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The Southwest Airlines scheduling crisis of December 2022 and its
consequences have highlighted the importance of robust airline disruption
management and recovery. A wide variety of approaches have been applied
to airline schedule recovery and robustness, but they are often evaluated
with respect to static snapshots of disruption scenarios, which lend little
consideration toward how recovery decisions interactwith emerging disruptions
over time. To help future research estimate and improve the utility of airline
recovery strategies, we present RecovAir, a high-performance agent-based
model that simulates the flow of aircraft, crew, and passengers in an airline’s
flight network under disruptive departure and arrival rate limits and repeated
applications of ad-hoc recovery strategies. By measuring Key Performance
Indicators like On-Time Performance, cancellation count, and total delay,
RecovAir supports comparisons and controlled experiments with recovery
parameters. We demonstrate RecovAir’s utility by synthesizing plausible
scenarios for both the first day of the 2022 scheduling crisis and a day
with zero cancellations in 2024 for Southwest Airlines. We simulate these
scenarios while varying recovery strategies and prioritization between delays
and cancellations. Our results show that a simple greedy algorithm can perform
nearly as well as Southwest Airlines’ actions on the first day of the scheduling
crisis without initiating any ferry flights (i.e., non-revenue flights to reposition
airline crew)—critically, we do not use any proprietary crew schedules. We then
test a range of values for themaximum delay before cancellation parameter and
discover an inversely proportional relationship between total delay and number
of cancellations beyond a constant baseline. We envision RecovAir as a novel,
lightweight simulation platform where airline stakeholders and researchers can
rapidly evaluate schedule recovery algorithms without the burden of large-scale
data collection efforts.

KEYWORDS

agent-based model, airline networks, transportation resilience, multi-agent simulation,
aviation, schedule recovery

1 Introduction

From December 22 to 28 December 2022, Southwest Airlines experienced a
full scheduling crisis. Winter Storm Elliott brought mass delays and cancellations
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across the continental United States, including Denver International
Airport (DEN) and Chicago Midway (MDW), which represent
two of Southwest’s major focus cities. It brought extremely cold
temperatures to Denver, which presented a hazard to unprepared
ground crew and led to further delays due to aircraft servicing
difficulties. Although Southwest prepared for Winter Storm Elliott
prior to its arrival by issuing cancellation packages (i.e., sets of flights
to be canceled proactively), they turned out to be over-optimistic.
Southwest’s crew communication and scheduling infrastructure
struggled to handle the volume of close-in delays and cancellations.
Its crew assignment solver could not generate feasible solutions
in time before its inputs changed. Its Network Operations Center
(NOC) gradually lost track of crew members, prompting schedulers
to send messages to individual crew members for situational
awareness (Murray, 2023).

After December 23, other airlines resumed normal operations
with low rates of cancellation, but Southwest struggled to recover.
Its distinctive point-to-point flight network had propagated the
disruption across the continental US, while its two schedule
solvers—“TheBaker” and SkySolver—produced contradictory plans
as they considered aircraft assignment and crew availability
separately. As the NOC struggled to execute a recovery plan, it
was overwhelmed by the volume of calls from crew members
(Murray, 2023). Having lost track of its pilots and flight attendants,
the NOC issued reassignments that were impossible to execute,
causing further delays and cancellations and continuing their vicious
cycle. On December 26, schedulers decided to “thin out” the
network by canceling more than 50% of all flights over the next
3 days to return crew members to their expected locations via
ferry flights—non-revenue flights that only carry crew members.
Figure 1 displays the scale of Southwest’s cancellations during
this period (SWAPA Schedule Research Committee, 2023).

During this scheduling crisis, Southwest Airlines canceled
about 16,700 flights, left about 2 million passengers stranded,
lost approximately $820 million from the event, and was fined an
additional $140 million by the U.S. Department of Transportation
in December 2023 for violating consumer protection laws
(Murray, 2023; U.S. Department of Transportation, 2023). Robust
disruption recovery is critical for airlines, and it is a pressing problem
for operations researchers.

Key to the objective of ensuring disruption resilience is
developing, comparing, and improving scheduling tools and
workflows for irregular operations (IROPS) decision-making.
Within this framework, realistic network simulations can
help predict the impact of hypothetical changes to tools,
workflows, network topology, disruption severity, and operational
characteristics like turnaround times and schedule slack. By carrying
out the mechanics of disruption propagation across an airline
network, they can also shed light on the downstream effects of each
recovery decision in an upcoming disruption (e.g., whether to cancel
a flight, re-assign an aircraft or crew member to different flights, or
initiate ferry flights). Thus, on a broader scale, network simulations
can guide airlines to strengthen their disruption resilience through
network and process changes, while on a narrower scale, they can
help airlines tactically validate, select, and optimize their recovery
plans for upcoming disruptions.

In this paper, we introduce RecovAir, a high-performance
airline network simulation tool built using an Agent-Based

Model (ABM) that seeks to support these use cases. RecovAir
simulates all components of the Integrated Recovery problem in
airline operations research, including flights, aircraft, crew, and
passengers (Petersen et al., 2012), under arbitrary disruptions
and recovery strategies in hypothetical scenarios. To strengthen
airlines’ understanding of the impact of changing scenario inputs on
service and revenue, it records Key Performance Indicators (KPIs)
from each simulation’s results, including On-Time Performance
(OTP), total minutes of delay, and total number of cancellations.
While RecovAir’s ideation and development was motivated by the
Southwest Airlines scheduling crisis of December 2022, it was built
to simulate airline disruptions in general. To our knowledge, this is
the first work, inspired by a real-world large-scale airline disruption,
that attempts to utilize agent-based modeling to bypass the need for
proprietary crew schedules, while simulating an accurate portrayal
of disrupted flights.

To validate our implementation of RecovAir and demonstrate
its utility, we synthesize and simulate plausible RecovAir scenarios
for Southwest Airlines’s flight network on the first day of their
December 2022 scheduling crisis and on a “good” day in 2024
with zero cancellations. We apply two simple recovery strategies
and compare their simulated performance to actual outcomes.
We discover that both strategies produced KPI values that
approach the results achieved by Southwest on 2022-12-22 without
initiating any ferry flights (flights that carry crew members but not
commercial passengers). We additionally demonstrate RecovAir’s
utility in exploring trade-offs by varying the Maximum Delay
Before Cancellation parameter and measuring resultant delays
and cancellations, finding that the model estimates an inverse
relationship between cancellations and totalminutes of delay beyond
a day-specific baseline. We propose RecovAir (Figure 2) as an
open-ended platform with which airlines can better prepare for
upcoming disruptions, compare recovery strategies, analyze causal
chains, evaluate schedule robustness, and develop better tools for
tactical disruption management. Additionally, we believe that this
modeling effort is a necessary step for researchers to develop a
common disruption benchmark.

1.1 Related work

In this section, we summarize the research landscape for flight
delay prediction, disruption recovery, schedule robustness, and
flight network simulation in order to identify RecovAir’s potential
contributions to those fields.

The prediction of flight delay is an active research topic, with
approximately 40 journal publications identified by Wandelt et al.
(2025) between 2021 and 2024. Most of these publications use
data science and machine learning methods, such as random
forests, feedforward neural networks, and recurrent neural networks
to capture key factors contributing to delays. Aside from flight
identification and each flight’s operating times (both predicted
and actual), weather characteristics and flight distance were most
commonly selected as model inputs during feature engineering
in these publications (Wandelt et al., 2025), which underscores
the impact of weather on flight punctuality. Kaewunruen et al.
(2021), for instance, applied various machine learning models to
the task of predicting flight punctuality at Birmingham Airport.
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FIGURE 1
Southwest Airlines cancellations during the scheduling crisis period as captured by U.S. Bureau of Transportation Statistics (2024). Cancellation Code A
means canceled due to airline/carrier, Code B means canceled due to weather, and Code C means canceled due to National Airspace System (NAS)
initiatives. nan indicates flown.

Their exploratory data analysis and experiments show that the
frequency of scheduled flights, month, day of the week, and
weather characteristics were statistically significant predictors of
flight punctuality. Among their models, Random Forest achieved
the greatest R2 value. Li et al. (2023) enhanced their use of Random
Forests for flight delay prediction based on the observation that
weather features are the main reason for longer flight delays in
their dataset. They used K-Means to segment the flight dataset
into normal and adverse weather conditions and trained a separate
ensemble of decision trees for each weather condition. Compared to
an ordinary Random Forest, their approach increased the accuracy
from 0.94 to 0.96 and increased the recall value from 0.73 to
0.86. These studies apply statistical models to show that adverse
weather strongly affects flight punctuality in aggregate, whereas
RecovAir simulates how this effect may take place on a per-
flight basis while incorporating tactical recovery decisions made by
the airline.

Airline recovery research has become increasingly popular in
recent years, with over 100 papers published from 2020 to 2022
(Wu et al., 2024). These papers solve the Aircraft Recovery Problem
(ARP), Crew Recovery Problem (CRP), Passenger Recovery
Problem (PRP), and combinations of these problems, which are
known as Integrated Recovery (IR). Following a foundational
approach by Teodorović and Guberinić (1984) that employed
branch-and-bound on directed flight graphs to re-generate aircraft
routes, past work has employed forms of numerical optimization to
find optimal solutions to airline recovery problems (Hassan et al.,
2021). However, airline recovery is NP-hard (Hassan et al., 2021),
so applying exact algorithms such as branch-and-bound and
integer programming to large-scale problems faced by airlines

quickly becomes computationally intractable. Therefore, a majority
of recent work on airline recovery finds approximately optimal
solutions using heuristic methods like genetic algorithms, simulated
annealing, and neighborhood search, as well as reinforcement
learning (Hassan et al., 2021). Of these methods, reinforcement
learning is particularly relevant to RecovAir because both model
the recovery process as sequential decision-making and evaluate
recovery policies under a simulated environment. Lee et al. (2022)
pioneered the use of Double Q-Learning (DQL) to optimize a policy
for reassigning aircraft to flights in a domestic network of 94 flights
under disruptive scenarios where key airports are closed for an
arbitrary duration. Unlike conventional practice in airline recovery,
which seeks to minimize an overall airline cost objective, Lee et al.
(2022) prioritize the maximization of On-Time Performance, which
aligns with RecovAir’s emphasis on Key Performance Indicators
(KPIs). In their experiments, the DQL model was able to generate
solutions within 10% of the optimal objective value in less than
half the time taken to solve the corresponding linear optimization
problem. Ding et al. (2023) used Proximal Policy Optimization
(PPO) to train a stochastic policy for Variable Neighborhood Search
(VNS) in a resource flow network where aircraft and crew flow
from source nodes through flight nodes toward sink nodes. To
guide the VNS, the policy selects a pair of flight strings and a
neighborhood operator (such as swap, cut, insert, and delete) to
apply to the pair. To evaluate this solution, they synthesized realistic
flight schedules, crew routing, and passenger itineraries according to
airport traffic data and compared PPO-VNS to the optimal solution
generated by CPLEX, where PPO-VNS found nearly optimal
solutions with greatly reduced runtime and improved scalability.
Similar to Ding et al. (2023), we also synthesize crew schedules and
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FIGURE 2
Screenshot of visualization of agent-based simulation from a previous version of the model presented herein, with a less sophisticated recovery
algorithm.

passenger itineraries that fit empirical statistics. Building upon their
work, Wang et al. (2025) distinguished between revenue-generating
and ferry flights in the resource graph, diversified recovery
operators to include aircraft ferrying and crew deadheading, and
employed a novel encoder-decoder framework for computing
the policy. Reusing the data generation method by Ding et al.
(2023), they synthesized disruption scenarios in which their
strategy achieved an optimality gap of < 10% while cutting the
computation time by two orders of magnitude compared to
Gurobi. While RecovAir also models airline recovery as sequential
decision-making and simulates this over the course of a scenario,
we emphasize that our aim is not to develop an integrated

recovery solution, but rather to propose a solution-agnostic testing
apparatus on which these studies’ recovery strategies may be
evaluated and compared.

While airline recovery is widely used to refer to reactive
responses to disruptions, schedule robustness refers to making
flight schedules less sensitive to potential upcoming disruptions
(Clausen et al., 2010). Manual interventions for schedule robustness
include adding buffers in schedules, allocating reserve crew and
aircraft, and partitioning resources within a network to localize
disruption propagation (Clausen et al., 2010). However, many
characteristics of robust schedules come with a cost—longer buffer
times imply less resource utilization and make operation more
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costly. Moreover, robustness can be more difficult to evaluate using
integer programming formulations than schedule planning and
recovery due to the inherent uncertainty of upcoming disruptions
and variety of recovery strategies (Clausen et al., 2010). Most prior
work on robust scheduling focus on one robustness objective at
a time (Xu, 2024), but this ignores potential interaction effects
between objectives. To explore these effects, Burke et al. (2010)
developed a multi-objective genetic algorithm for optimizing
schedule robustness where the objectives include schedule reliability
(the ability for connecting flights to absorb minor stochastic delays)
and flexibility (the number of possible aircraft swaps between two
flight sequences).

Simulation is a necessary avenue for evaluating schedule
robustness holistically (Clausen et al., 2010) as well as evaluating
recovery strategies when applied iteratively as disruptions emerge.
Simulations in air traffic management (ATM) have generally taken
one of three forms: discrete event simulation, agent-basedmodeling,
and dynamical systems.

Discrete event simulations (DES) employ a global queue of
timestamped events ordered by timestamp and execute these
events by changing the state of simulated entities (Kim et al.,
2015). One of the earliest applications of DES to airline networks
is NASPAC (National Airspace System Performance Analysis
Capability), developed by the U.S. Federal Aviation Administration
(FAA) andTheMITRECorporation (Kim et al., 2015). Clausen et al.
(2010) mentions that themost well-known and complete simulation
tool for airline scheduling is SIMAIR (Rosenberger et al., 2000),
a foundational DES model that established a framework of
interactions between disruptions from an event generator and
recovery performed by a controller. SIMAIR has been widely
employed to evaluate recovery models and schedule robustness
optimizers.

While agent-based models (ABMs) operate at similar levels
of granularity compared to DES (Kim et al., 2015), they model
entities interacting within networks as autonomous agents with
self-contained behavioral rules, specific objectives, and local
knowledge. One of the earliest examples of applying ABMs to
ATM is NASA ACES (Meyn et al., 2004), which models various
air traffic control entities across the U.S. National Airspace
System (NAS) as they interact with flights. Bouarfa et al. (2013)
considers ABMs to be a powerful approach to simulate complex
sociotechnical systems exhibiting emergent behavior and applied
them to airport surface operations. Previous work has also applied
ABMs to air traffic network simulation without focusing on
human collaboration: Wang et al. (2021) developed an ABM
consisting of flight and airport agents and used random forests to
capture empirical distributions of time-varying parameters for delay
prediction at the level of individual flights.

The specific application of ABMs to airline disruption recovery
and schedule resilience has been scarce, but the Single European Sky
ATMResearch (SESAR) program’s line of work is a notable example.
Initially, an exploratory SESAR project (Cook et al., 2012) designed
an ABM that captures passenger-centric metrics using passenger
itineraries and delay distributions. Over several years, this design
was implemented and refined through SESAR’s Mercury project, as
described in Delgado et al. (2021). More recently, Gurtner et al.
(2021) incorporated a realistic cost model in Mercury and used
it to assess the emergent effects of 4D Trajectory Adjustments

(4DTA), including delaying departures for connecting passengers
and modifying flight routes and speeds to recover delay. Similar to
RecovAir, Mercury aims to capture knock-on effects between flights
and airports at a broad geographical scale, compute various KPIs
for stakeholders, and model airline decision-making in disruption
recovery. Parallel to Mercury, SESAR built another flight network
ABM named Domino, which aims to highlight the dependencies of
subsystems by developing new metrics for network centrality and
causality (Delgado et al., 2021).This aligns with RecovAir’s potential
utility in studying disruption propagation dynamics. However,
SESAR’s ABMprojects strive to simulate the entire commercial flight
network across all airlines in Europe and do not necessarily involve
unusual, large-scale disruptions (Delgado et al., 2021), whereas
RecovAir focuses on a single airline’s network as it encounters
such disruptions, taking the perspective of that airline’s Operations
Control Center (OCC). As such, RecovAir can also be used to
study how the topological properties of an airline’s network (such
as the spectrum between hub-and-spoke and point-to-point) affect
its robustness and compatibility with various recovery strategies.

Any airline recovery approach developed in a research
environment must meet an airline’s operational needs before the
airline can deploy it. In practice, recovery solutions are generated
every time the airline discovers new information about an ongoing
disruption, and previous decisions can be reverted if needed
(Hassan et al., 2021). This usage philosophy requires recovery
solvers to generate feasible solutions quickly because otherwise,
the airline could fall behind on rescheduling efforts and incur
unnecessary downstream disruptions. For example, the rapid influx
of information was likely to have overwhelmed Southwest Airlines’
schedule solvers during their 2022 scheduling crisis (Murray,
2023). Specifically, most airline schedulers expect operational
disruption models to provide good solutions at the fleet level in
1–2 min (Vink et al., 2020). Therefore, the execution speed of
airline recovery algorithms is critical for their practical usability
and reliability. However, a majority of prior work on recovery
algorithms fails to meet this expectation, even on small-scale
synthesized scenarios with fewer than 100 aircraft (Hassan et al.,
2021). Furthermore, conventional practice in schedule recovery
tends to evaluate developed algorithms on a single set of inputs and
neglect the practice of repeated algorithm execution as a disruption
unfolds and as the algorithm’s previous decisions take effect. We
envision RecovAir as a novel platform that enables researchers to
predict the real-world performance of recovery strategies as they are
repeatedly applied to an emerging large-scale disruption over time.

2 Materials and methods

Overall, RecovAir is an agent-based model where Crew agents
operate Aircraft resources carrying passengers according to Flight
plans while following throughput limits imposed by Disruptions
and Airport infrastructure. As each simulation suffers from delayed
and canceled flights, an Aircraft Selection Strategy and a Crew
Selection Strategy are employed to attempt to recover upcoming
flights with missing resources. As the simulation takes place,
it outputs events to the Metrics Processor, which computes Key
Performance Indicators (KPI) from those events. To minimize
computational overhead for potential downstream interactive
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FIGURE 3
A visual overview of the components comprising the RecovAir agent-based model.

applications for airline schedulers as well as accurate measurement
of recovery algorithm runtime, RecovAir is built in the Rust
programming language and designed to execute as efficiently
as possible on modern hardware. We present an overview of
RecovAir’s components in Figure 3 and describe each component
in detail below.

2.1 Scenarios

RecovAir simulates interactions between resources, flights,
itineraries, constraints, and recovery strategies within a provided
scenario. In this model, a scenario contains a start and end time
in UTC, initial aircraft locations, initial crew locations, scheduled
flights with optional aircraft and crew assignments, passenger
demand by flight segment, disruptions in the form of throughput

limits, model parameters (see Table 1), and recovery strategy
selections. Together, these properties define an initial world state to
simulate from and recovery strategy for the model to follow. Since
we do not have access to actual crew locations, crew assignments,
and passenger itineraries, we synthesize them based on public
flight data from U.S. Bureau of Transportation Statistics (2024)
in Section 2.8.

2.1.1 Resources
Every flight requires resources to be executed. In RecovAir,

resources refer to aircraft and crew. Each aircraft has a uniquely
identifying tail number (like N947WN), location (either airborne
operating a flight or at an airport), aircraft type, and passenger
capacity. Each crew agent has a unique ID, location, and a flight duty
history that is used to ensure compliance with crew rest regulations.
Note that to simplify themodel, each crew agent represents an entire
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TABLE 1 Summary of all RecovAir model parameters along with their default values during our validation experiments.

Name Definition Default value

Aircraft turnaround time (ATT) Minimum time between an aircraft’s arrival and subsequent departure from an airport 30 min

Crew turnaround time (CTT) Minimum time between a crew agent’s arrival and subsequent departure from an airport 30 min

Maximum delay before cancellation (MDBC) Maximum departure delay before a flight is canceled 360 min

Aircraft reassignment tolerance (ART) Maximum time between a flight’s scheduled departure time and its assigned aircraft’s estimated
time of availability before reassignment

120 min

Crew reassignment tolerance (CRT) Maximum time between a flight’s scheduled departure time and its assigned piloting crew’s
estimated time of availability before reassignment

120 min

team of crew members (pilot, co-pilot, cabin crew) necessary to
operate one flight.

2.1.2 Flights
Flights within a scenario correspond with the airline’s flight

plans. Each flight must include an origin, destination, flight
number, scheduled departure time, and scheduled arrival time.
Upon execution, each flight may include an assigned aircraft and a
collection of assigned crew (with an indication of who is piloting),
but these assignments are subject to change in the simulation. Each
executed flight’s actual departure and arrival times are also recorded.

2.1.3 Itineraries
Itineraries help model the impact of disruptions on passenger

trips. Each itinerary consists of a complete path of flight segments
(such as SAN-LAS-DTW) and the number of booked passengers
under that path.This formulation helps capture the potential impact
of a disruption to multi-leg itineraries, such as missed connections.

2.1.4 Constraints
Disruptions and practical throughput limits at airports

constrain network performance. Disruptions model the impact of
events like inclement weather, National Airspace System (NAS)
congestion, and airport construction on an airline network. In
RecovAir, all disruptions are expressed in terms of national
Air Traffic Management initiatives: Ground Delay Programs
(GDP) and Departure Delay Programs (DDP). A GDP at
an airport delays the departure of flights toward that airport,
while a DDP at an airport delays the departure of flights from
that airport (U.S. Federal Aviation Administration, 2023). Each
modeled GDP includes the airport affected, time range where it
takes effect, and the maximum number of cumulative arrivals to
the airport by the end of each hour during the time range. Each
DDP has the same structure but constrains cumulative departures
at the affected airport instead. A Ground Stop is represented as
a GDP with a maximum cumulative arrival count of 0. Beyond
irregular disruptions, each airport has an hourly capacity limit for
the simulated airline’s departures and arrivals, which is designed
to model limitations from the airport’s airspace and runways. Both
disruptions and airport throughput limits can delay the departure
and the arrival of a flight.

RecovAir is designed to fit into an airline’s existing scheduling
workflows. We assume that airlines have a database of flight plans,

aircraft assignments, crew assignments, and passenger itineraries
that can be extracted and translated into a RecovAir scenario. As
such, RecovAir stores and retrieves scenarios from a SQLite database
with 8 tables.1

2.2 Model parameters

The precise execution of RecovAir depends on the value of
various user-tunable parameters. We enumerate the parameters
and default values used in our validation runs in Table 1. The
Aircraft turnaround time (ATT) and Crew turnaround time
(CTT) parameters follow a conventional definition of turnaround
time among flight network simulation models: it specifies the
minimum time between an aircraft or crew agent’s arrival and
subsequent departure from an airport. The Maximum delay before
cancellation (MDBC) parameter specifies the maximum threshold
for departure delays—any flight whose departure delay exceeds
the MDBC value is automatically canceled. Finally, the Aircraft
reassignment tolerance (ART) and Crew reassignment tolerance
(CRT) parameters control the eagerness of the dispatcher to invoke
the scenario’s aircraft and crew recovery strategies in response to
a flight delay due to a delayed incoming resource. If a flight f has
a scheduled departure time d f and is assigned a resource r, and if
the next available time of r exceeds d f +ART (if r is an aircraft)
or d f +CRT (if r is a crew team), then the dispatcher initiates
an attempt by the corresponding recovery strategy to replace
the delaying resource assignment. This process is explained more
thoroughly in Section 2.5. Default values for ATT, CTT, and MDBC
were chosen based on their empirical distributions as observed in
historical flight schedule and on-time performance data from U.S.
Bureau of Transportation Statistics (2024), while default values for
ART and CRT were chosen arbitrarily.

2.3 Slot manager

Each GDP, DDP, and airport capacity constraint issues
clearances according to a slot manager, which reserves and

1 The full schema for these tables is available on GitHub.
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maintains slots for flights to arrive or depart. This mimics how the
U.S. Federal Aviation Administration (2023) executes GDPs, where
traffic managers may assign arrival slots to affected flights in order
to provide Estimated Departure Clearance Times (EDCT). It is also
analogous to the ATFM regulation queue implemented in SESAR’s
models (Gurtner et al., 2021). We had previously implemented the
slot manager such that it restricts the number of departures and
arrivals each hour at each airport to their observations in reality,
but results demonstrated that this method was too rigid (Peng et al.,
2024). Instead, we implemented a cumulative slot manager that
limits the total number of slots assigned by the end of each hour,
which we describe in detail as follows:

Denote the approximate number of slots to allocate in each hour
t as Ct, where t = 0 represents the hour immediately following the
slot manager’s start time. First, the slot manager computes the prefix
sum of the sequenceC: Lt ≔ Lt−1 +Ct for all t > 0, and L0 ≔ C0. Since
L satisfies Li = ∑

i
t=0Ci for all i, it is used as the cumulative slot limit

at the end of each hour i. Then, denote the number of assigned slots
in hour t as at, and denote st as its prefix sum, which means st =
∑ti=0ai for all t. When a new slot request is received for time r, the
slot manager finds the earliest slot time r′ ≥ r such that (1) st < Lt for
all t ≥ r′ (ensuring the cumulative limit is never broken) and (2) ar′ <
Cr′ + 3 (loosely enforcing temporary constraints at time r′, where the
value three is arbitrary). If r′ exists within the time range of the slot
manager, it estimates the EDCT to report to the flight as r′ hours
and min {4,60/Cr′ ,60/(ar′ + 1)} ⋅ ar′ minutes after the beginning of
its time range.This expression derives the duration of each departure
slot during hour r′ from the number of slots assigned (ar′), expected
capacity (Cr′), and an arbitrary minimum slot duration of 4 min.
The slot manager then reserves the slot for the requesting flight,
incrementing ar′ . If no such r′ exists within its time range, the GDP
orDDPpostpones the request to its end time,where itmay be subject
to other constraints.

2.4 Controller

The controller is responsible for applying constraints and
executing departures and arrivals. When preparing for a flight’s
departure, it finds the earliest departure time such that the flight
can be accommodated by all relevant constraints through available
departure and arrival slots. To execute departures and arrivals,
it updates the state of all relevant resources and the flight itself,
including the actual departure time, the aircraft’s location, the crew’s
location, and the collection of resources at the origin and destination
airports. When executing departures, it captures passengers at
the origin airport whose next leg aligns with the flight. When
executing arrivals, it releases passengers with remaining legs at the
destination airport.

2.5 Dispatcher

The dispatcher is RecovAir’s program entry point and manages
its flow of control according a Discrete Event Simulation pattern.
It is responsible for operating each flight by assigning resources
and checking against constraints. It also coordinates recovery
efforts through resource reassignments. Similar to SimAir’s

Event Queue (Rosenberger et al., 2000), it consumes expected
departure and arrival events from a central priority queue where
earlier events have higher priority. When the model begins, a
departure event is generated for each flight at its scheduled departure
time. Its procedure for preparing for the departure of a flight f
is as follows:

No collection of resources is necessary for flight arrivals, but the
controller may delay an arrival due to arrival capacity constraints at
the destination airport. If the controller issues a delay, the dispatcher
schedules an arrival preparation event after the issued delay into
its priority queue. Otherwise, it directs the controller to execute
the arrival.

Since the dispatcher consumes timestamped events in an
increasing order, and since there are no time-bound tasks outside the
dispatcher, it also controls the model’s timestamp. Before executing
each task from the event queue, it sets the model’s timestamp to the
task’s scheduled time.

2.6 Recovery strategies

Implementing complex state-of-the-art Integrated Recovery
approaches is beyond the scope of the RecovAir project, so we have
chosen to implement two relatively simple greedy approaches. Given
a flight f with no feasible aircraft or crew assignment, the Earliest
Next Available Time (ENAT) recovery strategy picks the aircraft or
crew agent at the origin airport of f that has the earliest next available
time to operate f, if such a resource exists. If no such resources exist,
it postpones the recovery of f for 10 min in anticipation of upcoming
flights to f’s origin. Beyond f, ENAT does not provide additional
reassignment suggestions. By construction, ENAT seeks tominimize
resource downtime in a greedy fashion, as higher resource utilization
implies more revenue generation and fewer cancellations.

Alternatively, the Depth-First Search (DFS) recovery strategy
seeks to maximize the assignment of surplus aircraft to unfulfilled
flights. When a flight f is canceled, its assigned aircraft (if an
assignment exists) is added to the set of surplus aircraft A if its
earliest available time is defined, while downstream flights after
f that are assigned to the same aircraft are added to the set of
unfulfilled flights U . To generate a recovery plan, we iterate through
A in the order of time added to U . For each aircraft a ∈A, we
use the Depth-First Search algorithm to find the longest feasible
flight string composed of unfulfilled flights from U that can be
reserved for a starting from its current location, restricting our
search to strings of up to five flights and ignoring flights whose
selection would add at least 2 h of additional delay to maintain
computational tractability. Ties in flight string length are broken
by taking the flight string with the minimum delay resulting from
aircraft shortage during turnarounds. We then proceed to reserve
each flight in the string for the aircraft. Reservations in this context
are tentative assignments stored within the recovery strategy—they
are not directly observable to dispatchers, and they are cleared at the
beginning of generating each recovery plan. When the dispatcher
seeks to reassign a flight’s aircraft, this strategy responds according
to the most recent corresponding reservation, if one exists. When
the dispatcher seeks to apply reassignment suggestions, this strategy
responds with each reservation as a suggested reassignment so that
its recovery plans can be attempted. When a flight departs, its
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1: procedure CHECKDEPART(f, controller, eventQueue,

currentTime)

2:   a← assigned aircraft of f

3:    c← assigned piloting team of f

4:   Ta← earliest available time of a

5:   if Ta is undefined or Ta >

currentTime+MDBC then

6:    if a is undefined or f ∉ Freassigned then

7:      a← REASSIGNAIRCRAFT(f) ⊳ Using current

recovery strategy

8:     end if

9:     if a is undefined then

10:       DELAYDEPARTURE(f, 10 min)

11:     else

12:       set assigned aircraft of f to a

13:       Ta← earliest available time of a

14:       Freassigned← Freassigned ∪ {f}

15:       PUSH(eventQueue, (CheckDepart, f, Ta)) ⊳

Delayed due to a

16:     end if

17:   end if

18:  Tc← earliest available time of c

19:   if Tc is undefined or Tc >

currentTime+MDBC then

20:   c← REASSIGNCREW(f) ⊳ Using current

recovery strategy

21:    if c is undefined then

22:      DELAYDEPARTURE(f, 10 min)

23:    else

24: set assigned piloting team of f to c

25:       Tc← earliest available time of c

26:       PUSH(eventQueue, (CheckDepart, f, Tc)) ⊳

Delayed due to c

27:    end if

28:   end if

29:  Td← NEXTDEPARTTIME(controller, f) ⊳ Reserve a

slot that satisfies all active

slot managers (section 2.3)

30:    if Td > currentTime then

31:    daccum← Td − (scheduleddeparturetimeof f)

32:     if daccum > MDBC then

33:      CANCELFLIGHT(f) ⊳ Also removes f’s slot

reservation

34:       return

35:     else

36:       PUSH(eventQueue, (CheckDepart, f, Td))

37:        return

38:     end if

39:    end if

40:    INITIATEFLIGHT(controller, f)

41:    PUSH(eventQueue, (CheckArrive, f, current

time + enroute duration of f))

42: end procedure

Algorithm 1. Departure Dispatch Procedure.

assigned aircraft is removed from A, and the flight itself is removed
from U .

Figure 4 illustrates a small-scale solution generated by the DFS
recovery strategy. In Figure 4, recovered aircraft are located at DEN
(red),MCI (green),MDW (blue), andSLC (orange), and each aircraft’s
newly assigned flight string corresponds with its color.

2.7 Metrics processor

The dispatcher and controller emit model events through
a shared asynchronous channel in the Rust programming
language. Examples of model events include flight departures,
arrivals, delays for a specified duration due to a specified
reason, cancellations, resource reassignments, and simulation
completion. During initialization, the model launches a separate
metrics processing thread that receives these model events
and updates its internal records for computing KPIs. When
the simulation finishes, it passes these records back to the
model. KPIs calculated by the metrics processor are listed
as follows:

• OTP (On-Time Performance): The percentage of all scheduled
flights that arrive within 15 min of their scheduled arrival time
• Delay (min): Total minutes of delay across all non-

canceled flights
• Canceled: Total number of flights canceled
• Flown (hr): Total hours en route across all flights (Designed as

a proxy for aircraft utilization)

2.8 Scenario synthesizer

RecovAir scenarios call for initial aircraft locations,
crew locations, and passenger itineraries. To validate
and demonstrate the model experimentally without
access to proprietary airline data, we synthesize plausible
scenarios using publicly available flight, passenger market,
and aircraft data from the Bureau of Transportation
Statistics (BTS) (U.S. Bureau of Transportation Statistics, 2024)
and the U.S. FAA. In general, RecovAir scenarios represent
reproducible, standardized problems on which recovery strategies
can be evaluated and compared.

2.8.1 Flight plans
Flight plans are derived from the Airline On-Time Performance

Data tables from U.S. Bureau of Transportation Statistics (2024),
which describe revenue-generating domestic flight outcomes in the
U.S. Once filtered by date and airline, items from the domestic non-
stop flights table are directly translated into flights in a synthesized
scenario, where the initially assigned aircraft is the actual aircraft that
executed each flight.

2.8.2 Aircraft
Aircraft locations can be derived from the same BTS flights

table as the flight plans. Once filtered by date and airline, each
unique tail number under the TAIL_NUM column in the BTS flights
table corresponds to an aircraft in a synthesized scenario. Each
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FIGURE 4
A sample solution graph for the Depth-First Search (DFS) recovery strategy. The solution assigns flight strings to four surplus aircraft at DEN, MDW, MCI,
and SLC, respectively, where each aircraft’s current location and assigned flight string legs have the same color. Grey connections represent flights that
were not recovered from the unfulfilled flight set U .

aircraft’s starting location is the origin of its first scheduled flight over
the simulation time frame. Each aircraft’s capacity is determined
by looking up its tail number in the FAA aircraft registry2 and
mapping the resultant aircraft type to the number of seats used by
the airline.3.

2.8.3 Initial crew locations
A lower bound for the number of crew agents at each airport

can be derived from the BTS flights table. For each airport, we
scan through all departures and arrivals in their order of scheduled
occurrence while tracking a resource counter x, which is initially
0. x is decremented upon each departure from the airport and
incremented upon each arrival. The absolute value of the minimum
value taken by x is the minimum number of initial crew agents at
the airport. Since this lower bound does not account for crew rest
compliance, using this value directly at each airport led to inaccurate
model results due to excessive crew shortages. To address this, we
multiplied the initial number of crew agents across all airports by 2,
which was the lowest multiplier value that roughly minimized the
influence of crew shortage on model results in scenarios with no
disruptions.

2.8.4 Airport throughput limits
Each airport’s throughput limits in a synthesized scenario are

set according to the airline’s maximum number of departures
and arrivals achieved in an hour during the month containing

2 FAA aircraft registry.

3 Southwest’s aircraft types and seat configurations.

the simulation timeframe. For example, for a scenario on 28
January 2024, if the airline once executed 20 departures within
an hour and never exceeded that number in January 2024, then
our model would only let up to 20 flights depart from SFO

every hour. This likely underestimates the true airport capacity,
as departure and arrival frequency heavily depends on the month
in which they are counted due to seasonal changes in travel
demand (Kaewunruen et al., 2021). These estimations can certainly
be improved by incorporating previous work focused on airport
capacity predictions, e.g., Ramanujam and Balakrishnan (2015),
Ramanujam and Balakrishnan (2009).

2.8.5 Passenger demand
Model scenarios require passenger demand to be expressed

in terms of possibly multi-leg itineraries, which are generally not
publicly available. However, BTS publishes a relevant database
named Air Carrier Statistics (Form 41 Traffic) that contains monthly
domestic flight market and segment data by airline. The domestic
market data lists the number of passengers enplaned by Origin-
Destination (OD) pairs on their bookings, while the domestic
segment data lists the number of passengers enplaned by OD
pairs on each non-stop flight segment. The complete path (like
SFO-DEN-MCI) of each booked OD pair (like SFO-??-MCI)
is estimated by finding the shortest path from the origin to the
destination on a graph where each edge corresponds to an OD
pair in the domestic segment data and is weighted using the flight
segment’s straight-line distance. The assumptions underlying this
estimation approach can be improved. Future work could seek to
optimize synthesized itineraries using integer programming (Wang
and Jacquillat, 2020).
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2.8.6 Disruptions
We approximate potentially disruptive constraints on the

simulated airline using the number of departures and arrivals in
each hour at each airport in its network. For each airport, we
generate a Departure Delay Program corresponding to the actual
number of departures and generate a Ground Delay Program
corresponding to the actual number of arrivals at that airport
over the simulation timeframe. For instance, if 13 departures from
DEN were recorded in the BTS dataset from 20:00 to 21:00 UTC
on 28 January 2024, then the rough number of slots to allocate
to this hour in DEN’s Departure Delay Program (denoted Ct in
Section 2.3) is set to 13. Note that this does not necessarily restrict
the number of simulated departures from DEN during this hour to
13 given the cumulative design of the slot manager, as illustrated
in Section 2.3. As explained in Section 2.8.4, since the observed
departure and arrival counts underestimate airport capacity, this
method of synthesizing disruptions over-constrains traffic.

2.8.7 Synthesizer script
All of the data processing described in the paragraphs above

are implemented using Python and Pandas in a script. The script
is used to synthesize experimental scenarios for 22 December 2022
(the beginning of Southwest’s scheduling crisis) and 28 January 2024
(a calm day for Southwest with zero cancellations).

2.9 Simulation validation

Using the synthesized experimental scenarios from the
Synthesizer script, we validate RecovAir by comparing traffic
throughput at selected airports and Key Performance Indicators
(KPIs) between simulated and actual flight outcomes. To evaluate
our synthesized disruptions’ impact, we then remove all disruptions
and repeat this comparison. To demonstrate RecovAir’s ability to
help airlines explore trade-offs between delays and cancellations, we
repeat these comparisons while adjusting the dispatcher’s MDBC
parameter value between 10 min and 6 h. On the lower end, we
chose 10 min to represent a scenario where nearly no meaningful
delay is tolerated; in fact, since the OTP metric considers a flight
to be on time if it is delayed for less than 15 min, the OTP metric
from this scenario coincides with the percent of scheduled flights
operated. On the upper end, we chose 6 h based on true delay
distributions at Southwest Airlines according to the BTS flights
table: from December 20 to 31 December 2022, only about 0.21%
of all flights operated by Southwest were delayed by over 6 h. We
perform the steps above using both ENAT and DFS as recovery
strategies and compare their performance for 22 December 2022
and 28 January 2024.

3 Results

3.1 Traffic throughput comparison

Figure 5 compares the number of departures and arrivals per
hour at Denver (DEN) and Chicago Midway (MDW) on 22 December
2022 between simulated and actual outcomes both with and
without synthesized disruptions under the ENAT recovery strategy.

Figure 5 shows that our synthesized disruptions successfully ensured
that simulated departures and arrivals during each hour roughly
matched their actual observed numbers at each airport, which
validates our implementation of the slot manager in Section 2.3
and illustrates RecovAir’s disruption mechanism of throughput
limitation in action.

3.2 KPI comparison

Tables 2, 3 compare final KPI measurements between simulated
and actual outcomes for both 22 December 2022 and 28 January
2024 under the ENAT recovery strategy. Favorable results from
the Simulated (No Disruptions) column confirm the integrity of
Southwest’s flight schedule under ideal conditions, which helps
verify the model’s implementation. For the 2022 scenario, the
ENAT recovery strategy is able to approach the results achieved
by Southwest, with roughly 12.8% more minutes of delay, 15.9%
more cancellations, and an OTP reduction of about 2%. Notably,
ENAT achieved this without initiating any ferry flights, whereas
Southwest Airlines executed about 1,500 ferry flights on 22
December 2022 (SWAPA Schedule Research Committee, 2023). For
the 2024 scenario, however, the ENAT recovery strategy performed
significantly worse than reality, with more than double the amount
of total departure delay and six cancellations despite greater
resource utilization. Based on our analysis of the model’s logs, the
cancellations arose from international and ferry flights, which are
untracked by the BTS dataset. The absence of these flights led
to cascading delays across the network and is responsible for the
increase in total delay. Thus, the discrepancy between simulated and
actual outcomes results from inadequate data, not a deficiency in the
model’s logical implementation.

Flight plans given to RecovAir should originate from a schedule
solver and satisfy all of its constraints on resource connectivity, crew
rest requirements, and airport capacity limits. Therefore, we expect
that without any disruptions, RecovAir should produce nearly
perfect results (i.e., nearly 0 cancellations and rare delays). However,
our results under the Simulated (No disruptions) column in Table 2
contradicts this expectation due to a limitation with BTS data.
Delays and cancellations in the absence of disruptions often arise
from resource discontinuities (where, for instance, the destination
of an aircraft’s flight does not match the origin of its next flight),
but Southwest’s first flight schedule for 22 December 2022 probably
did not have any discontinuities, so our subpar results without
disruptions show that the BTS flights table does not precisely reflect
Southwest’s initial flight plans. This is because the BTS flights table
is a post hoc snapshot of the flights after real-world disruptions take
effect—it shows the last aircraft assignment for each flight rather
than the first one. The BTS flights table also omits ferry flights
and international flights. Thus, the aircraft discontinuities in the
BTS flights table for 22 December 2022 result from the absence
of Southwest’s international flights to Central America and their
≈1500 ferry flights on that day. In general, this effect degrades the
quality of scenarios synthesized from BTS data for dates with many
ferry flights.

In Table 3, the simulated outcomes had more cancellations
than reality but also had significantly more airborne hours, which
indicates greater utilization of resources. This contradiction exists
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FIGURE 5
Actual and simulated traffic throughput at DEN and MDW on 2022-12-22 (during scheduling crisis). Simulated results without synthesized disruptions are
shown in green. Simulated results with synthesized disruptions are shown in red. Outcomes recorded in the BTS dataset are shown in grey.

TABLE 2 Simulated and actual KPI comparison for 2022-12-22 (during the scheduling crisis) using the ENAT recovery strategy.

Attribute Actual Simulated Simulated (no disruptions)

OTP 28.58% 26.57% 92.50%

Delay (min) 154,511 174,317 21,245

Canceled (# flts) 1,026 1,189 9

Flown (hr) 5,942.4 5,885.08 8273.42

TABLE 3 Simulated and actual KPI comparison for 2024-01-28 (on a “good” day) using the ENAT recovery strategy.

Attribute Actual Simulated Simulated (no disruptions)

OTP 86.58% 74.52% 98.58%

Delay (min) 21,528 48,678 2865

Canceled (# flts) 0 6 0

Flown (hr) 8028.0 8555.30 8566.08
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TABLE 4 Simulated and actual KPI comparison for 2022-12-22 (during the scheduling crisis) using the DFS recovery strategy.

Attribute Actual Simulated Simulated (no disruptions)

OTP 28.58% 30.19% 76.77%

Delay (min) 154,511 145,610 13,320

Canceled (# flts) 1,026 1,321 804

Flown (hr) 5,942.4 5,478.69 6561.42

because while many Southwest flights had a shorter airborne
time than scheduled, flights in RecovAir cannot arrive before
the scheduled duration elapses from their departure time. On 10
December 2022, a typical day for Southwest, about 19% of all flights
were airborne for at least 10 min less than their scheduled duration,
and the sum of scheduled flight durations was about 6.1% greater
than the sum of actual flight durations. Likewise, Table 3 shows that
the sum of flight durations from RecovAir with disruptions is about
6.6% greater than the sum of actual flight durations. This suggests
an opportunity to enhance RecovAir’s realism by sampling each
flight’s minimum duration from its duration distribution over time
to counter non-trivial impacts from scheduled block time (SBT)
setting, and practices of schedule padding Wang et al. (2019); Yimga
and Gorjidooz (2019).

3.3 Recovery strategy comparison

Tables 4, 5 display the same KPIs as Tables 2, 3 under the
DFS recovery strategy and show the strengths and weaknesses of
DFS relative to ENAT. Applying DFS led to worse outcomes in
the 2024 scenario and better outcomes under OTP and delay in
the 2022 scenario. By construction, our DFS implementation relies
on an abundance of cancellations because they add more edges
to its unfulfilled flights graph. Since the 2024 scenario did not
containmany cancellations (it was the “good” day), DFS’s unfulfilled
flights graph was less dense, so fewer paths through the graph were
available to idle aircraft. Conversely, in the 2022 scenario (during
the scheduling crisis), DFS outperformed ENAT in OTP and total
delay at the expense of canceling more flights. This also reflects the
choices we made in its implementation: DFS prunes its search space
by applying an upper bound of 2 h on incurred delay per flight
assignment, which tends to reduce overall delay. Like the ENAT
strategy, the DFS strategy’s performance also approached actual
outcomes achieved by Southwest: it improved OTP by 1.5% and
reduced total delay by about 5.8% but produced about 28.8% more
cancellations.

3.4 Delay-cancellation trade-off

Figure 6 explores the trade-off between delays and cancellations
under both ENAT and DFS by plotting total minutes of delay
against total cancellations while varying the maximum delay before
cancellation parameter, which is not specific to any recovery strategy.

They show a moderate inverse relationship between total minutes
of delay and additional cancellations beyond a baseline number
(approximately 1,100 for the 2022 scenario and approximately 0
for the 2024 scenario). The first graph shows that DFS begins
outperforming ENAT at 6 h of maximum delay per aircraft,
suggesting that setting the maximum delay parameter to 7 h
might further reduce cancellations and bring its results closer to
actual outcomes. The second graph shows that DFS consistently
underperforms ENAT for the 2024 scenario throughout our range
of max delay parameter values, which aligns with our findings in
Tables 3, 5. As simple and greedy recovery algorithms built to
demonstrate RecovAir’s utility, both DFS and ENAT fall short of
Southwest’s actual outcomes regardless of the value of themaximum
delay before cancellation parameter. However, this experiment
suggests that with all proprietary data and recovery algorithms,
an airline can employ RecovAir to evaluate the delay-cancellation
tradeoff for specific upcoming scenarios.

3.5 Model runtime

We ran the RecovAir model several times to generate the
aforementioned results. In every run, the model processed between
3,900 and 4,000 flights over timestamps spanning about 28 h
(accounting for arrivals in more western timezones) in under 1 s on
a M2 MacBook Air with 16 GB of RAM. This shows that our efforts
to design RecovAir for efficient execution have been successful. It
shows that RecovAir can feasibly be used as an evaluator function
in place of single objectives in applications of heuristic algorithms
to schedule recovery and robustness (Xu, 2024). It also shows
our model’s potential in supporting interactive, iterative schedule
refinement for airline schedulers.

4 Discussion

Theserious consequences of Southwest Airlines’ December 2022
scheduling crisis reminds us that robust disruption recovery is
imperative to large-scale modern airline operations. Developing
improvements to disruption recovery strategies and protocols is thus
a highly relevant objective for operations researchers and airlines.
To help them estimate the performance of recovery strategies when
deployed in response to an emerging disruption, as well as evaluate
flight network robustness, we have developed RecovAir, an agent-
based model that simulates the flow of aircraft, crew, and passengers
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TABLE 5 Simulated and actual KPI comparison for 2024-01-28 (on a “good” day) using the DFS recovery strategy.

Attribute Actual Simulated Simulated (no disruptions)

OTP 86.58% 74.02% 97.74%

Delay (min) 21,528 61,866 4,480

Canceled (# flts) 0 48 27

Flown (hr) 8028.0 8464.64 8505.25

FIGURE 6
Resultant delays vs cancellations while adjusting the maximum delay before cancellation parameter. Black circles display ENAT outcomes, while blue
triangles display DFS outcomes.
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in an airline’s flight network under capacity constraints and recovery
strategies.

We have shown that RecovAir can simulate historical scenarios
constrained by departure and arrival throughput under a recovery
strategy while measuring resultant total cancellations, minutes of
delay, and On-Time Performance. It can serve as a forecasting
tool that helps airline schedulers evaluate and compare strategies
for specific upcoming disruptions by simulating the airline’s flight
schedule, cancellation packages, and expected traffic constraints.
By evaluating two simple recovery strategies using RecovAir, we
have shown that researchers can use it to benchmark and compare
the performance of different recovery strategies as they are applied
in practice. By conducting a controlled experiment that varies a
recovery parameter, we have shown that schedulers can explore
decision-making trade-offs and calibrate recovery strategies to
achieve their desired trade-off.

Our experiments also demonstrate RecovAir’s utility for
evaluating schedule robustness. According to the definition of
schedule robustness by Clausen et al. (2010), robust schedules show
low sensitivity to disruptions. RecovAir can be used to estimate the
sensitivity of schedules to specific disruptions by holding a scenario’s
disruptions constant, varying its schedule inputs, and observing the
change in measured KPIs. As aforementioned, the quick runtime of
RecovAir enables it to be embedded in schedule robustness studies
employing heuristic algorithms, where one or multiple KPIs can
be selected as the objective of a neighborhood search, simulated
annealing procedure, genetic algorithm, or policy optimization in
reinforcement learning. Its quick runtime alsomakes it a compelling
candidate for supporting interactive tools for airline schedulers, as
explored in Section 5.

As surveyed by Wu et al. (2024), airline recovery research
tends to focus on the precise problem of quickly generating close-
to-optimal solutions that minimize operational cost in a static
disruption scenario. In reality, though, airlines can underestimate
the scale and impact of an upcoming disruption (Hassan et al.,
2021). As the disruption evolves, they may need to continuously
readjust their recovery plan to accommodate new limitations
and unexpected delays. How should airlines prepare to adapt
their recovery plans, and how should they decide what to
do when disruptions end up worse than expected? RecovAir
does not offer a competitive policy for making this decision,
but it creates a unified platform where candidate policies can
be fairly evaluated and compared as they contend with each
airline’s network structure under unexpectedly severe disruptions.
RecovAir thus contributes to the development of tactical, adaptive,
and lightweight recovery policies applied during a disruption as
it evolves.

4.1 Limitations

As a first proof-of-concept, RecovAir can benefit from many
improvements to its construction. A fundamental limitation of
our work in validating RecovAir is the lack of high-quality data.
Without access to proprietary crew scheduling and passenger
itinerary data at Southwest Airlines, we are left to synthesize
the initial crew distribution and passenger itinerary set based
on publicly observable statistics. Our synthesis method relies

on strong assumptions that are unlikely to hold in practice.
For instance, many multi-leg itineraries do not minimize travel
distance in the airline’s flight network but instead favor “focus
cities” that cover the destination of interest. We have most
likely underestimated the initial crew availability for focus cities
and overestimated it for remote destinations. Furthermore, our
flight data captures the state of Southwest’s schedule after the
disruption, which may be very different from its initial plans.
Therefore, our results should not be interpreted as support for
applying ENAT and DFS in practice—they were merely devised
to demonstrate RecovAir’s ability to evaluate recovery strategies.
We also emphasize that, similar to machine learning approaches,
agent-based models can also be viewed as black box models due
to their reliance on stochastic simulations (Topping et al., 2010).
Future work to providemore rigorous guarantees (e.g., Vandin et al.,
2022), although out of scope for this paper, could
be considered.

5 Concluding remarks and future work

Motivated by the Southwest Airlines scheduling crisis of
December 2022, and the difficulties of running large-scale
simulation models that reflect complexities of an airline’s network,
we propose a lightweight, agent-based simulation model to help
airlines rapidly evaluate and assess responses to disruptions. Our
model, RecovAir, does not require any proprietary crew scheduling
data. Furthermore, as a part of demonstrating the utility of
RecovAir, we have built a prototype of a user interface (UI) for
airline schedulers to create scenarios, replay simulation runs, and
inspect resultant KPIs using RecovAir. A screenshot of this UI
is shown in Figure 7. Improvements to this UI could enable airline
schedulers to manually intervene in recovery decisions, inspect
causal chains behind specific delays and cancellations, as well as
conduct controlled trade-off experiments.

Following similar work by Gurtner et al. (2021), future work
can incorporate passenger-centric KPIs like delay distributions and
apply cost modeling to simplify optimization. Fuel, maintenance,
curfew, and airspace costs can be incorporated to achieve a
higher-fidelity representation of an airline’s scheduling priorities. To
model uncertainty toward how a disruptive event might develop,
improvements to realism could include probabilistic mechanics
backed by realistic distributions, such as in Wang et al. (2021).
Given the complications of booking hotels for crew members
(SWAPA Schedule Research Committee, 2023), airlines often prefer
to have crew members return to their home base at the end of
each crew pairing (Medard and Sawhney, 2007). This preference
(or soft constraint) could be modeled in an extension of RecovAir
where each crew agent seeks to select flight strings that return
them to their home base before they reach their duty limit. With
higher-quality data, future work can conduct sensitivity analyses
and parameter sweeps to calibrate model performance against a
particular airline.

Another promising avenue for exploration is leveraging
the granular nature of RecovAir’s simulation results for causal
reasoning. With minor additions to the model that track the
causal chain behind each delay or cancellation, future work could
use the model to trace the observed disruption of a specific
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FIGURE 7
A screenshot of a user interface we built for schedulers to make use of RecovAir.

flight back to its roots, similar in spirit to backpropagation in
feedforward neural networks. Such causal analysis can support
future work on disruption propagation and measuring schedule
robustness. We encourage airlines and researchers to apply and
build upon RecovAir4 for their own use cases.
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