic pre-registration and alignment
when operating the RTC360 through a paired companion
device (Leica Cyclone FIELD 360, 2024). An iPad running FIELD
360 was used to pre-register and align TLS data as it was
collected. These pre-registered scans were then imported into
Lecia’s Cyclone REGISTER 360 software for fine tuning and
alignment checks (Leica Cyclone REGISTER360, 2025). TLS data
processing took less than 1 h per site. TLS data was exported from
REGSITER360 as .las files, an industry standard file format for
exchanging TLS point cloud data. These files were used as baseline
models to assess the accuracy of SfM.

2.4.2 SfM data processing
RealityCapturewas used to process images into 3Dmodels using

SfM in this study (RealityCapture, 2024). SfM data processing began
by importing a selection of images into the software. RealityCapture
then calibrated each image using data about the camera parameters
embedded in each file. This research made use of the Brown
polynomial distortion model included in RealityCapture for camera
registration and calibration (Distortion Model, 2024).Thedistortion
model corrects camera distortion by considering the impacts of
radial and tangential decentering distortions that may be present in
each image (Brown, 1965). Equation 2 shows the image calibration
model that was used to calculate the undistorted image point (xu,yu)
for every distorted image point (xd,yd) with the center of distortion
(xc,yc), 4 degrees of radial distortion (kn), 2 degrees of tangential
distortion (tn), and the distance between the distorted image point
and center of distortion (r, Equation 3) (De Villiers et al., 2008).

xu = xd + (xd − xc)(k1r
2 + k2r

4 +…)+ (t1(r
2 + 2(xd − xc)

2)

+ 2t2(xd − xc)(yd − yc))

yu = yd + (yd − yc)(k1r
2 + k2r

4 +…)+(2t1( xd − xc )(yd − yc)

+ t2(r2 + 2(yd − yc)
2))

(2)

r = √(xd − xc)
2 + (yd − yc)

2 (3)

RealityCapture performed bundle adjustments of input images
using the Brownmodel to correct distortions.The distortions are the
result of lens manufacturing imperfections that shifted the optical
axis of the lens off its geometric center (Wang and Liu, 2022;
Remondino and Fraser, 2006). Table 1 displays a sample of used lens
calibration parameters by RealityCapture during SfM processing.
This table includes information about the calibrated focal length (f),
4 degrees of radial distortion (k1-k4) and 2 degrees of tangential
distortion (t1-t2).

After camera calibration, initial image alignment was executed
with RealityCapture’s image alignment algorithm. This algorithm
oriented all input images in 3D space and generated a sparse point
cloud 3D model. The sparse point cloud was improved through the
addition of manual control points within the model space. Both
manual tie points and GCPs were used to supplement the SfM
alignments. Manual tie points were created by selecting a single
point within the model from multiple input cameras. To improve
the accuracy of SfM, manual tie points on each alignment target and
along each scale rod were used. Figure 3 provides a representative

view of a sample manual tie point in RealityCapture. The location
of this manual tie point can be seen in the collection of images on
the right side of Figure 3. Distance constraints between manual tie
points on scale rods of known offsets were incorporated to scale
each model.

Manual tie points can also be treated as GCPs to further improve
accuracy by assigning them 3D coordinates within the model space.
The assigned 3D coordinates for GCPs must be obtained through
some other means of measurement and are often created using
survey, GPS, or even lidar. While GCPs are often permanent fixtures
of known locations, the GCPs created on the alignment targets in
this study were temporary. Temporary GCPs can still be used to
refine SfM reconstructions if reliably measured, avoiding the need
for protected permanent installations. Certain portions of presented
analysis used 3D coordinates at alignment targets from the baseline
TLS models to further augment the associated SfM models.

Realigning themodels was the final steps of creating SfMmodels
after sufficient information has been added by the user, including
manual tie points, distance constraints, and GCP coordinates, when
applicable. The realignment of the model produces another sparse
point cloud that incorporates all the provided information with
improved geometric and spatial accuracy. Next, RealityCapture’s
model generation tool was used to generate the final 3D model
as a densified point cloud. The colorized dense point clouds
were exported as.las files for further analysis. Start to finish data
processing for each SfM model took approximately 6–18 h. The
creation of manual tie points in each model is the most actively
time-consuming step of the process, meaning that it requires
the user’s full attention for the duration of this processing step.
This took approximately 1–2 h per model. SfM reconstructions
are computationally demanding and required 4–16 h of passive
processing time per model in this study.

2.4.3 TLS vs. SfM CloudCompare analysis
CloudCompare, an online and open access software solution

for point cloud operations, was used to analyze the 3D models
created (CloudCompare, 2023). In all global accuracy comparisons,
TLS point clouds were used as baseline ground truths to compare
different SfM point clouds against. This process started by
roughly trimming all point clouds to remove unnecessary data
outside of the study area at each of the subject walls. Models
were aligned by only their scale rods to help improve model
registration quality by lowering the potential of inconsistencies
in model trimming that could create areas of localized minimum
error. Alignment was achieved with CloudCompare’s “Fine-
Registration” tool which uses an iterative closest point algorithm
that works by selecting representative points of each input point
cloud and iteratively matching common points between clouds
(Li et al., 2021; CloudCompare, 2015).

The differences between aligned point clouds were measured
in this study with cloud-to-cloud (C2C) comparisons. C2C
comparisons work in CloudCompare by iterating through each
point in a “reference cloud” to determine the nearest neighboring
point in a “compared cloud” and assign the absolute distance
between these two points in a scalar field of points from the
“reference cloud.” TLS point clouds were treated as baseline
measurements and were used exclusively as the “reference clouds” in
this study’s analysis of the SfM “compared clouds.” CloudCompare
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TABLE 1 Brown 4 with tangential 2 lens calibration parameters.a

Mean &
standard
deviation

Calibrated focal
length (mm)

Radial distortion
coefficients (mm∗10−1)

Tangential distortion
coefficients (mm∗10−4)

f k1 k2 k3 k4 t1 t2

x̄ 25.0 2.09 −10.6 27.3 −25.8 −9.12 5.07

σ 0.05 0.61 4.40 13.4 14.9 13.4 9.27

af, calibrated focal length; kn, radial distortion coefficient; tn, tangential distortion coefficient.

FIGURE 3
Representative view of manual tie points in SfM data processing with RealityCapture.

allows the resultant scalar fields of C2C comparisons to be viewed
as colored displacement maps, enabling the evaluation of trends in
error. It is important to realize that due to the inner workings of the
C2C algorithm the output contains only absolute distances agnostic
to the direction of displacement.

Surface roughness was measured in this study to provide
additional insights into the capabilities of SfM and TLS to accurately
capture the geometry of retaining walls. This analysis differed from
the above description of global C2C comparisons as it provided
information on the fidelity of local surfaces rather than the global
accuracy of each retaining wall model. The alignment targets on
each wall were chosen for this analysis and isolated in each point
cloud. These targets were chosen for this step of analysis given the
flat and smooth nature of their surface. A flat 0.25 m × 0.25 m
(0.82 ft × 0.82 ft) plane was generated in CloudCompare to serve
as the basis of this surface roughness analysis. A planar point cloud
was then generated by subsampling this plane at a density of four
million points/m2. This high-density plane was then aligned to the
isolated alignment targets with CloudCompare’s fine-registration
tool. The planar point cloud provided a ground truth approximation
of the flat alignment targets. C2C comparisons were then conducted
between the alignment target sections of each point cloud in this

study and their corresponding planes.The results of this comparison
were used to determine fidelity of local surfaces generated by each
imaging method.

Assessments of point distribution were conducted on all point
clouds. This analysis was conducted using the “Compute Geometric
Attributes” toolbox in CloudCompare. Scalar fields of precise point
density were calculated by measuring the number of neighboring
points within a spherical radius of each point (CloudCompare,
2022). A radius of 5.0 cm (1.96 in) was used in these calculations in
line with a similar analysis conducted by Chen et al. (2019) in their
study of SfM imaging for bridge inspections.

2.4.4 Lighting analysis
An analysis of lighting conditions was conducted in response

to the prevalence of shadows in images that were noticed during
SfM data processing. Lighting conditions in all images used for
SfM reconstruction were analyzed to assess the potential impact
of the dynamic lighting present during data collection on model
quality. Each image was first converted to grayscale using tools the
Python Imaging Library Pillow (Lundh and Clark, 2025). Each pixel
was assigned a value from 0 to 255 representing its original RGB
brightness. The mean of grayscale pixel values was then calculated
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to quantify the overall brightness of each image. These image-
level means were then averaged across all images used for each
SfM reconstruction to yield model-wide metrics of brightness. The
percentage of pixels below a grayscale intensity threshold of 134 was
computed for each image to estimate the prevalence of shadows.This
threshold for shadow detection was determined by averaging the
Otsu thresholds of each SfM image set using the scikit-image Python
library (Van Der Walt et al., 2014; Aghamaleki, 2022).

3 Results

The results of quantitative analysis compare the accuracy of
manually flown UAS based SfM models to TLS baseline models are
presented in this section. The impact of doming on the results are
evaluated and their cause and potential measures for mitigation are
discussed. The feasibility of manually flown UAS data collection for
SfM retaining wall inspection are further explored in a discussion
of site limitations, equipment pricing and availability, training
requirements, and on-site time requirements.

3.1 3D visualizations

Fourteen distinct 3D models of two retaining walls were
generated to assess the accuracy of the imaging methods employed.
A naming convention containing information about each model
is established in Table 2 and is used to label models throughout
the results section. This naming convention includes information
on the site, imaging type, and types of images included in SfM
reconstructions. For example, S1-TLS refers to model for Site 1
captured using TLS and S2-SFM-GCP-0-5 refers to the model for
Site 2, captured with SfM, using GCP coordinates, created using
images captured 0° and ± 5° to the surface. All models exist in the
form of point clouds, discrete collections of points in 3D space that
together form the geometry of 3D models.

Table 3 displays information on storage size, point count, and
point density for all point clouds and input images for the SfM-
created models. The structure on Site 2 was taller than the structure
on Site 1which required the addition of a third altitude pass of image,
resulting in an overall greater count in images. The slight variation
in image count between sets on Site 2 is due to the exclusion of
certain images due to excess blurring caused by suboptimal lighting
conditions. As a point of comparison, the trimmed TLS clouds used
in this study contained 15,677,189 and 24,000,336 points for Site 1
and Site 2, respectively. Site 1 TLS was stored in a 0.40 gigabyte (GB)
.las file and Site 2 TLS data was stored in a 0.61 GB .las.

Figure 4 shows a view of two 3Dmodels of the same region from
Site 1. Figures 4A,Bwas generated usingTLSwhile Figures 4C,Dwas
generated using SfM. Figure 4B showcases the uniform, grid-like
pattern of point distribution characteristic of TLS systems. The TLS
point cloud in Figure 4A is 398 MB and contains 416,647 points/m2

of wall and the SfM point cloud in Figure 4D is 835 MB and contains
1,137,305 points/m2 of wall.

Figure 5 shows a view of the TLS baseline and one SfM model
of Site 2. The TLS point cloud in Figures 5A, B is 609 MB and
contains 364,376 points/m2 of wall and the SfM point cloud in
Figures 5C, D is 916 MB and contains 712,576 points/m2 of wall.

The same difference in point distributions can be observed when
comparing the close-up views of the TLS and SfM point clouds.
Detailed information regarding the data density of all point clouds
in these models can be found in Table 3. Comparisons between the
fidelity of SfM surfaces on Site 1 in Figure 4C and SfM surfaces
on Site 2 in Figure 5C suggest that SfM was more effective on the
drystone masonry surface of Site 1. The distinctive surface at Site
1 featured numerous identifiable characteristics that enhanced the
performance of SfM feature detection algorithms. This trend is also
evident in Table 3 which shows that the average point density of SfM
models on Site 1 was 1.67 times larger than that of the average point
density of SfM derived point clouds on Site 2.

Sharp shadows can be observed cutting across the subject
surface in Figure 5A. While these shadows were present during
the data collection of both the TLS and SfM data collection, they
show most prevalently on the TLS model. This is likely because all
TLS data was captured within a 20-min window, meaning that all
three scan stations saw these sharp shadows in relatively consistent
locations. Two scans were collected at each station, each taking
approximately 3 min, before the scanner was moved and relevelled,
taking approximately 2 min. This allowed enough time for the
edges of the shadows to shift between individual scans without
much change in the overall shadows. The green discoloration visible
around some of the shadows in Figure 5A can be attributed to these
slight shifts in shadows overlapping between subsequent TLS scan
locations. While there are remnants of the shadows in Figure 5D
they are far less prominent than in the TLS scan because SfM data
collection was collected over the course of hours. This means that
SfM images captured a variety of lighting conditions on the wall
which were somewhat averaged out in the creation of SfM 3D
model. This dynamic lighting is known to present challenges for
accurate SfM reconstruction that will be addressed in the coming
discussion of results from the lighting analysis. The discrepancy in
data collection time is a key difference between the two imaging
methods and will be discussed further in later sections of this paper.

3.2 Surface roughness

Figure 6 shows the results of the surface roughness analysis
conducted on all point models in this study. The surface roughness
analysis produced C2C comparisons that represent the differences
between an artificially generated plane and the hypothetically planar
surface of the center alignment target in each point cloud. TLS
surfaces are observed to have a more uniform distribution of error
compared to SfM generated surfaces in Figure 6. The RMSE, mean,
and standard deviation of these results are shared in Table 4. TLS
surfaces are observed to be slightly rougher than SfM surfaces with
an average error between the two TLS surfaces of 0.41 mm and an
average error between all SfM surfaces of 0.37 mm.

3.3 Point distribution

The results of the point distribution analysis are shown
in Figures 7A–D. The color ramp displays a discrete count of
neighboring points within a 5 cm (1.96 in) spherical radius. TLS
models are shown to have nonuniform distributions of points
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TABLE 2 3D model naming convention.

Site SfM or TLS? TLS GCPs? Vertical angles in image set (o) Model name

Site 1

TLS N/A N/A S1-TLS

SfM No 0 S1-SFM-0

SfM No 0±5 S1-SFM-0-5

SfM No 0±15 S1-SFM-0-15

SfM No 0±30 S1-SFM-0-30

Site 2

TLS N/A N/A S2-TLS

SfM No 0 S2-SFM-0

SfM No 0±5 S2-SFM-0-5

SfM No 0±15 S2-SFM-0-15

SfM No 0±30 S2-SFM-0-30

SfM Yes 0 S2-SFM-GCP-0

SfM Yes 0±5 S2-SFM-GCP-0-5

SfM Yes 0±15 S2-SFM-GCP-0-15

SfM Yes 0±30 S2-SFM-GCP-0-30

TABLE 3 Data and point cloud density.

Point cloud Input image set Input images Image density Point cloud size Point count Point density

(GB) (count) (images/m2) (GB) (points) (points/m2)

S1-TLS — — — 0.40 15,677,189 416,647

S1-SFM-0 6.38 287 7.63 0.84 42,793,383 1,137,305

S1-SFM-0-5 13.1 574 15.3 0.88 45,239,170 1,202,306

S1-SFM-0-15 13.1 572 15.2 0.89 45,557,770 1,210,773

S1-SFM-0-30 13.0 570 15.1 0.88 45,225,276 1,201,937

S2-TLS — — — 0.61 24,000,336 364,376

S2-SFM-0 9.09 401 6.09 0.92 46,935,273 712,576

S2-SFM-GCP-0 9.09 401 6.09 0.92 47,106,828 715,181

S2-SFM-0-5 16.40 717 10.9 0.81 41,570,480 631,128

S2-SFM-GCP-0-5 16.40 717 10.9 0.87 44,465,926 675,087

S2-SFM-0-15 14.10 656 9.96 0.95 48,706,397 739,466

S2-SFM-GCP-0-15 14.10 656 9.96 0.96 49,114,773 745,666

S2-SFM-0-30 15.10 706 10.7 0.94 47,994,699 728,661

S2-SFM-GCP-0-30 15.10 706 10.7 0.94 48,375,111 734,436
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FIGURE 4
Sample views of 3D models on Site 1: (A) TLS, (B) TLS close-up, (C) SfM close-up, (D) SfM.

FIGURE 5
Sample views of 3D models on Site 2: (A) TLS, (B) TLS close-up, (C) SfM close-up, (D) SfM.

along the span of each wall with higher density at the ends and
center. This was expected given the positioning of the three TLS
scan stations, shown previously in Figure 2A. The TLS models
have higher point density on segments of the walls’ surfaces more
orthogonal to the TLS scan locations due to the radial propagation
of TLSmeasurements.The outline of a tree can be seen in Figure 7C.
This portion of the wall was occluded by vegetation in 1/3 scan
locations, resulting in decreased density on that portion of the wall.
SfMmodels are shown to have relatively uniform point distributions
except for areas surrounding the scale bars. Non-uniform density
around the scale bars was a result of the additional images captured
of the scale bars. These additional images were included in SfM
processing to ensure sufficient coverage for scaling the models.

3.4 Site 1 SfM accuracy comparisons

Figure 8 shows the accuracy of four SfM models of Site 1 as
scalar fields displaying the error across the entire structures and a
combined histogram of measured error. The C2C error in S1-SFM-0
which was created exclusively with images captured perpendicular
to the surface plane of the wall is shown in Figure 8A. It is evident
that S1-SFM-0 had a higher magnitude of error than the rest of the
models at Site 1 which was expected and due to the fact S1-SFM-0-5,
S1-SFM-0-15, and S1-SFM-0-30 (Figures 8B–D) all had more input
images with the addition of oblique angles. It is important to note
that there are no visibly discernible patterns of error between these
four models that are indicative of doming.
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FIGURE 6
Surface roughness on central alignment target.

TABLE 4 Surface roughness.

Point cloud RMSE (mm) Mean (mm) Standard dev (mm)

S1-TLS 0.58 0.47 0.35

S1-SFM-0 0.52 0.41 0.33

S1-SFM-0-5 0.45 0.36 0.26

S1-SFM-0-15 0.44 0.37 0.24

S1-SFM-0-30 0.43 0.35 0.26

S2-L 0.72 0.54 0.47

S2-SFM-0 0.46 0.36 0.29

S2-SFM-0-5 0.39 0.33 0.21

S2-SFM-0-15 0.50 0.38 0.32

S2-SFM-0-30 0.51 0.40 0.32

S2-SFM-GCP-0 0.46 0.36 0.29

S2-SFM-GCP-0-5 0.40 0.33 0.22

S2-SFM-GCP-0-15 0.41 0.34 0.23

S2-SFM-GCP-0-30 0.48 0.38 0.31

Figure 8E shows the accuracy of four SfMmodels in a histogram
format. The x-axis in this histogram is the magnitude of measured
error and the y-axis is the frequency that each magnitude of error
occurred in each model. The further left the peak of a model’s error
distribution curve, the more accurate that model can be considered.
The most accurate SfM model for Site 1 is shown to be S1-SFM-0-
5 with a RMSE of 4.8 mm (0.19 in).

3.5 Site 2 SfM accuracy comparisons

Figure 9 presents the accuracy of the four SfM models from Site
2. C2C results in Figures 9A–D show much higher levels of error
at Site 2 when compared to the results of Site 1. The consistent
radial patterns of error in these models are consistent with that
of doming distortion as it appears in retaining walls. This was
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FIGURE 7
TLS vs. SfM point distribution by site: (A) S1-TLS, (B) S1-SFM-0, (C) S2-TLS, (D) S2-SFM-0.

somewhat anticipated to be present in Site 2 as it is a large relatively
uniform surface, making it more susceptible to doming distortion.
It is evident that doming is impacting all four of the SfM models
assessed on Site 2.

Figure 9E, a histogram representation of the scalar fields for site
2, further exemplifies the impacts of doming in these SfM models.
The magnitude of error shown on Site 2 in Figure 9E is consistently
greater than what was observed on Site 1. The distribution of error
is also consistent with a form of model wide distortion such as
doming rather than localized regions of high error. S2-SFM-0-5 is
shown to be slightly more accurate than the rest with an RMSE of
6.1 mm (0.24 in).

Site 2 had special characteristics that posed potential issues for
accurate SfM capture. Firstly, the structure was not a dry-stone
masonry retaining wall. Its concrete surface was uniform with few
distinguishing features. This type of surface is more challenging
to measure accurately with SfM which relies on feature detection
for 3D model creation. Secondly, Site 2 had challenging lighting
conditions. The collection of all SfM data for this study took place
over the course of multiple hours during a day with dynamic
cloud cover. This situation created sharp shifting shadows that
moved across the wall throughout data collection. A moderate
correlation between the presence of these shadows and an increase
in SfM error was observed. Site 2 also had a large warehouse
structure directly adjacent to it that cast an overall darkness over
the structure as daylight hours waned later in the experiment. This
created discrepancies in overall image brightness between different
images. There were a number of images captured in low light that
were removed from the data set due to motion blur created by
abnormally long shutter speeds that were meant to account for
the lower lighting. The combined effects of surface uniformity,
dynamic shadows, and low lighting contributed to the 1) prevalence
of doming in Site 2 and 2) the significant difference in error as
compared to Site 1.

3.6 Site 2 SfM GCP improvements

A known method of mitigating doming distortions in SfM is
through the inclusion of GCPs with 3D coordinates determined
outside the SfM processing (Eltner and Schneider, 2018). While this
practice does not remove the distortion all together, it can decrease
the magnitude of the error produced by doming. This practice was
implemented in the analysis and the results are shown in Figure 10.
In an effort to improve the quality of SfM results on Site 2,
GCP coordinates were pulled from the baseline TLS cloud at
each alignment target and assigned to the manual tie points
created at those targets within each SfM model. GCP coordinates
are commonly collected with total station measurements though
TLS was used for its availability. The models were realigned
and regenerated, now with the assistance of TLS captured GCP
coordinates on the five alignment targets spaced along the structure.

Figures 10A–D shows a dramatic improvement in accuracy with
the addition of GCP coordinates to the Site 2 models. All four
models exhibit approximately half the amount of error as they were
prior to GCP addition yet still show evidence of doming in their
distributions of error. Figure 10E shows that the overall accuracy of
these four models has been improved.

3.7 Comparison of results

The RMSE and mean of the error in C2C comparisons have
been tabulated in Table 5 alongside the lighting metrics of all SfM
models. Alignment target error is also shown in this table, which
represents the measured difference between the location of the
center of alignment targets in the ground truth TLS point cloud and
each corresponding SfM model. Though the same trends in errors
are observed between the full wall comparisons and alignment
target, the overall magnitude of error is higher in the point-point
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FIGURE 8
Site 1 Full-Wall C2C accuracy of SfM compared to TLS ground-truth: (A) S1-SFM-0, (B) S1-SFM-0-5, (C) S1-SFM-0-15, (D) S1-SFM-0-30, (E) summative
histogram.

comparisons of the alignment targets. Higher error can be attributed
to insufficient data density leading to the imperfect selection of
center points on alignment targets. The effects of doming on Site 2
can be observed in the substantial increase in C2C and alignment
target error in Table 5 when compared to Site 1. The mitigation
of C2C and alignment target error on Site 2 by inclusion of GCP
coordinates is also evident.

Table 5 also shares the results of the lighting analysis conducted
on images used in SfM reconstructions. On Site 1, therewasminimal
correlation between C2C error and image brightness (r = −0.24) or
shadow coverage (r = 0.31). A trendwas observed in the results from
Site 2 where dimmer images with heavier shadows were associated
with higher C2C error. This was shown by a moderate correlation
between C2C errors on Site 2 and image brightness (r = −0.39)
and shadow coverage (r = 0.37). The differences in correlation
strengths between the two sites can likely be attributed to the
differences in their lighting conditions. Site 1 was more dimly lit
than Site 2 but had relatively even lighting across the wall. Site 2
had sharp shadows that were both more likely to impact feature
matching during SfM reconstructions and be captured in the shadow
coverage analysis.

4 Discussion

The discussion section below focuses on the contributions,
repeatability, and limitations of this study and compares them to the
findings of similar workwithin the field. Cost and time requirements
are included to support holistic comparisons between SfM and TLS
beyond the quantitative measures of accuracy generated by this
research. Factors contributing to the repeatability and limitations of
the study discussed below offer researchers considerations for their
future work.

4.1 Contributions

This study evaluates the feasibility of SfM models constructed
by images sets captured with manual UAS flights as an alternative
to TLS for retaining wall inspection. A key benefit of SfM is the
lower cost and availability compared to TLS. The initial cost to
purchase TLS equipment, along with the required maintenance and
repair, is high compared to other imaging technologies.TheTLS unit
used in this study cost $75,000 whereas the UAS unit used in this
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FIGURE 9
Site 2 Full-Wall C2C accuracy of SfM compared to TLS ground-truth: (A) S2-SFM-0, (B) S2-SFM-0-5, (C) S2-SFM-0-15, (D) S2-SFM-0-30, (E) summative
histogram.

study cost only $600. TLS equipment is not only more expensive
but often more challenging to access, being sold only by specialized
dealers.UAS equipment similar to that used in this study is attainable
through several retailers, and replacement parts are affordable.
Capturing data with a UAS enables inspectors to assess areas of
structures that might be inaccessible to TLS scanners. While aerial
lidar platforms are an option, they are typically more expensive than
their terrestrial counterparts and have additional considerations in
terms of error.

At nearly all stages of assessment, SfM requires more time and
manual input to produce 3D models when compared to TLS. TLS
data collection for each site took only 30 min during this study. It
is challenging to extrapolate the time spent collecting SfM data for
the purposes of this study to the time realistically required to collect
SfM data for a routine retaining wall inspection, due to the large
variability in the size and length of structures in the field. However,
for SfM of similar sized structures and target data density, the time
spent placing targets and scale rods, determining flight paths, and
capturing images, would take approximately 2 h. Legally operating a
UAS for retaining wall inspection, in the United States, also requires
an FAAPart 107 license whereas TLS equipment requires no licenses
and little training to operate effectively. SfM required significantly
more data processing time than TLS, with some models taking over

6 hours to generate, compared to approximately 30 min per model
for TLS. The commitment of time is an important factor to weigh
when considering manually flown UAS based SfM for retaining wall
assessment.

4.2 Repeatability

This study demonstrates that repeated implementations of
identical SfM data collection procedures can yield significantly
different levels of accuracy depending on site conditions. Drystone
masonry retaining walls, such as the structure assessed on Site
1, emerge as ideal candidates for SfM inspection. Their unique
surfaces aid SfM in accurate model creation while largely subverting
accuracy losses due to doming without use of GCP coordinates.
Retaining walls faced with concrete masonry units like the structure
on Site 2 are likely to be more challenging to image purely with
SfM. Though the inclusion of GCPs on Site 2 did significantly
improve the accuracy of the SfM model, it did require the use of
independentmeasurements pulled from the TLS baseline cloud.The
effective use GCPs for doming mitigation requires either redundant
measurement of the targets or the installation of permanent GCPs
that are challenging to protect and maintain accurate locations for.
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FIGURE 10
Site 2 Full-Wall C2C accuracy of SfM compared to TLS ground-truth: (A) S2-SFM-GCP-0, (B) S2-SFM-GCP-0-5, (C) S2-SFM-GCP-0-15, (D)
S2-SFM-GCP-0-30, (E) summative histogram.

Factors such as structure geometry, lighting, vegetation, obstacles,
and UAS flight restrictions should all be considered when deciding
whether to implement UAS based SfM as a cost-effective means of
3D imaging inspection.

The UAS used to collect images for SfM reconstructions was
flown manually during this study of retaining wall inspections.
Automated UAS flights offer several advantages over manual
flights including repeatability, consistent image overlap, faster data
collection times, and minimized operator input. In applications
such as topographic surveying, image acquisition via autonomous
UAS flights is generally recommended when operational conditions
permit safe execution. However, retaining walls are often found
in wooded areas with obstacles and no-fly zones that make
autonomous UAS flights hazardous or impossible. While manual
drone flights are sometimes necessary, they take longer in the
field than automated missions and introduce more variability
in image networks that can have negative impacts on the
accuracy of final SfM reconstructions. This study demonstrated
that accurate SfM models can still be attained with manual flights
when operators are careful to maintain sufficient image coverage
and overlap.

4.3 Limitations

A core value of 3D imaging for retaining wall inspections lies in
the ability to quantify the changes in a site using inspections captured
months or years apart. However, the results of this study are based
upon data that was collected over a 2-day period. Information from
each site only represents a snapshot of the few hours in which it was
collected. This study established TLS measurements as ground truth
to effectively evaluate the accuracy of SfM data. While this approach
provided a solid foundation for analysis, future work can build on
it to better reflect the method’s potential for monitoring changes
over time. Future longitudinal studies that repeatedly deploy similar
imaging methods at regular intervals have the potential to provide
significant value to the community. This would better emulate the
intended use case of routine structural inspections and shed light on
factors that might be missed in short-term studies such as this one.

Consistent data quality is a concern for SfM reconstructions
that are built using hundreds to thousands of images that are
all individually subject to complications. The DJI Mini Pro 3
used to capture SfM data performed internal image calibrations.
Inaccuracies in these calibration parameters have the potential to
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TABLE 5 SfM error summary.

SfM model C2C error Alignment target
error

Lighting metrics

RMSE Mean RMSE Mean Mean brightness Mean shadow coverage

(mm) (mm) (mm) (mm) (intensity) (%)

S1-SFM-0 7.2 5.2 20.5 19.7 112.2 68.5

S1-SFM-0-5 4.8 3.1 12.1 12.0 112.4 68.0

S1-SFM-0-15 5.6 3.8 14.3 13.5 117.7 63.2

S1-SFM-0-30 5.5 3.5 13.9 13.2 115.0 65.2

S2-SFM-0 7.7 6.3 19.8 19.4 121.3 61.2

S2-SFM-0-5 4.1 5.0 25.0 24.4 123.3 59.6

S2-SFM-0-15 8.1 6.7 21.2 24.5 113.5 68.2

S2-SFM-0-30 8.1 6.5 22.8 20.8 118.5 62.8

S2-SFM-GCP-0 4.1 3.3 15.5 13.0 121.3 61.2

S2-SFM-GCP-0-5 3.8 3.0 11.8 9.62 123.3 59.6

S2-SFM-GCP-0-15 4.7 3.7 16.1 13.5 113.5 68.2

S2-SFM-GCP-0-30 3.7 2.9 13.0 11.0 118.5 62.8

propagate throughout the SfM reconstructions and induce error.
Challenging lighting conditions on both sites created excessive
motion blur in some images captured for SfM processing. These
images were removed from the set ultimately used for SfM
reconstruction. This presents the potential limitation of using
images captured with manual UAS flights for SfM compared
to those captured with autonomous UAS flights. The use of
video footage captured by UAS rather than individual images
has been shown to produce SfM reconstructions with centimeter-
level accuracy (Byrne et al., 2017). This practice should be
considered for future studies of SfM data capture with manual UAS
flights as it has the potential to mitigate the risk of occasionally
capturing low quality images.

The lighting analysis in this study faced several limitations, as
the two sites had differing and uncontrolled lighting conditions.
Site 1’s dim, even lighting led to weak correlations between lighting
metrics and C2C error, likely due to limited shadow contrast. Site
2, with strong, shifting shadows, showed moderate correlations
between lighting metrics and C2C error. This moderate correlation
suggests that the presence of such shadows may interfere with SfM
performance. However, the inconsistent results highlight the limited
robustness of the analysis. Future work that measures the impact
of lighting conditions on SfM reconstructions should consider
a systematic investigation with controlled lighting that generates
sharp and dynamic shadows.

Greater error was observed in point-to-point comparisons on
alignment targets compared to full-field evaluations. Each alignment
target featured a crosshair at its center, serving as a fine target.

This introduced potential bias in manual tie point selection, as
users had to visually identify and select the exact center during
SfM data processing. Increasing the number of manual tie points
can help to mitigate this inherent error caused by imperfect point
assignments. The ability to assess the point-point accuracy of the
center of alignment targets was limited by the density of each point
cloud. It is unlikely that the center-most point of each point cloud’s
alignment target perfectly represented the center of this crosshair.
While this does not present a limitation for full field analyses, it
does pose an issue for the comparison of discrete points. Future
studies seeking to conduct this type of analysis might consider the
use of a total station to precisely measure the position of similar
check points.

It is important to consider that findings generated from this
research are built upon the measurements of only two retaining
walls.These sites were selected to be representative of retaining walls
commonly found in United States. However, they do not provide an
exhaustive evaluation of the many factors impacting the efficacy of
SfM based inspections. The two walls were of similar size, limiting
the ability to generalize findings to retaining walls of all sizes. All
data from both sites was collected over a short period of time
and in the same region. This means that factors such as weather
conditions, seasonal changes, and vegetation differences were not
captured in this study. Findings from this study are most applicable
to retaining walls of similar sizes, constructions, and site constraints.
Future studies that include a wider variety of wall types and seasonal
datasets could produce broader conclusions on the practicality of
SfM based retaining wall inspections.
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4.4 Comparisons of findings

Many studies have been conducted in recent years seeking to
refine the usage of SfM for high accuracy 3D imaging. One study
from Nesbit and Hugenholtz (2019) found the inclusion of GCPs
to be beneficial for reliable and accurate UAS based SfM models.
GCP inclusion was found to be very beneficial particularly for the
mitigation of doming errors in the current study as well. Nesbit
and Hugenholtz (2019) found benefits for SfM models constructed
of nadir and oblique angles. While recommendations from Nesbit
and Hugenholtz (2019) on GCP and oblique angle inclusion agree,
a direct comparison cannot be drawn to the work detailed in
this manuscript because models with nadir and oblique images
contained more total images than their nadir only counterparts. The
accuracy of generated SfM models was well within the centimeter
level range found by Chen et al. (2019). Overall trends in data
distribution and surface variation for both TLS and SfM agree with
findings from Chen et al. (2019) and Chen et al. (2023). However,
the work shared in this manuscript showcased SfM’s capacity for
selectively densified data capture as shown by the increase in point
densities surrounding scale bars in Figure 7. This functionality
of selective data density is a feature often included in advanced
TLS units (Leica, 2025). Findings from this study indicate that
inspectors could potentially target certain areas of a site for increased
fidelity while still leveraging the low cost and accessibility of SfM.

A key distinction between the current work and the related
study by Chen et al. (2019) and Chen et al. (2023) on SfM bridge
inspections lies in the time required for collecting TLS and SfM
data. While Chen et al. (2019) and Chen et al. (2023) reported
that SfM data collection was faster than TLS, the opposite was
observed in the present study, where TLS was nearly four times
faster. This discrepancy is primarily attributed to differences in
data acquisition methods: image capture in the present study was
conducted using a manually flown UAS, whereas Chen et al. (2019)
and Chen et al. (2023) utilized automated flight plans. Chen et al.
(2019) and Chen et al. (2023) successfully executed automated flight
missions in the open air surrounding the bridge in study. Conversely,
manual UAS flights were conducted in this study of retaining wall
inspections which often take place in environments unsafe for
autonomousUAS flights.The contrast in time requirements between
this study and those from Chen et al. (2019) and Chen et al. (2023)
speaks to the fact that there is no singular optimal solution for
3D imaging. Studies comparing the implementation of different
solutions for different applications provide valuable information to
future inspectors aiming to balance the benefits and costs of their
imaging options.

5 Conclusion

This study highlights the potential benefits of using manually
flownUAS based SfM for the inspection of retainingwalls. Retaining
walls are inherently challenging to routinely inspect with 3D
imaging given their frequent proximity to dense vegetation and
roadways. The accuracy of an SfM inspection protocol was assessed
through the study of two different types of retaining walls while
considering these restrictions. SfM measurements of the retaining
walls were compared against TLS baselinemeasurements to produce

full-structure displacement fields that presented the magnitude and
distribution of SfM error. These analyses uncovered significant
reductions in accuracy in SfM models of retaining walls with
uniform surfaces due to doming. Negative effects from doming were
not observed in the drystone masonry retaining wall when SfM was
used for imaging and presented usably accurate models. The quality
ofmodels (impacted by doming)was improved through the addition
of GCP coordinate points pulled from the baseline TLS models. The
key points of this work can be summarized as follows:

• UAS based SfM offers a potentially effective method of
conducting routine inspections of select retaining walls.
This technology offers a more accurate, quantitative, and
reproducible means of inspection when compared to current,
largely qualitative inspections.

• For structures similar to those assessed in this study, SfM is a
cheaper and more accessible alternative to TLS for 3D imaging-
based inspections with the trade-off of increased manual data
collection and processing time and increased data storage
requirements.

• Doming is prevalent in SfM applications to retaining walls with
flat uniform surfaces. The accuracy of these models impacted
by doming can be improved with the addition of GCPs.

• Doming was not observed in SfM models of a drystone
masonry retaining wall due to its distinctive surface. This
suggests that SfM can be accurately used to measure drystone
masonry retaining walls without the need for supplemental
GCP measurements.

• SfM offers a more cost-effective and accessible means of
creating 3D models of retaining walls as compared to TLS
while retaining accuracies sufficient to inform data driven
decision making.
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