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Non-natural airborne microfibres are an emerging concern in indoor air
pollution, yet relatively little is known about their sources or concentrations.
This is particularly relevant in home environments, where individuals spend
significant amounts of time, but which are challenging for researchers to
access at scale. Consequently, the concentration of indoor airborne microfibres
remains poorly constrained. This paper presents results from the pilot phase
of a participatory community (or citizen) science project, where participants
collected airborne microfibres in their homes using simple, low-cost passive
samplers consisting of Petri dishes linedwith forensic tape. Microfibre deposition
rates were then quantified through a combination of participant-contributed
microscopy images and laboratory-based manual counting. The study found
an average indoor microfibre deposition rate of 1,960 fibres m-2 day-1, with
significant variability between homes (mean rates ranging from 570 to 4,534
fibres m-2 day-1). Among rooms sampled, bedrooms had the highest deposition
rates (2,893 fibres m-2 day-1), followed by bathrooms (2,482 fibres m-2 day-1),
with kitchens (1,225 fibres m-2 day-1) and living rooms (942 fibres m-2 day-1)
showing lower rates. This study demonstrates a scalable, community-driven
method for measuring indoor microfibres in the built environment.

KEYWORDS
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1 Introduction

Non-naturalmicrofibers, tiny fibresmeasuring less than 5 mm in length, are a significant
source of environmental pollution (Acharya et al, 2021; Liu et al, 2022).They can have awide
range of compositions and are typically shed from textiles which have been manufactured
for human use (Finnegan et al, 2022). The release of microfibers from textiles, particularly
during washing, is well-documented; clothing can release 640,000 to 1,500,000 fibres
per kilogram of clothing washed (De Falco et al, 2019; Napper and Thompson, 2016)
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It is less well known that textiles, including clothing, can also
release microfibers directly into the air (Cai et al, 2021; Chen et al,
2020). Wearing clothes can produce a similar number of fibres as
washing them (De Falco et al, 2020), but this airborne release is
harder to monitor and less is known about the concentration, fate,
composition or health effects of these airborne microfibres (Athey
and Erdle, 2022; Dris et al, 2017; Liu et al, 2022; Periyasamy, 2023).
Given that homes contain a high density of textiles and are where
individuals spend the majority of their time, they represent a critical
but underexplored environment for studying microfibre pollution.
Athey and Erdle (2022) highlight that “the indoor environment is
relatively understudied in the microfiber literature compared to the
outdoor environment”, identifying only four papers on the topic.
They further note the novelty of this research area, with the first
study on airborne microfibres published as recently as 2016. The lack
of data leaves significant gaps in understanding the environmental
and health implications of this emerging issue (Williams et al,
2023). This gap is due to the challenges of measuring pollution in
domestic spaces, where factors such as ventilation, room size, and
occupant behaviours (e.g., window-opening frequency or cooking
practices) influence air pollutant concentrations (Carslaw et al, 2024).
Additionally, studying homes can require intrusive equipment, which
may alter participants' normal behaviour, and which hinders research
on both traditional air pollutants (e.g., PM2.5, NO2) and emerging
issues like indoor airborne microfibers.

Community science, also known as citizen science, involves
the participation of non-professional scientists or members of the
public in scientific research [e.g., Kullenberg and Kasperowski,
(2016)] offers a promising approach to overcoming these challenges
(Williams et al, 2023). By involving participants in research through
activities such as experimental design, data collection, and analysis,
community science could enable data collection across diverse home
environments. If sampling methods are unobtrusive, behaviour
changes among participants is minimized, ensuring the data reflects
typical conditions. Community science has become increasingly
popular in the study ofmicroplastics andmarine litter (Barrows et al,
2018; Forrest et al, 2019; Jones et al, 2024; Kawabe et al,
2022; McGoran et al, 2023) and has potential to improve our
understanding of pollution in the home environment (Isley et al,
2022). It can also offer an efficient way of informing evidence based
policy on emerging environmental challenges (Nelms et al, 2022).

1.1 Types of microfibers

Airbornemicrofiberscanbe formedfromsynthetic (e.g.,polyester,
nylon, and acrylic) or natural (e.g., cotton or wool) materials.
Some studies have focused on the subset of microfibers made of
plastic (microplastics). Microplastic fibres have been observed in
both outdoor environments (Gasperi et al, 2018; Allen et al, 2019;
Materić et al, 2021) and within homes (Dris et al, 2017; Perera et al,
2023; Soltani et al, 2021;Valdiviezo-Gonzales et al., 2024;Xumiao et al,
2021). Fibres produced from textiles made from natural materials are
often still classed as “non-natural” andcanalsopose risks tohealth and
the environment (Periyasamy, 2023) as they are normally treated with
chemical additives like dyes, pigments, and flame retardants (Athey
andErdle, 2022;Dris et al, 2017;Liuet al, 2022).Atpresent,non-plastic
microfibres greatly outnumber plastic microfibres in the atmosphere,

but this is predicted to reverse in the future (Finnegan et al, 2022).
The presence of microfibres in homes is significant as microfibres
can be ingested (e.g., if they deposit onto food which is then eaten
(Catarino et al, 2018; Nizamali et al, 2023) or inhaled (Blackburn and
Green, 2022). Prata (2018) estimated that people could be inhaling
between 26 and 130 fibres a day. Some more recent estimates are,
however, considerably lower (Domenech and Marcos, 2021).

1.2 Airborne microfibers and human health

The indoor environment is particularly important for health
as on average we spend approximately 90% of our time indoors
(Klepeis et al, 2001). Airborne microfibres, including both synthetic
(including plastic) and natural fibres, pose potential health risks
as they can be inhaled and then persist in the respiratory system,
but health effects of microfibers is an ongoing and active area
of research (e.g., Xu et al (2022)). They have been linked to the
development of some tumours, for example, some studies have
demonstrated the presence of cellulosic and non-mineral fibres in
83% of nonneoplastic lung specimens and in 97% of malignant
lung specimens (Pauly et al, 1998) and more generally tumours at
a higher rate than ‘normal’ tissue (Chen et al, 2022). Dependent
on size fractions, inhaled microfibres can reach deep into the
lungs, where they may cause irritation, inflammation, and oxidative
stress (Periyasamy, 2023). Unlike larger airborne particles, smaller
microfibres can evade the body’s clearance mechanisms, leading
to potential damage to the lung tissue (Saha and Saha, 2024). The
health effects of microplastics, a sub category of microfibres, is
now the focus of many research studies (see, e.g., Prata (2018).
Smaller particles, <2.5um, may also migrate away from the lung into
other parts of the body via the bloodstream, providing a different
pathway to previously considered ingestion routes. For example,
microplastics in particular have been found in human kidney, liver
and brain (Nihart et al, 2025), saphenous vein tissue (Rotchell et al,
2023), testes (Zhao et al, 2023) and breast milk (Saraluck et al, 2024).

1.3 Regulation of airborne microfibers

Despite the increasing recognition of airborne microfibers
as an emerging environmental and health issue, airborne
microfibers have yet to receive sufficient regulatory attention.
Some textile companies have joined with NGOs and academics
to conduct research and testing through the Microfiber
Consortium (The Microfibre Consortium, 2025) to understand how
to minimize microfiber shedding, but this scheme is voluntary and
as yet there is no legislation or guidance as to acceptable levels
of textile shedding. Informed by health impact studies, there are
national and international guidelines regarding concentrations of
most indoor pollutants (e.g., PM2.5, O3) but similar standards have
not yet been developed for microfibers (or microplastics). This
gap presents an opportunity for both scientific inquiry and policy
development, as future research could inform regulatory approaches
that reduce shedding from textiles to reduce the presence of these
fibres in homes and other indoor environments.
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1.4 Motivation

While previous studies have examined airborne microfibres in
controlled settings or selected indoor environments, there remains
a lack of scalable, real-world data on their presence in homes.
This study addresses this gap by leveraging a community science
approach tomeasuremicrofibre deposition across diverse residential
settings. This paper presents findings from the pilot phase of
Homes Under theMicroscope (HOMES) project.We present results
from the pilot phase of the project, in which participants in 29
homes collected airborne microfibers using a simple, low-cost
passive collection technique. The project followed a two-phase
approach, in which feedback and results from the pilot phase
informed the design of the main phase. Here, we focus solely on
the pilot phase, which took place in Bristol (UK) and involved
more comprehensive sampling than the main phase. The main
phase of the HOMES project used a similar, but simpler design in
which participants were provided with just one sample dish, with
the aim of increasing participation among potentially less engaged
participants (Sardo et al, 2025).

Indoor air quality is a critical aspect of the built environment, yet
airborne microfibres remain an overlooked pollutant despite their
widespread presence in residential spaces. The interaction between
building design, ventilation, and occupant behaviour influences the
accumulation anddispersion of airbornemicrofibres,making this an
important consideration for indoor environmental quality research.
But despite the importance of the issue relatively few studies of
microfibres in home exist, for example, while some other studies
have reported measurements of microfibres in homes, we know of
no other studies that have investigated the variability of microfibre
deposition with room type.

2 Methods

A simple passive sampling approachwas used to collect airborne
microfibres. Participants were provided with sample collection
dishes (consisting of Petri dishes containing a square of sticky
forensic tape) (see Figure 1a) and asked to place them around their
homes. Any microfibres that settled from the air onto the tape
get stuck and can then be counted. Figure 1b shows an example
deployment of the sample dish and Figure 1c shows an example
microscope image taken by a participant. The overall design of the
pilot experiment is shown in Figure 2.

2.1 Data collection and analysis

Each participant was given a box containing eight sample
collection dishes and was asked to place two dishes per room in
four separate rooms for 2 weeks. To give participants the chance
to explore the samples and to see microfibres for themselves, they
were provided with microscopes and were asked to use these to
examine their samples. In this pilot phase, participants were given
four different microscopes to test; two “clip on” microscopes that
attach to a mobile phone and two with a stand. Figure 1 shows
a sample collection dish and an example deployment as well as a
microscope image of a sample. The forensic tape had a regular grid

with letters printed on it to help locate particular fibres (like a grid
reference).

Participants were asked to take photographs of the samples using
the microscopes and upload to the HOMES website where an image
processing tool automatically detected fibres from the image and
provided users with a summary of the number and size of the fibres
counted.This step was included for two reasons (i) image processing
has the potential to dramatically increase the number of samples
that can be processed in the future and (ii) it was anticipated that
the participants would find the experience interesting as it is a
simple, novel application of image processing andmachine learning.
After completion, kits were collected by HOMES staff and further
analysed in the laboratory.

2.2 Manual fibre counting

Systematic visual counting was done manually in the laboratory
by HOMES staff; first a 3 × 3 cm grid was placed over the
sample dish (see Figure 1d) and all fibres visible within the grid were
counted using a stereomicroscope. Samples contained amix of fibres
and particulates but only fibres were counted (particulates were too
small and too numerous to count). For this “fibres” were defined as
any particle with length to width ratio of greater than 3:1. In some
samples the stereo microscope visualised fibre like structures within
the forensic tape or the petri dish, but fibres were only counted if
they were above the plane of the location grid. This was determined
by focussing on the grid location markers and raising the focus. For
each sample the locations of representative fibres were noted (using
the letters printed on the forensic tape).

2.3 Automatic fibre counting

During the pilot we trialled the use of a bespoke image
processing tool to count the number of microfibres per sample. This
step was included for two reasons: 1) accurately hand counting the
fibres deposited is laborious and requires a skilled technician (it took
approximately 10 min per sample), automation would allow for a
huge increase in the number of samples that can be processed, and 2)
while we did not want to ask the participants to count the fibres, we
wanted to provide them with an estimate of the number deposited.

Once uploaded, the image processing tool took a few seconds to
segment the image (separate out fibres from the background) and
then count the fibres. Once complete, it displayed an information
page which showed the processed image, clearly highlighting what
the tool identified as a fibre and a count of the number of fibres. The
spacing between the letters on the grid was used to back calculate the
magnification, and thus measure the fibre length. This is important
because, unlike the number of fibres, the fibre length can not be
measured by eye by a technician.

2.4 Communication

To reduce barriers to participation the project adopted an
informal communication style that used visuals and infographics
where possible. During recruitment, a short animation was used to
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FIGURE 1
(a) Sample dish with forensic tape, (b) dish in a bedroom, (c) example microscope image and (d) counting grid placed over sample for systematic
counting of the number of microfibres deposited.

explain the issue of airborne microfibres and describe the project
(https://youtu.be/WlYBIs4zSoA), results were communicated
back to participants in the form of infographics (https://zenodo.
org/records/14515137). This approach was designed to simplify
complex information and ensure that participants could easily
understand the topic and build a sense of community among the
participants.

3 Results

Thirty-seven people registered to take part in the pilot and
twenty-nine returned samples (79%), each participant returned
eight sample dishes (so in total 232 sample dishes were returned).
One sample dish recorded zero microfibres, likely due to user error,
this result was excluded.

3.1 Dishes placed in the same room

Participants were asked to place two sample dishes in each room
(A and B) in an open and uncovered location that was unlikely
to be disturbed (e.g., on top of a table or chest of drawers, see
Figure 1b. Two sample dishes per room were provided to allow

evaluation of the robustness of the measurement technique; if
both dishes record similar values it implies that the dishes are
capturing a concentration that is broadly representative of the
concentration in the room. Figure 3 shows a comparison of the
measured deposition rates between the sample dishes in group A
and group B. Overall deposition rates were very similar; the average
deposition rate (fibres m-2 day-1) of fibres in group A is 1,909 (SD =
2,165) and in group B is 2,013 (SD = 2,360).

3.2 Average concentrations within
households

The range of measured deposition rates across all sample dishes,
in all rooms is shown as a histogram in Figure 4. The average
concentration of fibres collected was 1,960 fibres m-2 day-1, the
range of reported depositions was 69 to 13,175 fibres m-2 day-1. The
deposition rates measured are within the range of other studies, for
example, Dris et al. (2017) measured an average indoor microfiber
deposition rate of between 1,586 and 11,130 fibres m-2 day-1 over
4 separate months in two apartments and one office block in Paris
(France), Zhang et al. (2020) measured in three locations in a single
building and found a range of 1,400 to 77,000 fibres m-2 day-1.
Soltani et al. (2021) used a citizen science approach to measure for a
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FIGURE 2
Schematic showing the data collection and analysis methodology for the pilot phase of Homes Under the Microscope.

FIGURE 3
Comparison of deposition rates between the sample dishes in group A
and group B where A and Bare in the same room.

month in 32 homes in Sydney, Australia, they found a range of rates
from 308 to 17,642 fibres m-2 day-1. Nizamali et al. (2023) reported
indoor deposition in laboratories and homes ranging between 0 and
573 items m-2 h-1 (0 - 13,752 items m-2 day-1).

3.3 Variability between homes

One aim of the HOMES pilot was to investigate the range of
microfibre concentrations across different homes - do some homes
have higher microfibre loading than others? Figure 5 shows the
range of measured rates for each home as a box and whisker plot
(data from each home is made up from the eight sample dishes).
The average deposition per home ranged from 570 to 4,534 fibres
m-2 day-1. However, in many homes, the average concentration is
higher than the median (red dot in Figure 5 compared to the black
bar). This suggests that a few samples with very high deposition
rates are increasing themean, leading to a right-skewed distribution.
This implies that for most homes the higher average is caused
by a few samples which show a much higher deposition rate
indicating that theremay be significant variability in deposition rates
within a home.

3.4 Variability between rooms

The sample data was grouped by the room type reported
by the participants. As participants were given free choice as to
which rooms to sample a large range of room types were reported.
The most standard room types dominated (bedroom, bathroom,
kitchen) but some room types were sampled by only a small
number of participants (craft room, utility room, stairway/hall).
There is insufficient data to generalise the data from the less
common room types (fewer than six sample dishes returned) so
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FIGURE 4
Frequency distribution of the concentration of fibres collected across all samples (all rooms, all participants).

FIGURE 5
Microfibre deposition rate per participant (arranged in ascending order of mean, black bar shows the median and red dot the mean). The range shown
in the box and whisker is from the range sampled across the eight dishes per home.

these have been grouped in a single “other” group. “Ensuite” was
grouped within the bathroom category and “spare room” was
categorised as bedroom. On one sample no room type was reported
that sample was grouped within “other” for this section. Of the
named rooms office/study had the fewest samples (8) followed
bathrooms (30), kitchen (48), living room (50) and bedroom
(72). Some rooms may have dual use, e.g., spare room and office

which makes the categorisation less clear. The range of microfiber
deposition rates for each category of room is shown in Figure 6.
The highest average microfibre deposition rate was recorded in
bedrooms (2,893 fibres m-2 day-1) closely followed by bathrooms
(2,482 fibres m-2 day-1) while other rooms were much lower,
with kitchen (1,225 fibres m-2 day-1) and living room (942 fibres
m-2 day-1).
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FIGURE 6
Average microfibre deposition rate per room measured by the HOMES pilot participants. Median shown by the black bar and mean by the red dot.

3.5 Use and evaluation of the automatic
counting tool

Participants were invited to upload photos to the HOMES
website, where an image processing tool automatically counted
the particles and gave participants a short report detailing the
microfibre count, dominant fibre colours and shape. It was made
clear to the pilot participants that the tool was still under
development and that data from the images was for information
and engagement only and not crucial to the main scientific aim
of the project. No fibre counts from the images taken by the
participants have been used in this paper as the methodology is still
under development.

As expected, the photos captured by the participants varied
in quality; some were rotated, some had a vignetted (dark circle)
area created by the microscope and quite a few were slightly
out of focus or taken with little light. The image processing tool
had some skill in identifying fibres, but several issues were also
clear (highlighted in Figure 7). The tool had three main problems;
1) it erroneously counted the letters on the grid as fibres, 2)
counted tiny particles as well as fibres and 3) often incorrectly split
long fibres into multiple smaller ones. These were improved in a
subsequent version trained using the images collected during the
pilot phase.

Image processing offers an attractive way of greatly increasing
the number of samples that can be analysed, but results from
this pilot shows that further improvements are still needed.
Giving participants more training or clearer examples to follow
would likely improve the quality of the images. Advancements
in machine learning, particularly in computer vision and deep
learning, could help address key issues identified in the pilot study,
such as misclassification, erroneous segmentation, and sensitivity to
image quality.

4 Discussion

Indoor airborne microfibres are a potentially important type of
indoor air pollution in the home, but they are understudied due
to the relatively recent recognition of their importance and the
difficulty of measuring within the home environment. Community
(or citizen) science projects offer an opportunity for increased data
collection while also raising awareness of the issue and building
engagement and encouraging the public to take an active role in
finding solutions to the problem (Nelms et al, 2022).

4.1 Microfiber concentrations in homes

This paper has presented the range of microfibre deposition
rates in 29 homes in Bristol, UK. Participants placed two sample
dishes per room in four rooms of their house. Across all samples,
deposition rates were between 69 and 13,174 fibres m-2 day-1 which
is within range of the limited data that exists, suggesting that the
simple low-cost passive sampler used is able to capture deposition
rates accurately. There was a factor of eight range between the
lowest and the highest average deposition rate per home (range
from 570 to 4,534 fibres m-2 day-1), showing that some homes have
much higher overall microfibre deposition rates (and thus airborne
concentrations) than others. Future work is required to understand
the cause of these differences, but it is likely that the number of
sources (e.g., amount of soft furnishings), strength of the sinks (e.g.,
ventilation) and residents behaviour (e.g., frequency of hoovering)
will all affect microfiber concentrations (Nizamali et al, 2023).

Bedrooms and bathrooms were found to have much higher
microfibre deposition rates than other room types (over 2,000
compared to around 1,000 fibres m-2 day-1) and thus should be
the subject of future measurement studies, particularly bedrooms
as they are of particular importance for health as they are a room
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FIGURE 7
(a) an example image uploaded by participant and (b) the “segmented” image where the tool has attempted to separate the fibres from the background
and (c) the processed image with the identified fibres marked in white shading. The top row shows results before improvements and the lower row the
improved version (after the pilot).

in which people typically spend a significant amount of time. The
relatively low values in the living room are surprising as these rooms
typically have a significant amount of soft furnishings, thus it may
be the how the room is used that contributes to the difference.

4.2 Participant engagement

Effective communication between researchers and participants
is crucial in community science projects, not just in the recruitment
phase but also during and after the study. In HOMES, a
visual style was adopted with the use of a video (https://www.
youtube.com/watch?v=WlYBIs4zSoA) and infographics to describe
the project and convey results (Pringle, 2024). One challenge
encountered was that ensuring that participants understood that the
project was a pilot study, with novel methods that may not always
work as expected. It was essential to communicate this uncertainty
clearly without undermining participants' confidence in the
scientific process. Feedback was provided through an infographic
titled “Homes Under the Microscope: How You Changed the
Project”, which acknowledged participants' contributions and
highlighted how their contributions lead to improvements in the
subsequent phase of the project. When designing the project, it
was anticipated that participants would want to know about the
concentrations in their samples without the long timescales required
for full laboratory analysis. The online counting tool gave users
a quick approximate microfibre count. The images participants
uploaded to the website were used to identify errors and improve
the tool (again this was passed back to participants). While the
tool still requires further evaluation and development automatic

counting of fibre samples has the potential to create a step change
in the number of samples analysed. Because a single geographical
location was chosen it was possible for HOMES staff to deliver
and collect sample kits in person, with the added advantage that
participants and researchers were often able to talk more informally.
HOMES staff reported that feedback collected informally at sample
collection pickup was often more comprehensive than the written
feedback that was incorporated into the design of the project (Sardo,
2023). A full evaluation of the HOMES participants experiences is
beyond the scope of this paper, but overall participants were positive
about the project, one family commented “we all really enjoyed it,
and it has taught us more about our home!” and another said “I
found it a great experience, so interesting to take part.”

5 Conclusion

In this paper we describe the pilot phase of theHomesUnder the
Microscope community science project inwhichwepiloted a simple,
low-cost and accessible method to collect airborne microfibers.
Measurements taken were within the range of those taken by other
approaches. A community science approach was chosen for this
project because although the home environment is important for
health, their private nature makes it difficult for scientists to access
a range of homes. The method presented has potential to be used
in future studies as the sample collection method is very simple and
easy to scale.

There is a growing recognition of the potential for airborne
microfibers as a health and environmental concern, but airborne
microfibers remain largely unregulated. Improved characterisation
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of the home environment could contribute to better understanding
and the development of more appropriate regulations. There
is also a need to integrate airborne microfibre research into
broader discussions on sustainable building materials, ventilation
strategies, and indoor air pollutant mitigation. Airborne microfibres
in buildings pose an emerging environmental and health risk.
Reducing emissions at the source through improved textile
design requires industry and government collaboration, while
better ventilation can help lower indoor concentrations and
personal exposure. Community science can support these efforts by
identifying pollution hotspots, guiding interventions, and fostering
public awareness. Additionally, community science projects can help
to foster an informed public that is more likely to engage with the
issue and support the development of effective policies aimed at
reducing microfiber pollution and mitigating its impact on health
and the environment.
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