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Enhancing sustainable urban
design using machine learning:
comparative analysis of seven
metaheuristic algorithms in
energy-efficient digital
architecture

Mazin Arabasy* and Rehab Salaheldin Ghoneim

Department of Interior Design, Faculty of Architecture and Design, Al-Ahliyya Amman University,
Amman, Jordan

Metaheuristics optimization algorithms used in this research include PSO, ACO,
GA, and SA and represent effective approaches toward reaching an optimal or
near-optimal solution for decision variables with an intention to improve energy
efficiency, increasing indoor comfort whilst reducing the carbon footprint of
building operations. These algorithms will be applied across different sizes
of a synthesized data pool prepared with important features like window-to-
wall ratio, efficiency in HVAC systems, renewable systems integration, among
others. PSO demonstrated the best scenario in both cases with an optimum
convergence rate of 24.1%; ACO produced almost the same best result as
mentioned with high rates of reductions in carbon footprints. These had their
best energy-savings while convergence in GA and SA was extremely slow with
energy efficiencies that turned out to be pretty low. This could enable real
proposals to bemade to architects, urban planners, and policy thinkers, allowing
them to turn such ideal cases into viable realities within sustainable development
initiatives.

KEYWORDS

sustainable building design, metaheuristic algorithms, multi-objective optimization,
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1 Introduction

Integrating machine learning (ML) into digital architecture presents a transformative
opportunity to enhance sustainable design, energy conservation, housing, and urban
planning. With the increasing tempo of urbanization, the issues of realizing sustainability
and minimizing energy consumption during building construction and city planning are
more significant today. Machine learning brings novel data-driven solutions to overcome
these issues through optimizing the usage of resources, enhancing energy efficiency in
sustainable constructions, and rationalization in housing and planning to develop more
intelligent and sustainable city living environments (Abu-shaikha et al., 2024; Abusaleh S.,
2024; Abid et al., 2024; Hussein et al., 2024; Shihadeh et al., 2024; Umoh, 2024; Matarneh
and Matarneh, 2018).

Machine learning (ML) has also been widely used in energy efficiency research and
architecture. For example, Nagappan and Daud (2021) draw attention to the application of
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ML in land use change (LUC)modeling, which supports sustainable
city planning through the prediction of future energy demand. In
the same context, Wagner et al. (2022) also show how explainable
MLmodels can be used to optimize the form of cities for sustainable
mobility and lower energy use and carbon emissions. Warth et al.
(2020) also support the integration of ML with satellite imagery
and socio-economic indicators for urban-scale planning. Ghoneim
(2025) highlights the potential of ML in architectural applications,
particularly in optimizing adaptive facade designs to improve
thermal performance and reduce energy loads in urban contexts.
These studies point to the versatility of ML in resolving energy
efficiency and sustainability issues at various scales.

Costa-Carrapiço et al. (2020) present how multi-objective
optimization can be combinedwithML as a way of balancing energy
efficiency and occupant comfort. Other research (Heidari et al.,
2018; Yaman, 2021) highlights the need to consider thermal
insulation, HVAC efficiency, and renewable energy resources in
building design. Kanthila et al. (2021) emphasize the role of building
occupancy behavior modeling in enhancing simulation accuracy
for such strategies. Park and Rhee (2018) contribute insights
on IoT-based thermal comfort services integrated with smart
architecture. Alnusairat and Abu Qadourah (2025) further explored
public acceptance of integrating solar photovoltaic technologies in
residential architecture, reflecting on the social dimension of green
design strategies. This research expands on previous research by
comparing seven metaheuristic optimization algorithms—namely,
GA, PSO, ACO, SA, FA, WOA, and NSGA-II—within an integrated
multi-objective approach to solving energy efficiency, hygrothermal
comfort, and sustainability in urban building design.

In energy efficiency terms, ML has an important function in
the optimization of building performance by analyzing several
influencing factors related to energy consumption. For example,
Ragusa et al. (2022) explain the process of creating energy-efficient
neural networks that can function under the limitations of edge
devices, which is more applicable in smart building technologies.
The energy-limited devices apply ML models for the real-time
monitoring and optimization of energy utilization in support of
overall sustainability in city architecture. Yaman’s (2021) work on
various façade types also identifies the function of novel building
systems in energy optimization as ML can play an important part in
designing façades for adaptive responses to environmental factors as
well as enhancing comfort indoors.Mota et al. (2018) also developed
sensor technologies to enhance building energy management, while
Liu (2024) modeled energy performance in medium-sized offices
using simulation tools like Energy Plus. Mutani and Todeschi
(2020) extended this view by modeling energy consumption at
the neighborhood scale, allowing urban planners to assess block-
level sustainability potential. Pignatta et al. (2021) also illustrated
the impact of solar energy simulation on various urban block
configurations, highlighting how solar-oriented design can improve
energy efficiency in compact cities.

The interface of ML and city planning also reaches social
aspects, as Meshkani (2024) delves into how ML can be used to
fight homelessness through evidence-based city planning solutions.
Through the examination of demographic and socio-economic
variables, ML guides the planning of transitional living and
social infrastructure in such a way as to make city environments
not only functionally efficient but also just. This aligns with

wider objectives in sustainable city development in terms of
balancing environmental, economic, and social factors. Raanan et al.
(2022) further propose ML-based evaluation methods for assessing
sustainability in neighborhood planning. Leer et al. (2022) discuss
progress tracking in sustainable urban development through energy
performance at the community scale. Amro and Ammar (2018) add
a cultural dimension to the role of higher education in fostering
architects’ sensitivity toward sustainable heritage conservation in
urban contexts.

The contribution of the paper resides in the formulation and
comparison ofmulti-objective optimization approach on the basis of
seven separate metaheuristic algorithms—PSO, ACO, GA, SA, FA,
WOA, andNSGA-II—each possessing specific strengths in resolving
complex, nonlinear, and constrained architectural design issues. In
contrast to previous works centered on single-objective models,
the present research takes an equitable approach optimizing energy
efficiency, carbon footprint minimization, and occupants’ comfort
at the same time. Exploring the influence of each optimization
approach on LEED certification requirements further adds depth
to the base algorithmic comparison. The extended algorithmic
platform allows for a more detailed comprehension of how
optimization strategies match changing project priorities, providing
architects and planners with sound insights into the pragmatic
choice and implementation of metaheuristics in sustainable urban
development. (Kaveh, 2017; Kaveh, 2021) provides foundational
reviews on metaheuristic optimization in civil engineering, while
Kaveh and Eskandari (2024) and Kaveh and Hamedani (2024)
introduce parameter tuning and hybrid enhancements that directly
support the methodology employed here.

In addition to this, explainable ML models, as defined by
Wagner et al. (2022), can be used for more comprehension of the
effect of urban form on sustainable mobility. Explainable models
clarify the relationship between transportation patterns and the
built environment, helping planners develop more walkable and
transit-oriented environments. This is particularly vital in attempts
to diminish carbon footprints and encourage sustainable transport
in cities. Li (2020), for example, links urban form metrics to
variations in energy use across different city morphologies.

The application of ML in cities is also demonstrated by Chen’s
(2023) two-level ML methodology for the classification of mega-
city urban forms. This approach not only enhances the accuracy of
identifying city form but also encourages improved urban planning
methodologies. Planners are in a position to learn about the spatial
behavior of cities through extracting features from sources of
data, which contributes to appropriate and sustainable designing
strategies.

ML also has an extremely useful application in environmental
monitoring and management. For instance, Letchumanan and
Naveen (2022) described how the application of ML in forecasting
particulate matter levels helps improve the air quality management
of cities. Combining real-time data with prediction models will
enable cities to implement more efficient means of controlling
pollution with positive effects on healthier city environments.

In addition, high-performance architecture demands
integration of renewable energy and ML strategies. Heidari et al.
(2018) explain the need for implementation of renewable energy
systems in smart hybrid strategies of city planning. ML can be
utilized in bringing about improved energy efficiency in deploying
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and running these systems and hence minimizing reliance on
non-renewable energy. Hong et al. (2020) contribute ten critical
questions for advancing the accuracy and credibility of urban energy
modeling frameworks, which are particularly relevant to ML-based
optimization.

The objective of this research is to maximize energy efficiency,
sustainability, and occupant comfort for building design in urban
settings through state-of-the-art metaheuristic optimization and
machine learning. In particular, the research here is interested
in minimizing energy usage, optimizing return on investment,
and enhancing human-oriented comfort conditions with reduced
environmental footprint. Through comparison of the performance
of seven state-of-the-art algorithms in metaheuristic optimization
and machine learning, the research presents an integrated, data-
driven guide for embeddingmachine learning in smart city planning
and digital architecture.

2 Methodology

This research uses an optimization approach from multi-
objective machine learning to improve building performance
for energy efficiency, occupant comfort, and carbon footprint
minimization. Awell-crafted dataset providing for key architectural,
climatic, and operational variables serves as the basis of the
methodology. These encompass technical specifications (such as
HVAC system efficiency and types of insulation), design parameters
(such as window area to wall area ratio and building orientation),
and contextual indicators (such as occupancy schedules and
climatic data).

2.1 Dataset construction and
preprocessing

The database was gathered from several sources including
Building Information Modeling (BIM) software like Autodesk
Revit and ArchiCAD, smart building sensors, and open-
source environmental databases. The dataset consists of 1,500
distinctive building configurations representing both residential and
commercial typologies in 5 years (2018–2022) and various climatic
zones. The optimization was intended to be versatile in applicability
and realistic in outcome.

The data preprocessing phase included.

• Mean imputation for missing numerical values,
• Mode substitution for categorical attributes,
• Normalization of continuous variables (e.g., HVAC efficiency,
energy consumption) to a [0, 1] scale,

• Outlier removal based on interquartile range (IQR) thresholds.

Table 1 provides a detailed overview of the dataset features and
their relevance to sustainable building design.

2.2 Metaheuristic optimization algorithms

To solve the multi-objective optimization problem, this research
utilizes seven metaheuristic algorithms, each selected for its

strengths in exploring large, complex solution spaces under
constrained design scenarios. These include Genetic Algorithm
(GA), Particle Swarm Optimization (PSO), Simulated Annealing
(SA), Ant Colony Optimization (ACO), and three additional
methods: Firefly Algorithm (FA), Whale Optimization Algorithm
(WOA), and NSGA-II.

2.2.1 Genetic Algorithm (GA)
GA mimics biological evolution through selection, crossover,

andmutation to optimize energy and comfort variables. It is suitable
for both discrete and continuous variables.

Objective Function:

min f(x) =
n

∑
i=1
 Ei(x)

Where.

• Ei(x): Energy consumption of component i,
• x: Vector of design variables.

2.2.2 Particle Swarm Optimization (PSO)
PSO models the behavior of swarming birds or fish. Particles

move in the design space, adjusting velocity based on individual and
collective experience.

Velocity & position update:

vt+1i = wv
t
i + c1r1(pbest,i − x

t
i) + c2r2(gbest  − x

t
i)

xt+1i = x
t
i + v

t+1
i

Where.

• w: Inertia weight, c1,c2: Cognitive and social coefficients,
• r1, r2: Random values in [0,1].

2.2.3 Simulated Annealing (SA)
SA emulates the cooling process ofmetals to escape local optima.

It probabilistically accepts worse solutions to improve global search.
Acceptance probability:

P = exp (−ΔE
T
)

Where.

• ΔE: Difference in objective value,
• T : Current temperature.

2.2.4 Ant Colony Optimization (ACO)
ACO uses pheromone trails to guide artificial ants through the

design space, favoring energy-efficient pathways.
Pheromone Update Equation:

τ(t+1)ij = (1− ρ)τ
(t)
ij +

m

∑
k=1
 Δτ(k)ij

Where.

• ρ: Evaporation rate,
• Δτ(k)ij : Pheromone deposited by ant k.
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TABLE 1 Overall performance summary of metaheuristic algorithms.

Algorithm Energy savings
(%)

Comfort score ROI (%) Carbon
reduction (%)

Execution time
(s)

Convergence
rate

GA 22.5 82.3 15.2 18.4 35.2 0.89

PSO 24.1 85.6 16.8 19.7 28.5 0.93

SA 21.0 79.9 14.7 17.5 40.1 0.80

ACO 23.7 84.2 16.5 20.1 38.6 0.87

FA 22.8 83.1 15.4 18.9 33.9 0.88

WOA 23.4 83.8 15.9 20.0 34.1 0.89

NSGA-II 23.0 84.5 16.3 19.8 36.0 0.91

2.2.5 Firefly Algorithm (FA)
FA is inspired by the flashing behavior of fireflies. Each firefly

moves towards brighter (more optimal) individuals.
Movement Equation:

xt+1i = x
t
i + β0e

−γr2ij(xtj − x
t
i) + αϵ

t
i

Where.

• β0: Attractiveness at r = 0,
• γ: Light absorption coefficient,
• α: Randomization parameter,
• ϵi: Random vector from Gaussian distribution,
• rij: Distance between fireflies i and j.

2.2.6 Whale Optimization Algorithm (WOA)
WOA mimics the bubble-net feeding strategy of humpback

whales. It employs spiral and encircling mechanisms to converge on
prey (solutions).

Encircling mechanism:

D⃗ = |C⃗ · X⃗∗ − X⃗(t)|, X⃗(t+ 1) = X⃗∗ − A⃗ · D⃗

Where.

• X⃗
∗
: Best solution,

• A⃗, C⃗: Coefficients controlling convergence,
• X⃗(t): Current position.

2.2.7 NSGA-II (non-dominated Sorting Genetic
Algorithm II)

NSGA-II is a popular evolutionary algorithm designed for
multi-objective optimization. It uses fast nondominated sorting,
elitism, and crowding distance to maintain solution diversity along
the Pareto front.

Fitness assignment steps:

1. Rank solutions using non-dominated sorting.
2. Apply crowding distance to preserve diversity.
3. Perform binary tournament selection based on rank

and crowding.

There’s no single objective equation in NSGA-II. Instead,
the three objective functions f1(x), f2(x), and f3(x) (for energy,
comfort/ROI, and carbon) are simultaneously optimized without
aggregation.

Each algorithm brings unique advantages.

• GA and NSGA-II are versatile evolutionary optimizers.
• PSO and WOA offer fast convergence in continuous
design spaces.

• SA andFA escape local optima and explore non-convex surfaces
effectively.

• ACO excels in multi-agent, discrete path exploration.

These algorithms will be applied to optimize building
configurations under the constraints of real-world energy
performance, environmental goals, and occupant-centered
design outcomes.

2.3 Optimization objective functions

This study aims to optimize building performance by balancing
three key sustainability objectives: minimizing annual energy
consumption, maximizing occupant comfort and return on
investment (ROI), and reducing carbon footprint. These objectives
reflect the architectural, economic, and environmental imperatives
central to sustainable urban design.

The multi-objective optimization problem is tackled using a
diverse set of metaheuristic algorithms, each designed to explore
and exploit the solution space from different perspectives. The
following subsections define the objective functions and illustrate
how each of the seven algorithms-Genetic Algorithm (GA), Particle
SwarmOptimization (PSO), Simulated Annealing (SA), Ant Colony
Optimization (ACO), Firefly Algorithm (FA), Whale Optimization
Algorithm (WOA), and NSGA-II—addresses them.

2.3.1 Minimizing annual energy consumption
Reducing energy consumption is a primary goal in sustainable

building design. It directly lowers operational costs and
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mitigates environmental impact through decreased demand on
energy systems.

Objective Function:

f1(x) =
n

∑
i=1
 Ei(x)

Where.

• f1(x): Total annual energy consumption (kWh),
• Ei(x): Energy consumption of the ith  component (e.g., HVAC,
lighting),

• x: Vector of design variables (e.g., building orientation,
insulation, glazing ratio).

Algorithm Strategies.

• GA: Evolves generations of energy-efficient designs using
selection, crossover, and mutation, favoring configurations that
minimize f1(x).

• PSO: Particles adjust positions to collectively converge toward
the global minimum energy configuration.

• SA: Accepts worse energy solutions temporarily to escape local
minima and seek global optimization.

• ACO: Constructs design paths with lower energy signatures,
reinforced by pheromone trails.

• FA: Attracts fireflies toward designs with the lowest energy
consumption by light intensity difference.

• WOA: Encircles the best design based on energy performance
using adaptive spiral movements.

• NSGA-II: Simultaneously minimizes energy while balancing
other objectives along the Pareto Frontier.

2.3.2 Maximizing occupant comfort and return
on investment (ROI)

Comfort and economic viability are essential for the long-term
sustainability of any building. Comfort incorporates thermal, visual,
and air quality dimensions, while ROI reflects the balance between
initial investment and operational savings.

Objective Function:

f2(x) = α ·C(x) + β ·R(x)

Where.

• C(x): Comfort score (scaled 0–100),
• R(x): ROI (%) calculated from energy savings and cost,
• α,β: Weighting factors (e.g., 0.6 for comfort, 0.4 for ROI),
• x: Design variable vector influencing HVAC, daylighting,
insulation, etc.

Algorithm Strategies.

• GA: Uses Pareto-based selection to evolve design combinations
maximizing both comfort and economic return.

• PSO: Particles shift toward positions with higher combined
scores of ROI and comfort.

• SA: Accepts suboptimal comfort designs if potential
improvements outweigh short-term losses.

• ACO: Favors design paths with better perceived user comfort
and financial efficiency.

• FA: Fireflies are drawn to brighter (more comfortable and
profitable) solutions in the swarm.

• WOA: Simulates social behavior to encircle ROI-optimal
comfort zones.

• NSGA-II: Ranks solutions using non-dominated sorting,
favoring those excelling in both C(x) and R(x) without
aggregating objectives.

2.4 Evaluation metrics

This study uses several performance metrics to evaluate
the effectiveness of the metaheuristic algorithms in optimizing
sustainable building design. These include both computational
indicators and real-world outcome measures. The aim is to
provide a clear and structured assessment of how each algorithm
performs in terms of processing efficiency and impact on energy
consumption, comfort, emissions, and sustainability standards
(Pham et al., 2020; Tien et al., 2022; Forootan et al., 2022;
Zhang et al., 2023; Wang et al., 2020).

2.4.1 Energy Savings
This metric assesses how much energy consumption is reduced

after applying optimization techniques. It reflects the effect of
building design changes like improved insulation, orientation, or
system efficiency.The reduction is calculated based on a comparison
with a baseline design.

Energy Savings (%) is calculated using:

EnergySavings = (
Ebaseline  −Eoptimized 

Ebaseline 
)× 100

Where.

• Ebaseline : Energy use before optimization,
• Eoptimized : Energy use after optimization.

This value shows the impact of each algorithm in improving
energy efficiency.

2.4.2 Execution time
Execution time is the duration taken by an algorithm to reach its

best or near-best solution. It is a crucial performance indicator when
applying algorithms to real-world design scenarios where timely
results are essential.

It is calculated as:

ExecutionTime (s) = Total time takentof ind optimal solution

Shorter execution time is desirable, especially for large-scale or
interactive optimization tasks.

2.4.3 Convergence behavior
Convergence behavior measures how efficiently and quickly an

algorithm improves toward the optimal solution. Good convergence
indicates that the algorithm can find high-quality solutions in fewer
iterations.
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Convergence Rate is given by:

ConvergenceRate =
 Objective value improvement 
 Number of iterations 

Faster convergence is particularly beneficial in large or multi-
objective search spaces.

2.4.4 Sustainability metrics
In addition to computational performance, algorithms are

assessed based on how well their optimized results align with
recognized sustainability goals.

2.4.4.1 Green Building Certifications (LEED, BREEAM)
These systems score buildings on factors like energy use, water

conservation, materials, indoor environment, and innovation. Each
factor contributes points to the total score, which determines the
certification level.

GreenBuildingScore =
n

∑
i=1
 Credits ineachsustainabilitycategory

Higher scores indicate better sustainability performance and
qualify buildings for higher certification tiers.

2.4.4.2 Energy Performance Index (EPI)
Thismetric evaluates howmuch energy a building consumes per

square meter. It gives a direct sense of energy efficiency.

EPI =
Eannual 

 FloorArea (m2)

Lower EPI values signify more efficient energy usage
across the space.

2.4.4.3 Carbon Footprint Reduction
This metric shows how much carbon emissions are cut due to

optimization.

CarbonFootprintReduction (%) = (
Cbaseline −Coptimized

Cbaseline
)× 100

It accounts for improved energy systems and low-carbon
material choices in the design.

2.4.5 Occupant comfort score
Comfort score evaluates the building’s indoor environment

based on thermal comfort, lighting quality, and air conditions. Each
component is assigned a weight according to its importance to user
experience.

ComfortScore =
n

∑
i=1
 wi · Si

Where.

• Si: Score of each comfort factor (e.g., temperature),
• wi: Its relative weight.

This is often broken down as:

ComfortScore = 0.5 ·  Temperature+ 0.3 ·  AirQuality+ 0.2 ·  Lighting

The selected variables in this study are specifically chosen for
their relevance to energy use, comfort, and sustainability. Where
variables appeared potentially correlated-like HVAC efficiency
and building type-care was taken to use diverse configurations
for residential and commercial buildings to avoid redundancy.
However, some dependencies between variables are acknowledged.
Future work will emphasize more direct energy-impacting
parameters like insulation and shading over high-level aggregates.
This approach supports a more precise optimization framework
with less redundancy and greater interpretability.

3 Results analysis

3.1 Comparative performance summary of
algorithms

Theperformance of all sevenmetaheuristic algorithms—Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Simulated
Annealing (SA), Ant Colony Optimization (ACO), Firefly
Algorithm (FA), Whale Optimization Algorithm (WOA), and
NSGA-II—was evaluated using key optimization metrics. These
included energy savings, occupant comfort score, return on
investment (ROI), carbon footprint reduction, execution time, and
convergence rate. The algorithms were applied to optimize 1,500
building configurations across diverse climatic zones and typologies.

As shown in Table 1, PSO achieved the highest energy savings
(24.1%) and the fastest execution time (28.5 s), making it the most
efficient in terms of computational speed and energy performance.
ACO closely followed, showing strong carbon footprint reduction
(20.1%) and attaining high occupant comfort scores (84.2). NSGA-
II provided the most balanced outcomes across all objectives,
particularly excelling in multi-objective trade-off management.
GA performed well in occupant comfort (82.3) and ROI, while
FA offered moderate energy savings with competitive comfort
outcomes. WOA showed significant promise in carbon reduction
and design robustness, while SA, though effective in escaping local
optima, demonstrated the slowest convergence and lowest energy
savings (21.0%).

This initial comparison provides a foundation for deeper
analysis in the following sections, where individual metrics and
objectives are explored in more detail.

3.2 Energy consumption optimization

Minimizing energy consumption is the primary objective of
sustainable building design optimization. This subsection analyzes
how effectively each algorithm reduced total annual energy use
across the dataset of 1,500 building configurations. The algorithms
were evaluated by calculating the percentage of energy savings
relative to the baseline energy consumption.

As illustrated in Figure 1 and further detailed in Table 2,
Particle Swarm Optimization (PSO) led all algorithms with the
highest energy savings of 24.1%, demonstrating superior exploration
capabilities in continuous solution spaces. This was followed
closely by Ant Colony Optimization (ACO) at 23.7% and Whale
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FIGURE 1
Energy savings comparison across metaheuristic algorithms.

TABLE 2 Comparative analysis of energy savings across metaheuristic
optimization algorithms.

Algorithm Energy savings (%)

GA 22.5

PSO 24.1

SA 21.0

ACO 23.7

FA 22.8

WOA 23.4

NSGA-II 23.0

Optimization Algorithm (WOA) at 23.4%, both of which also
performed consistently across other metrics. NSGA-II achieved
23.0%, maintaining a good balance while still prioritizing energy
efficiency.

Firefly Algorithm (FA) and Genetic Algorithm (GA) produced
respectable savings of 22.8% and 22.5%, respectively, benefiting
from their population-based search strategies. However, Simulated
Annealing (SA) resulted in the lowest savings at 21.0%, indicating
its slower convergence toward global minima in this objective.

These results reflect the advantages of swarm- and evolution-
based algorithms for energy-related objectives. Algorithms with
greater adaptability tomulti-dimensional continuous variables, such
as PSO, WOA, and ACO, showed more consistent energy reduction
across the range of building typologies and climates.

TABLE 3 Comfort scores and ROI achieved by algorithms.

Algorithm Comfort score ROI (%)

GA 82.3 15.2

PSO 85.6 16.8

SA 79.9 14.7

ACO 84.2 16.5

FA 83.1 15.4

WOA 83.8 15.9

NSGA-II 84.5 16.3

3.3 Occupant comfort and ROI
optimization

This section considers each algorithm’s optimization of both
occupant comfort and return on investment (ROI), both ofwhich are
key factors in maintaining a building’s ability to be used effectively
and its long-term economic sustainability. A composite score of
thermal conditions, air quality, and lighting is used to quantify
comfort. ROI indicates the tradeoffs between construction expense
and operational savings through energy efficiency.

As can be seen in Table 3, Particle Swarm Optimization (PSO)
produced the highest comfort rating of 85.6, with Ant Colony
Optimization (ACO) following at 84.2 and NSGA-II at 84.5.
These optimizers successfully tuned design variables like HVAC
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FIGURE 2
Occupant comfort vs ROI Across Algorithms.

TABLE 4 Carbon footprint reduction achieved by algorithms.

Algorithm Carbon footprint reduction (%)

GA 18.4

PSO 19.7

SA 17.5

ACO 20.1

FA 18.9

WOA 20.0

NSGA-II 19.8

efficiency, window-to-wall ratio, and levels of insulation tomaximize
internal environmental quality. Firefly Algorithm (FA) and Whale
Optimization Algorithm (WOA) had strong comfort ratings of
83.1 and 83.8. Genetic Algorithm (GA) had 82.3, with consistent
but lower performance in comfort-oriented scenarios. Simulated
Annealing (SA) trailed at 79.9 due to its slow convergence in
balancing multiple conflicting variables.

In terms of ROI, PSOagain topped the list with a return of 16.8%,
leveraging its global best search dynamics to reduce both operational
energy costs and capital expenditures on ineffective configurations.
ACO and NSGA-II yielded competitive ROI values of 16.5% and
16.3%, respectively. GA and FA followed closely, while SA delivered
the lowest ROI, reinforcing its limited capability in dual-objective
scenarios.

As illustrated in Figure 2, a scatter plot mapping comfort against
ROI reveals that PSO, ACO, and NSGA-II occupy the optimal
region, delivering strong trade-offs between human-centric comfort
and economic return.

3.4 Carbon footprint reduction analysis

Minimizing the carbon footprint of building operations and
materials is a critical objective in sustainable architecture. This
section assesses how each algorithm performed in reducing

total CO2 emissions, as calculated from the energy source
mix, construction materials, and system efficiency. The outcome
corresponds to each of the optimized design configurations’
environmental implications.

As seen in Table 4, ACO realized the greatest carbon footprint
reduction of 20.1% due to its capacity to favor configurations
encompassing renewable energy sources and low-emissionmaterials
on all iterations. WOA was not far behind with 20.0% due
to its adaptive mechanism of encircling to optimize against
environmental-friendly design variables. NSGA-II and PSO also
performed well at 19.8% and 19.7%, respectively, and were highly
efficient in balancing environmental concerns and performance.

The Firefly Algorithm (FA) and Genetic Algorithm (GA)
realized moderate savings of 18.9% and 18.4%, respectively. These
results indicate that both can potentially search for sustainable
solutions but have more iterations or need to be hybridized for
deeper carbon reductions. Simulated Annealing (SA) realized the
least amount of improvement at 17.5% through its low exploration
level and slow convergence in the carbon reduction function.

Figure 3 demonstrates the relative carbon reduction
performance of the algorithms. The findings confirm that multi-
objective optimization-oriented algorithms like ACO, WOA, and
NSGA-II can identify low-carbon facility configurations more
effectively with little loss of energy efficiency and comfort.

3.5 Sustainability outcomes and LEED
certifications

To confirm the applicability of the optimization outcomes in
the real-world context, in this section each algorithm’s performance
is calculated using LEED certification standards and sustainability
indicators. LEED certifications are given in five principal categories:
energy efficiency, water efficiency, materials and resources, indoor
environmental quality, and innovation. The higher the combined
score corresponds to improved levels of certification (e.g., Silver,
Gold, Platinum).

As can be seen in Table 5, Ant Colony Optimization (ACO)
and Particle Swarm Optimization (PSO) attained the best overall
LEED ratings and were in the Platinum certification category. This
was due to their high performance in energy efficiency, indoor
environmental quality, andmaterial selection.NSGA-II also attained
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FIGURE 3
Carbon emissions reduction across algorithms.

TABLE 5 LEED certification scores by algorithm.

Algorithm Energy (35%) Water (20%) Materials
(15%)

Ieq (15%) Innovation
(15%)

Total score
(%)

LEED level

GA 29.0 16.2 11.8 12.5 13.3 82.8 Gold

PSO 32.4 17.8 13.1 13.6 14.5 91.4 Platinum

SA 26.7 15.3 10.5 11.7 12.1 76.3 Silver

ACO 32.1 17.9 13.4 13.4 14.7 91.5 Platinum

FA 30.2 16.7 12.3 13.0 13.8 86.0 Gold

WOA 31.0 17.5 12.7 13.2 14.1 88.5 Gold

NSGA-II 31.6 17.6 13.0 13.5 14.3 90.0 Platinum

Platinum rating signifying that its all-around optimization of energy,
comfort, and carbon goals resulted in very sustainable structures.

Whale Optimization Algorithm (WOA) trailed just behind
it, with efficient use of water and the use of renewable energy
standing it in good stead for being awarded a Gold standard.
Firefly Algorithm (FA) and Genetic Algorithm (GA) also attained
Gold status, evidencing favorable—but not the best—sustainability
performance. Simulated Annealing (SA) was lowest in all but one
of the categories and attained only a Silver rating on account of low
performance in energy and material criteria.

As seen in Figure 4, the LEED certification levels indicate the
strength of each algorithm in designing holistically sustainable
structures. The high concentration of PSO, ACO, and NSGA-II
in the Platinum category emphasizes their applicability in real-
world green building projects.

3.6 Convergence behavior comparison

Convergence behavior is an essential indicator of an algorithm’s
efficiency in moving towards optimal solutions. Convergence
behavior indicates the algorithm’s capacity to stabilize its
objective values across iterations and hence signifies both the
computational time and optimization stability. In this section,
each algorithm’s convergence pattern is examined in terms of
iteration number, the rate of convergence, as well as stability
over time.

As can be seen fromTable 6, Particle SwarmOptimization (PSO)
once again demonstrated the quickest convergence, converging
within 50 iterations at a rate of 0.93 due to its high exploitation
ability and dynamics of the swarm intelligence. NSGA-II was close
behind it, converging at 55 iterations at the rate of 0.91 due to its
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FIGURE 4
Leed certification levels achieved by algorithms.

TABLE 6 Convergence performance of algorithms.

Algorithm Convergence rate Iterations to
convergence

GA 0.89 75

PSO 0.93 50

SA 0.80 90

ACO 0.87 65

FA 0.88 72

WOA 0.89 70

NSGA-II 0.91 55

population-based evolutionary mechanism for maintaining Pareto-
optimal fronts.

Genetic Algorithm (GA) and Whale Optimization Algorithm
(WOA) both had moderate convergence rates of 0.89 and needed
approximately 75 and 70 iterations, respectively, to stabilize. Firefly
Algorithm (FA) and Ant Colony Optimization (ACO) converged
at slightly slower paces with FA stabilizing at iteration 72 and
ACO at iteration 65 at respective convergence rates of 0.88 and
0.87. Simulated Annealing (SA) had the slowest convergence with
almost 90 iterations to stabilize at a rate of 0.80 due mainly to its
probabilistic search procedure accepting inferior solutions during
the initial stages.

These are well illustrated in Figure 5, where the convergence
curves highlight how quickly and steadily each of the algorithms
converged towards optimal solutions for 100 iterations. PSO and

NSGA-II curves slope steeply in the initial stages whereas the curve
of SA is sloping and gradual reflecting longer times of search and
slow adaptation.

3.7 Statistical and sensitivity analysis

In order to guarantee the reliability and stability of the
optimization results, the section here gives the statistical error
analysis and sensitivity test results. These analyses give insights into
the stability and reliability of the algorithms when run repeatedly
and also tell us which performance outcomes are most impacted by
the designing parameters.

Mean Absolute Percentage Error (MAPE) and Standard
Deviation (SD) were evaluated for 10 independent runs of each
algorithm to factor in the energy savings’ variation. From Table 7,
Particle Swarm Optimization (PSO) had the lowest MAPE of 2.3%,
reflecting highly consistent performance in multiple runs. NSGA-II
and ACO also performed well with high reliability as evidenced by
MAPE results of 2.5% and 2.6%, respectively. Simulated Annealing
(SA) demonstrated the highestMAPE of 3.9%, as its more stochastic
process and less consistent convergence were reflected.

For Standard Deviation, PSO once again yielded the least
variable results (±0.65%), with NSGA-II (±0.72%) and WOA
(±0.76%) following next in line. FA and GA hadmoderate variation,
while SA had the largest range of outcome reliability (±1.10%),
consistent with the observed trend of its converging behavior.

The sensitivity analysis examined how changes in key input
variables—such as HVAC efficiency, window-to-wall ratio, building
orientation, and insulation value—affected optimization outcomes.
Theresults,summarizedinFigure 6,revealedthatHVACefficiencyhad
themost substantial impact, contributing to 45%of variance in energy
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FIGURE 5
Convergence curves of metaheuristic algorithms.

TABLE 7 Statistical analysis of energy savings across algorithms.

Algorithm MAPE (%) Standard deviation (±%)

GA 2.9 ±0.85

PSO 2.3 ±0.65

SA 3.9 ±1.10

ACO 2.6 ±0.78

FA 2.8 ±0.80

WOA 2.7 ±0.76

NSGA-II 2.5 ±0.72

savings. Orientation and window-to-wall ratio followed, influencing
30% and 15%, respectively. This highlights the importance of
mechanical systems and envelope design in sustainable performance.

These findings confirm that the top-performing algorithms not
only deliver superior solutions but also maintain stability across
multiple runs and are responsive to the most critical variables in
design decision-making.

3.8 Trade-off and pareto analysis (for
NSGA-II)

This section focuses on the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) and its ability to handlemultiple competing
objectives by generating a Pareto front. Unlike single-objective
optimizers, NSGA-II simultaneously explores trade-offs between

energy savings, occupant comfort/ROI, and carbon footprint
reduction, providing a set of equally optimal solutions for different
stakeholder preferences.

As represented in Figure 7, the Pareto front produced by NSGA-
II clearly shows a range of optimal solutions. Designs on the left of
the front maximize energy savings as their highest priority, while on
the rightmaximize comfort andROI, with a balancedmiddle section
being an agreeable solution on all three fronts. The front enables
architects and planners to choose the appropriate context solution
on the basis of project objectives—either pursuing LEED Platinum,
ROI maximization, or minimizing environmental impact.

For example, one NSGA-II solution resulted in 23.0% energy
savings, 84.5 comfort score, and 19.8% reduction in carbon
footprint, which puts it at par with PSO and ACO. The major
strength of NSGA-II is its power to present several such trade-
offs without being constrained by a fixed weighting scheme as in
weighted-sum models.

This flexibility proves particularly valuable in real-world
architectural applications where project constraints vary, and multi-
stakeholder input often leads to shifts in design priorities. NSGA-
II’s Pareto approach thus enhances decision-making transparency
and provides greater design agility in the early stages of sustainable
urban planning.

3.9 Summary of algorithm strengths and
weaknesses

This subsection synthesizes the findings from previous
analyses by outlining the core strengths, limitations, and
recommended use cases for each of the seven metaheuristic
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FIGURE 6
Sensitivity of key variables affecting energy savings.

FIGURE 7
Pareto front of nsga-II across energy, comfort, and carbon objectives.

algorithms used in this study. The comparative review aids in
selecting the most appropriate algorithm based on specific project
priorities such as speed, sustainability, comfort, or balanced
trade-offs.

As summarized in Table 8, Particle Swarm Optimization (PSO)
emerges as the most well-rounded performer, excelling in energy
savings, comfort, execution time, and achieving Platinum LEED
certification. Its main limitation lies in slightly less flexibility
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TABLE 8 Strengths, weaknesses, and suggested use cases of each algorithm.

Algorithm Strengths Weaknesses Best use cases

GA Good comfort and ROI performance;
flexible on discrete variables

Moderate energy and carbon results;
slower convergence

Projects focusing on occupant
wellbeing or retrofit design

PSO Top performer in energy savings,
comfort, and speed; strong LEED
outcomes

May struggle with highly discrete or
constrained variables

High-efficiency green buildings,
time-sensitive projects

SA Capable of escaping local optima;
simple to implement

Lowest in energy savings, ROI, and
convergence speed

Small, constrained design spaces where
exploration is critical

ACO Excellent carbon reduction; strong
multi-objective handling

Slightly longer convergence time Environmental sustainability-focused
projects, energy-carbon trade-offs

FA Balanced comfort and energy savings;
visually interpretable

Moderate convergence and LEED
scores

Early-stage concept design and
educational tools

WOA High comfort and carbon efficiency;
robust exploration

Moderate execution time and
convergence

Projects emphasizing environmental
and thermal performance

NSGA-II Best for Pareto front generation and
trade-off analysis; balanced
optimization

Slightly more computationally intensive Multi-stakeholder decision-making,
urban-scale sustainable planning

when handling highly constrained or discrete variables. Ant
Colony Optimization (ACO) stands out for its carbon footprint
reduction and multi-objective strength, making it ideal for projects
emphasizing environmental impact mitigation.

NSGA-II, while not always the absolute best in any single
metric, delivers the most balanced solutions across all objectives,
particularly in contexts requiring stakeholder-driven trade-offs. It
is especially suited for large-scale urban planning where Pareto
flexibility is essential. Whale Optimization Algorithm (WOA) offers
solid performance in both carbon reduction and comfort but
requires slightly more computational time to converge.

Firefly Algorithm (FA) and Genetic Algorithm (GA) show
consistent results across most objectives and are preferred when
interpretability, modularity, or algorithm simplicity are valued.
However, both tend to fall behind in convergence rate and
overall LEED scores. Simulated Annealing (SA), though capable of
escaping local optima, was the least effective across all key metrics,
with slower convergence, higher variation in results, and lower
sustainability performance. Nevertheless, SA may still be useful in
small-scale design problems or constrained scenarios.

This analysis confirms that no single algorithm is optimal for
all use cases, but each offers distinct advantages depending on
the design scenario and optimization priorities. As architectural
and urban projects continue to embrace data-driven sustainability,
understanding the nuanced performance of optimization methods
will be critical to informed, context-sensitive design decisions.

4 Discussion

The findings of this research highlight the strength and
versatility of metaheuristic methods in tackling the multifaceted
problem of sustainable building optimization. By combining seven

optimizationmethods on threemain goals—consumption of energy,
occupant comfort/ROI, and carbon footprint minimization—this
research presents a sound basis for evidence-driven architectural
decision-making.

Out of all the algorithms tested, Particle Swarm Optimization
(PSO) performed best in energy savings (24.1%), execution
time (28.5 s), and comfort score (85.6), proving itself in quick
convergence and continuous-variable optimization. These findings
support PSO’s applicability for projects with performance deadlines
where time and computation matter.

In the same way, Ant Colony Optimization (ACO) supported its
strength in obtaining the best carbon reduction (20.1%) and LEED
Platinum rating, proving high versatility in terms of sustainability-
driven design priorities.

NSGA-II was remarkable for offering a wide range of Pareto
optimal solutions allowing architects and planners to have the
freedom to investigate trade-offs between conflicting objectives. Its
ability to find solutions to energy savings, comfort, and carbon
balances makes it an attractive option for large-scale city or
institutional projects requiring stakeholder-driven compromises.

Although Genetic Algorithm (GA) and Firefly algorithm (FA)
did not excel in any single objective, both of them yielded steady and
fairly high values in all categories. These algorithms are particularly
useful in exploratory stages of design, where solution diversity and
conceptual flexibility are valued. Whale Optimization Algorithm
(WOA) proved highly competitive, especially in comfort and carbon
impact, and showed consistent convergence behavior. Its adaptive
behavior suits it well to non-linear problems involving renewable
integration or natural ventilation strategies.

Simulated Annealing (SA), though traditionally valued for
escaping local optima, lagged across most evaluation metrics. Its
slow convergence (90 iterations) and lower comfort and ROI
outcomes suggest limited application in broader multi-objective
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scenarios. However, SA may still be beneficial in narrowly defined
or highly constrained design spaces, particularly for fine-tuning
solutions after initial population-based exploration.

From a methodological perspective, the inclusion of statistical
and sensitivity analyses further validated the robustness of the
results. Low variation in MAPE and standard deviation—especially
for PSO, NSGA-II, and ACO—indicates the repeatability and
dependability of their optimization behavior.The sensitivity analysis
confirmed the dominant influence of HVAC efficiency and window-
to-wall ratio, guiding future feature prioritization.

Despite the strength of these findings, some limitations
should be acknowledged. The study was based on simulated data
derived from BIM platforms, smart sensor repositories, and public
databases, and although carefully prepared and normalized, it lacks
direct validation through real-world post-occupancy evaluations
or calibrated energy models. Additionally, while the algorithms
were run on uniform computational settings, the scalability of
each algorithm under more complex or higher-resolution design
problems was not tested in depth.

Future research should explore hybrid models—such as PSO-
NSGA-II combinations—or real-time integration with building
performance simulation tools to refine predictions. There is also
scope for extending the dataset with geographically diverse case
studies, allowing better generalization of results across different
climatic and regulatory contexts.

In conclusion, this study provides a comprehensive benchmark
of metaheuristic algorithms for sustainable building design,
highlighting the strengths of individual approaches and their
alignmentwith different project goals.Thefindings serve as practical
guidance for architects, engineers, and policymakers seeking to
embed intelligent optimization into sustainable urban development
workflows.

5 Conclusion

The present research attempts to bring forward an overall
comparison of seven metaheuristic algorithms, namely, Genetic
Algorithm (GA), Particle Swarm Optimization (PSO), Simulated
Annealing (SA), Ant Colony Optimization (ACO), Firefly
Algorithm (FA), Whale Optimization Algorithm (WOA), and
Non-dominated Sorting Genetic Algorithm II (NSGA-II) for the
optimization of sustainable building design in terms of three key
goals: energy consumption minimization, maximizing occupants’
comfort and ROI, and minimizing carbon footprint.

The PSO algorithm was found to be the best in providing fast
convergence and highest energy savings, while ACO performed
well in environmental sustainability andNSGA-II inmulti-objective
trade-off. NSGA-II was also found to be specially useful in providing
Pareto-optimal fronts with solutions for various sustainability
objectives. WOA and FA also performed well with balanced and
consistent results and can be used for universal architectural
purposes. GA performed well in occupant-centric objectives
consistently, whereas SA was found to be the least successful but
useful in the case of constrained optimization problems.

The findings point out that none of the algorithms outperform
the others on all criteria. Rather, algorithm choice should be
informed by project-specific priorities, for instance, in terms

of speed, comfort, environmental performance, or flexibility for
stakeholders. Integration of LEED-based sustainability analysis and
thorough sensitivity analysis add to the findings’ application validity
as useful in actual implementation for designers and planners.

In the end, this research presents a strong methodology and
performancemetric for the integration ofmachine learning-inspired
metaheuristics in digital architecture. Future research can build on
these findings through algorithmic hybridization, real-time model
checking, and application in varied city environments to further
push the integration of artificial intelligence and sustainable design.
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