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A novel form of high-tech concrete known basalt fiber-reinforced high-
performance concrete (BFHPC) has been developed using traditional materials
that require extra admixtures to improve its mechanical properties. Machine
learning (ML) techniques provide a more flexible and economical way to predict
the mechanical property of chopped and minibar basalt fiber-reinforced high-
performance concrete based onmaterial properties and processing parameters,
enabling durable and environmentally friendly construction. Predicting the
mechanical properties of BFHPC precisely is crucial since it reduces design costs
and time, and it also minimizes material waste from several mixing experiments.
In this study, the compressive strength and flexural strength are predicted via
different types of machine learning models. Experiments carried out in the
laboratory under standard controlled settings at 7, 14, and 28-day curing periods
yielded sample data for analysis and model development. The mechanical
characteristics of BFHPC have been predicted using a combination of decision
tree, partial least squares, lasso, rigid, random forest regressor, K Neighbours,
and linear regressions. According to the results, all types of regression have the
best results except KNeighbors Regressor, Random Forest Regressor, and Lasso
Regression, with a correlation coefficient of R2 93%. Each model’s performance
and application are examined thoroughly, leading to the identification of useful
suggestions, existing knowledge gaps, and areas in need of further study.

KEYWORDS
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1 Introduction

The production of high-performance concrete (HPC) is a novel form of high-tech
concrete that is made with traditional materials and requires additional admixtures to
enhance the concrete’s mechanical properties and add high durability, workability, and
volumetric stability. Due to its long lifespan and safety features for building structures,
HPC is commonly employed in civil engineering projects (Hematibahar et al., 2023;
Hematibahar et al., 2024; Chiadighikaobi et al., 2024a). Numerous researches testify to its
exceptional performance. Since basalt fiber resists heat, alkali reactions, and corrosion in
concrete, its application in building materials is advantageous. Chopped basalt fiber (BF) is
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a sustainable alternative to carbon fiber because of its improved
properties and sustainable production method. Although the
production of BF is comparable to that of glass fibers, the absence
of chemical additions and low energy consumption make it better
for the environment (Wei et al., 2010; Zhao et al., 2022). Due to
its single processing method, BF is less expensive than other fibers.
Other applications for BF include electrical insulation, automotive
parts, sports equipment, fire protection, and so on. In addition, its
application in cementitious composites is still in its infancy. The
increase in the number of publications over the past 10 years gives
the impression of a growing interest in the application of BF to
various fields. Summarizes the increasing interest in the use of BF
for various purposes. Due to its improved mechanical properties,
chemical and thermal stability, sustainability, and other attributes,
BF saw an increase in usage (Sim et al., 2005; Jiang et al., 2014;
Sondarva and Bhogayata, 2017; Niu et al., 2019).

Enhancing the tensile strength, flexural strength, and durability
of High-Performance concrete is another reason to add basalt fibers
to it (Ayub et al., 2014b; Kharun and Koroteev, 2018).Their findings
demonstrated that the high-strength concrete with basalt fibers was
more durable than standard high-strength concrete. Basalt fibers
are added To increase the effectiveness of the High-Performance
Concrete (HPC) in this case,. The effects of introducing basalt
fibers are demonstrated by the greatly improved flexural and tensile
strength of HPC (Chiadighikaobi et al., 2021; Lam andHung, 2021).
Basalt fibers offer advantages on the financial front in addition to
their mechanical qualities (Hematibahar, 2021). The addition of a
portion of 1.2% basalt filaments had a substantial impact on the
compressive, tractable, and flexural strength of Superior Execution
Concrete despite the High-Performance Concrete containing varied
amounts of basalt fiber (0.4%–1.8%) (Ayub et al., 2014a). The
addition of basalt fibers to high-performance concrete through a
mixture of metacoaline and silica fume was investigated; the results
show that basalt fibers increase the durability of the concrete.

Moreover, silica fume can be used to fill the spaces between
the cementous matrix and basalt fiber (Mohaghegh et al., 2018).
Analysis was done on the addition of various percentages of basalt
fibers to high-performance concrete (Canbaz et al., 2022). It was
determined that 1.33% of the basalt fibre had the biggest influence
on the mechanical properties. In High-Performance Concrete,
more than 1.2% of Basal Fibres are generally productive in terms
of compressive, tensile, and flexural strength. As an illustration,
research has been done on glass fiber’s effects on concrete
(Farooq et al., 2021). In concrete, the tensile and compressive
strengths were found to be positively impacted by the length of
the fiber rather than the proportion of fiber weight. In this study,
a 100 mm-cubic sample is subjected to the compression test in
accordance with GOST (Russian Standard Code Design) and ASTM
(American Society for Testing and Materials) guidelines (GOST
24452-80 Betony, 2005; ASTM C. 109, 2017). Many studies attempt
to predict the mechanical properties of Ultra-High-Performance
Concrete (UHPC). As an example, (Wakjira et al., 2024), envisioned
sustainable economic and environmental (UHPC). They used tree-
and reinforcement-based machine learning (ML) models that also
predict compressive strength. In another example, (Altayeb et al.,
2024), used artificial intelligence (AI) agents that use deep
reinforcement learning (DRL) to minimize the cost of UHPC
mixes. They found that the AI Agent at 221 MPa reduced more

than 1,272 USD per cubic meter. (Guo et al., 2023). forcast
the carbon footprint, and compressive strength of UHPC via
machine learning. They found the minimum effect of UHPC via
mechanical propertis. In another example, (Mahjoubi et al., 2023),
predicted the carbon footprint of compressive strength, flexural
strength, mini-slump expansion and porosity of UHPC through AI-
guided approaches. (Mahjoubi et al., 2022). predict the predicting
compressive strength, flexural strength, workability, and porosity
of ultra-high-performance concrete (UHPC) through learning
framework and Light Gradient Boosting Machine (LightGBM).

Many studies investigated the impact of machine learning on
civil engineering and mechanical properties of special building
materials. For example, (Hematibahar et al., 2024) analyzed
predict the high-performance concrete and ultra-high-perfomance
concrete mechanical properties through Linear, Ridge, Lasso,
Random Forest, K-Nearest Neighbors (KNN), Decision tree, and
Partial least squares (PLS) regressions. They found that the best
result is for PLS regression with more than 93% R2. Another
examples is for tensile strength predicted via logistic algorithm.
The results show that R2 is more than 93% (Hematibar et al.,
2024). In the terms of predict the concrete mixture design,
Linear Regression (LR), Ridge Regression (RR), Support Vector
Machine Regression (SVR) and Polynomial Regression (PR) has
been applied. The best results was 93% for Polynomial Regression
(Hematibahar and Kharun, 2024). N. Beskopylny et al. predicted
concrete compressive strength via machine learning. They using
CatBoost, k-Nearest Neighbors, Support Vector regressions. They
found that the best result is for KNN-regression, with 99% R2

(Beskopylny et al., 2022). In another example, concrete properties
via vibro-centrifuged variatropic have been predicted through ridge
regression, decision tree and extreme gradient boosting (XGBoost),
finally R2 is 93% (Beskopylny et al., 2024).

The standard destructive test is the most reliable method to
assess the compressive strength of concrete in cast-in-place or pre-
existing structures. Ordinarily, conventional cylindrical or cubic
samples are considered in the lab for analysis of their compressive
strength.Nevertheless, a number of variables, including the kind and
size of the cement and aggregate, the fine aggregate modulus, the
water-to-cement ratio, the interfacial transition zone, etc., may not
have been taken into account, meaning that the test results might
not be in detail.Moreover, using the destructive evaluation approach
on existing concrete members at the site is inconvenient, and there
is a risk that the concrete member will be damaged in the course
of the procedure. In this sense, using nondestructive evaluation
(NDE) methods to evaluate the concrete strength is an acceptable
option when core sampling is not appropriate (Khan et al., 2021).
The process of determining concrete strength depends typically
on several empirical relationships between the test parameter and
the nondestructive variables. Therefore, more steps are required
for nondestructive variables, such as the conventional regression
analysis method. Computer prediction techniques can reduce
resources and time.

Additionally, by employing classical programming, equations
and algorithms can be converted from classical programming to
commuter programs (Erdal, 2013; Akande et al., 2014; Agrawal,
2022; AlAlaween et al., 2022, p. 3; Khorasani et al., 2022; Peng et al.,
2022; Shahmansouri et al., 2022; Yang et al., 2022). For the
purpose of forecasting concrete compressive strength at various
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curing time ages, an algorithm programming technique was created
(Chopra et al., 2016). The article concluded that, for all curing
period ages, the compressive strength prediction findings of the
created algorithm were precise and closely matched the results of
laboratory experiments. Additionally, taking into account mixed
design properties, ANNs are used as a mechanical property
prediction method (Khademi and Behfarnia, 2016). The findings
demonstrated that the ANNs’ predictionwas reasonable and that the
outcomes were nearly identical to the actual experimental findings.
Studies were conducted to determine the concrete strength of the
initial concrete mixture using the Multi-Linear Regression (MLR)
approach (Topçu and Sarıdemir, 2007). The findings demonstrated
the efficacy of the MLR estimate method for the first concrete. The
form and size of the dry aggregate were taken into consideration
when studying the data mining approach for determining the
compressive strength of concrete (Kashyzadeh et al., 2022). The
study discovered that the key factors influencing compressive
strength included the aggregate form and size.

Many studies have used computer modeling and machine
learning to predict the properties and mechanical properties of
concrete (Dai et al., 2022; Tian et al., 2024; Zhou et al., 2024).
Moreover, the ANNs programming technique was used to forecast
mechanical characteristics and comprehend the connection between
the compressive strength of concrete and the cement-water ratio.
Thus, the ability of ANNs and FL techniques to predict a concrete
mixture with more fly ash was independently studied (Kaplan et al.,
2019). The findings indicate that the coefficient of determination
(R2) value, which was equivalent to 0.90, increased when the
attention was placed on aggregate diameter as a predictor of
the mechanical properties of concrete. Based on the mechanical
characteristics of the aggregate, data mining was used to forecast
the mechanical properties of the concrete (Kashyzadeh et al.,
2022). The outcome demonstrates how aggregate property data
mining features influence compressive strength. Due to the design
code, which usually needs certain features, it is not easy to
forecast the mechanical properties of concrete with accuracy.
The machine learning (ML) techniques include ensemble learning
(EL), support vector machine regression (SVMR), and Gaussian
progress regression (GPR) to predict the mechanical properties
of lightweight concrete. The study found that the GPR predicting
R2 was 0.98. In a different instance, the compressive strength and
compressive stress-strain of concrete were predicted using classical
programming, and the outcomes indicate that R2 was greater than
0.97 (Hasanzadeh et al., 2022). Polynomial Regression (PR) may
predict mechanical qualities (R2 > 0.99), according to research
that used machine learning to predict the mechanical properties
of concrete. Hematibahar et al. analyzed different machine learning
models to predict High-Performance and Ultra-High-Performance
concrete mechanical properties. The study finds that a model to
predict mechanical properties is for Partial least squares (PLS)
regression with more than 93% for the coefficient of determination
(R2). (Chiadighikaobi et al., 2023). analyzed the historical structure
design with data analysis and soft programming. The result shows
that R2 was more than 0.44. In another example, (Ly et al.,
2021), predicted load-carrying capacity of concrete-filled steel
tubes (CFST) via artificial intelligence (AI) algorithms. They used
adaptive neuro-fuzzy inference system (ANFIS) to predict CFST.
They understand that R2 is 0.94 when they used ANFIS model.

(Asteris et al., 2021a). analysis the prediction of compressive
strength of concrete via machine learning. They used more than
1,030 concrete compressive strength recods. They used onventional
machine learning (CML)models, namely, Artificial Neural Network
(ANN), Linear and Non-Linear Multivariate Adaptive Regression
Splines (MARS-L and MARS-C), Gaussian Process Regression
(GPR), and Minimax Probability Machine Regression (MPMR)
to predict compressive strength of concrete. In another example
(Armaghani et al., 2021), predict the compressive strength of
granite through 182 data sets of non-destructive tests reported in
the literature. They predict 70% accuracy of compressive strength
(Asteris et al., 2021b). predict rectangular concrete-filled steel tubes
(CFST) through a very new optimization technique and artificial
neural network (ANN). They used a database of 422. They found
that the ANN-BCMO model is an optimal model for predicting
rectangular CFST. In another example (Kardani et al., 2022),
forcast the thermal conductivity of unsaturated soils via propose
hybrid adaptive neuro swarm intelligence (HANSI) techniques.
They used artificial neural networks (ANNs) and particle swarm
optimisation (PSO), finally, they found that R2 is more than 0.94.
Moreover, (Cavaleri et al., 2022), predicted the bond strength of
reinforced concrete through machine learning. They showed that
seven parameters including bar diameter, ratio of concrete cover
to diameter of rebar, ratio of diameter of rebar to embedment
length, ratio of transverse reinforcement, yield strength, compressive
strength of concrete and corrosion level are considered as inputs.
They understand that the R2 is more than 0.75.

In order to forecast the mechanical properties of cement, the
current study used different types of machine learning (ML) to
predict the best mechanical properties. The foundation of the
continuing review was the chopped and minibar basalt fiber high-
performance concrete (BFHPC).TheBFHPCmechanical properties
are predicted using a Logistic Function. The compressive strengths
of HPC comprising have been estimated using linear, lasso, rigid,
random forest regressor, KNeighbors, decision tree, and partial least
squares regressions. Furthermore, the correlation coefficient (R2),
mean absolute errors (MAE), and root mean squared errors (RMSE)
have all been used to validate the prediction models.

2 Materials and methods

2.1 Experimental study

The conducted tests have presented the compressive strength
results of high-performance concrete of basalt fibers BFHPC.
The HPC study’s primary objective was to determine the most
appropriate and stable percentages of minibar basalt fiber and
additional glass fiber. However, the addition of basalt fibers to High-
Performance Concrete increased the concrete’s tensile, flexural,
and durability. However, the mechanical properties of High-
Performance Concrete were significantly durable. The compression
test is performed on a 100 mm-cubic sample using the ASTM
(American Society for Testing and Materials) and GOST (Russian
Standard Code Design) standards. Three different samples are used
every day for the seven-, fourteen-, and 28-day compressive strength
tests. An SB mini 133-L mixer is used to mix the two kinds of
aggregates for about 2 minutes according to the concrete mixture
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FIGURE 1
Test equipment for preparing the mixing and molding process. (a) Pan Mixer, (b) Concrete formwork, (c) Moist Cabinet, (d) Samples cleaning process.

design method. After that, water is added to the cement. After
the chemical powders have been added, the concrete is mixed for
approximately 2 minutes later. Figure 1a shows that thematerial was
mixed using the Concrete pan mixers at a steady 48 rpm. Figure 1b
shows that the concrete mix is placed on 100 mm cubic concrete
formworks so that it is ready for moulding. After the moulding
procedure, the concrete cube sample is submerged at 20°C for 48 h.
Following that, the samples are stored for 7, 14, and 28 days at 15°C
in a moist cabinet for the curing phase, as Figure 1c) shows. Lastly,
the cubes are cleaned before the compression test. Cleaning the
cubes will yield the most accurate and optimal compressive strength
findings (Figure 1d). The materials mixture is Micro silica MK-
85 was produced by Novolipetsk Steel company (NLMK), quartz
flour produced by SIBELCO Russia company, superplasticizer was
admixture based on Polycarboxylic Ether (Glenium 115), crushed
granite with fractions of 5–20 mm were used in this experiment,
quartz sand a fineness modulus of 0.8–2.7 mm, Portland Cement
M500 D0 (CEM I 42.5 N) Cement by South Ural mining and
processing company in Russia, tap water, and basalt fiber (chopped
and minibars as shown in Table 2) for BFHPC.

Additionally, silica fume is added to the concrete to close
gaps between the basalt fibers and the cementitious matrix. The
inclusion of basalt fibers in the mixture improves the flexural and
tensile strengths ofHigh-PerformanceConcrete. Table 1 displays the

Basalt Fibre High-Performance Concrete Mixture utilized in this
investigation.

The flexural and tensile strengths of high-performance concrete
are enhanced despite the basalt fiber’s reduction of the material’s
compressive strength. Compared to other concrete combinations,
themechanical qualities of Basalt FibreHigh-Performance Concrete
(BFHPC-12), which had 1.2% of basalt fiber added, were more
resilient. The mechanical characteristics of minibars basalt fiber
high-performance concrete and glass fiber are displayed in
Figures 2, 3, respectively.

2.2 High-performance concrete

Due to the use of a low water-to-binder ratio and a high
volume of fine particles (cement volume), high-performance
concrete (HPC) is more durable than conventional concrete.
Moreover, silica fumes or micro silica play a durable and void
filler role in concrete. Basalt fiber has been added to increase
the mechanical properties and durability. Previous experiments
have shown that basalt fiber can help improve the mechanical
properties of concrete (Chiadighikaobi et al., 2021).The workability
of cementitious mixes is important for their appropriate placement
and composite performance. The addition of fibers to cementitious
mixes diminishes their workability, which decreases with increasing
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TABLE 1 Properties of different types of basalt fiber.

Type Length (mm) Diameter (mm) Tensile Strength (MPa) Young Modulus (GPa)

Chopped 18 1.75 4,100–4,840 93.1–110

Minibars 18 1.2 1,080 44

TABLE 2 The mixture design of basalt fiber high-performance concrete.

Specimens W/C C/Ag∗ Micro silica (Kg/m3) Quartz flour
(Kg/m3)

Plasticizing (Kg/m3) Fiber (Percentage)

BFHPC 0.375 0.315 125 100 12.5 —

BFHPC-6 0.375 0.315 125 100 12.5 0.6

BFHPC-9 0.375 0.315 125 100 12.5 0.9

BFHPC-1.2 0.375 0.315 125 100 12.5 1.2

BFHPC-1.5 0.375 0.315 125 100 12.5 1.5

BFHPC-1.8 0.375 0.315 125 100 12.5 1.8

∗C/Ag: the cement per aggregates (sand + gravel) ratio.

FIGURE 2
The compressive strength of chopped basalt fiber high-performance concrete.

dose and fiber length. The high water uptake of the basalt fiber,
resulting in limited water for workability, could be linked to the
decrease in slump of the concrete mixes with the inclusion of the
basalt fiber (Vatin et al., 2024).

Several results have been reached on the influence of basalt
fiber on the compressive strength of cementitious composites.
Many studies have demonstrated that adding a specific amount
of basalt fiber to cementitious composites can increase their
compressive strength. Other investigations have found that the
compressive strength of cementitious composites containing
basalt fiber is decreased for all doses when compared to the
control (Kharun et al., 2022). The current study has shown
that 1.2% of glass fiber and 0.9% of minibar basalt fibers were

optimal percentages of maximum compressive strength of concrete
(Hematibahar et al., 2022; Vatin et al., 2024).

Adding basalt fiber to HPC can reduce the slump, for example,
(Niu et al., 2019), understand that when dosage of basalt fiber in
HPC increase the slump decerased. They found that control sample
of HPC slump is 182 mm, while slump of HPC reinforced with
0.20% was 63 mm. The most effect of basalt fiber to reinforced
HPC was improvement of tensile and flexural strengths. Algin and
Ozen (Algin and Ozen, 2018) understand when basalt fiber added
to concrete (0%–1.5%) tensile strength increase (10 MPa–13 MPa).
In another example, (Guo et al., 2019), reinforced concrete via
basalt fiber. They found that the flexural strength increased by
more than 48% by adding 0.6% basalt fibers to concrete. While
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FIGURE 3
The compressive strength of minbars basalt fiber high-performance concrete.

reinforced concrete with basalt fibers can significantly improve the
flexural and tensile strength, other types of fibers cannot affect
the flexural and tensile strength of concrete as much as reinforced
basalt fibers (Momeni et al., 2024). Also, sometimes reinforced
concrete with a 3D printed structure does not have a great effect
like adding special fibers to basalt fibers. The biggest difference
between reinforced concrete through basalt fibers and other types
such as 3D printed structures is in the change of soft and hard
softening (Hematibahar et al., 2023).

2.3 Algorithm of study

Thecurrent study was based on the experimental results of high-
performance concrete reinforced basalt fiber (Hematibahar, 2021).
Equation 4 was found based on previous studies and experimental
studies on the HPC (Hasanzadeh et al., 2022). Next, the compressive
strength was verified through Correlation Coefficient (R2), Mean
Absolute Errors (MAE), and Root Mean Squared Errors (RMSE).
According to this study, the linear, rigid, and polynomial regressions
have been investigated to predict the compressive strength of
BFHPC. The regressions have been applied by the Skylearn library
in Python programming language to establish the machine learning
method. Moreover, the failure of concrete has been investigated in
the current study. First, the equations have been derived into Python
through machine learning.

2.3.1 Machine learning
The Linear Regression (LR) Equations are defined (Khademi

and Behfarnia, 2016): Ridge Regression is a type of regression
that can analyze multiple data with multicollinearity. Moreover, by
adding a degree of bias to the regression estimates, Ridge Regression
illustrated in Equation 1 decreases errors and obtainsmore accuracy
(Abhishek, 2021; Enwere et al., 2023):

v = δ0 + δ1w1 + δ2w2 + δ3w3 + δ4w4 + ε+ λ∑(δ21 + δ
2
2 + δ

2
3 + δ

2
4),
(1)

where v is the dependent variable, w is the independent variable,
δ0 is the y-intercept and δ1 is the regression coefficient representing

the change in v concerning the change in w, also called the
slope, and λ is the Ridge Regression penalty ratio, ε is the error
term, ∑(δ2i ) represents the sum of the squares of the coefficients.
Lasso Regression means Least Absolute Shrinkage and Selection
Operator (LASSO). LassoRegression is a usual regression for solving
multicollinearity issues, while unlike Ridge Regression, results in
some coefficient predictions are equal to zero. Equation 2 shows
the Lasso Regression Equation (Melkumovaa and Shatskikhb, 2017;
Enwere et al., 2023):

v = δ0 + δ1w1 + δ2w2 + δ3w3 + δ4w4 + ε+ λ∑|δ1| + |δ2| + |δ3| + |δ4|,
(2)

where v is the dependent variable, w is the independent variable, δ0
is the y-intercept, and δ1 is the regression coefficient representing
the change in v concerning the change in w, also called the slope.
Moreover, the λ is the regularization parameter, ε is the error
term, ∑|δi| is the sum of absolute values of coefficients. Figure 4
shows the Random Forest regression method and Leo Breiman
proposed Random Forest, a clever mix of classification algorithms
based on statistical learning theory, in 2001. In Random Forest, the
bootstrap method is mostly used for resampling from the original
data to produce additional samples. Following the construction of
classification trees for each bootstrap sample, casting is used to
determine the final results once the predictions of the classification
trees are pooled, as seen in Figure 4 Considering the random
forest regression method, after collecting the data, the data set
was transferred to the training data. The first step involves using
the Random Forest to estimate the n diversity of trees from the
subsequent training data set. The Random Forest calculates the
regression’s final result by averaging all of the predictionsmade from
the training data. (Gandomi and Roke, 2015; Abrori et al., 2022).

K-Nearest Neighbors (KNN) is commonly used for
classification, although the regression algorithm of KNN is also used
as a prediction method. In the KNN prediction algorithm:Training
example as {xi, yi} , where training example values are xi and
yi are output characters of actual values. The test point is
known as x, and the construction is known as the prediction
(Beskopylny et al., 2022).
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FIGURE 4
Random forest scheme (based on Qureshi et al., 2023) Partial least squares (PLS) is multiple linear regression modeling based on simulating predictors
and observable and transfer data to new space (based on Rong et al., 2024).

TABLE 3 The hyperparameter tuning for the linear regression model.

Parameters Values

n-splits 8

n-repeats 3

random-state 1

A decision tree is used for both classification and
regression algorithms (Myles et al., 2004), and the direct node
includes root nodes, inner nodes, and leaf nodes as a simple
algorithm. Commonly, nodes in the direct tree algorithm
predict a data category or direct data. Finally, the operation
process multiplies judgments to predict values with different
characteristics (Wang et al., 2024).

Applied ML models were designed to fit the selected data
set and desired results. This section presents the hyperparameters
and parameter settings for each ML model. Hyperparameter
optimization is the most important factor to minimize the
overfitting problem. In this case, the final parameter values are
selected through Optuna (Wakjira et al., 2022). Table 3–5 show
the hyperparameter tuning of linear, lasso and Ridge Regressions
respectively.

According to Table 7, λ is 5 and min-sample-split is 15 for
hyperparameter tuning of Ridge Regression model, Table 6 shows

TABLE 4 The hyperparameter tuning for the lasso regression model.

Parameters Values

λ 5

min-sample-split 18

TABLE 5 The hyperparameter tuning for the Ridge Regression model.

Parameters Values

λ 5

min-sample-split 18

that max-depth is 5, n-estimators is 15 and min-sample-split is 18
for forest regressor model.

Table 7–9 illustrate the hyperparameter tuning of decision tree
regression model, K Neighbors regression model and partial least
squares regressions model respectively.

2.3.2 Verification
To find the verified prediction, the correlation coefficient

(R2) as expressed in Equation 3, mean absolute errors
(MAE), and root mean squared errors (RMSE) have been
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TABLE 6 The hyperparameter tuning for the random forest
regressor model.

Parameters Values

max-depth 5

n-estimators 15

min-sample-split 18

TABLE 7 The hyperparameter tuning for the decision tree
regression model.

Parameters Values

max-depth 6

max-leaf-node 5

TABLE 8 The hyperparameter tuning for the K Neighbors
regression model.

Parameters Values

n-neighbours 6

metric Euclidian

sample-weight None

TABLE 9 The hyperparameter tuning for the partial least squares
regressions model.

Parameters Values

n-splits 8

n-repeats 3

random-state 1

established.

R2 = 1−
∑(y−ˆy)2

∑n(y− y)2
, (3)

where y, ′y and y are the actual, predicted, and mean of the actual
value, respectively. The MAE equation is equal to the sum of the
numerical differences of the values of the community set divided by
whole numbers Equation 4:

MAE = 1
n
∑n|y− ̂y|, (4)

RMSE calculates the average deviation of each actual data point
and the predicted results. (Equation 5):

RSME = √ 1
n
∑n(y− ̂y)2, (5)

3 Results and discussion

3.1 Machine learning

Figure 5 shows database condition of test, train and prediction.
According to Figure 5, test, train andprediction have been illustrated
to each all regression types.

According to machine learning results, Figure 6 shows the
current study heatmap. This heatmap illustrates basalt fiber had a
negative effect on compressive and flexural strengths. Moreover,
the compressive strength of chopped BFHPC had a negative
effect on flexural strength, too. Figure 6 demonstrates that the
compressive strength ofMinibars BFHPC has a positive effect on the
flexural strength of Minibars BFHPC. The main resoan of negative
correlation between basalt fiber and other elements are related to
compressive strength.

Figuring out which dimension to ignore and which is more
prone to error is made easier by looking at the Pair Plot graph
for feature correlation information across multiple dimensions
(Elhishi et al., 2023). According to Figure 7.

• Basalt fiber and compressive strength for chopped BFHPC
do not have any correlation with other flexural strengths and
compressive strengths.

• Compressive strength ofMinibars BFHPC and flexural strength
of chopped and minibar

• BFHPC also has the most correlation with other
elements.

Figure 8 and Table 10 show regression results. According
to Table 10, all regression types had good results with high
R2, RMSE and MAE, but some regressions have better results
than others. For example, Decision Tree Regressor, Random
Forest Regressor, and Ridge Regression had maximum R2

(0.99). While, Lasso Regression, Random Forest Regressor, and
KNeighbors Regressor had R2 0.93, 0.98, and 0.98, respectively.
Overall, regression results in Figure 8 and Table 10 illustate that
the experimental and prediction results are similar. According
to the different meta-parameters and different equations of
each type of regression, the results of the regressions are
different.

Miao et al. (2024) predict the elasticity modulus, compressive
strength and tensile strength via hybrid machine learning
algorithms. They found that the best R2 is 0.93for SSA-XGB hybrid
prediction algorithm. In another example, (Matthews et al., 2024),
predicted the reinforced concrete beam. They examined more than
804 databases to find optimal prediction results.They used radiation
boosting regression trees and random forests and consistently
produced the best predictions. Their results for R2 GBRT algorithm
ismore than 0.96. (Shu et al., 2024). analyzedmore than 372 database
to predict the shear strength via advanced machine learning (ML)
models.They found that Explainable BoostingMachine (EBM) with
R2 more than 0.92 is the best model with high results. Among these
studies and results, the results of the present study showbetter results
than other studies with R2 greater than 0.99 for linear regression,
ridge regression, decision tree regression, and PLS regression.There
are other types of regression such as Extended Support Vector
Regression Method (XSVR), this algorithm can improve to achive
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FIGURE 5
Test and train results of machine learning; (a) Linear (b) Lasso, (c) Ridge, (d) K Neighbors, (e) decision tree (f) partial least squares regressions.

the better results than Support Vector Regression Method (SVR)
(Yu et al., 2020a; Yu et al., 2020b) developed an algorithm for XSVR
method to analyze hydrated cement in acidic environment. They
found that the XSVR algorithm is highly efficient with an R2 greater
than 0.99. In anther example, (Wang et al., 2022), examined a new
algorithim based on the SVRmethod called Twin Extended Support
Vector Regression (T-X-SVR). T-X-SVR is suitable for engineering
applications where stability and robustness are used for machine
learning techniques. Furthermore, they found that the accuracy
of this regression was significantly high. Algorithms. Although T-
X-SVR, X-SVR and SVR have high accuracy, this study prefers
to focus on chopped and minibars in high-performance concrete
through machine learning instead of using different types of
regression. But according to the current study, Linear, Ridge and PLS
regressions are very accurate and there is no need to use other types
of regression.

4 Discussion

In this study, the mechanical properties of HPC reinforced
with chopped basalt fibers and mini-bars were predicted using
machine learning. Unlike traditional methods that are usually
based on analytical relationships and empirical models, this study
used advanced machine learning models to improve the accuracy
of predicting the compressive and flexural strengths of HPC.
Traditional methods, such as linear regression, require strict
assumptions about the data distribution and relationships between
variables, while machine learning allows for the investigation
of complex and nonlinear patterns without the need for these
assumptions. One of the key differences between traditional
methods and machine learning models is the way they process data
and the level of prediction accuracy. In conventional methods, such
as linear regression and classical models, the relationships between
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FIGURE 6
Heatmap correlation between all elements of chopped and Minibar BFHPC.

variables are defined as linear and the effect of each parameter is
examined independently. However, in machine learning methods,
such as random forest and PLS regression, the model is able to
identify complex interactions between different parameters and
significantly increase the prediction accuracy.This capability leads to
more stable and accurate predictions, especially in situations where
laboratory data is noisy or uncertain.

In this paper, comparisons are made between traditional
methods andmachine-basedmethods for predicting themechanical
properties of HPC. Conventional mathematical methods are usually
based on mathematical models and empirical relationships that use
analytical relationships to estimate the compressive and flexural
strengths of concrete. These methods, such as linear regression,
ridge regression, and lasso regression, assume that the independent
and dependent variables are linear or quasi-linear. One of the
main challenges of these methods is that they do not provide
sufficient accuracy in the complexity of the relationships between
the two. Also, these methods are subject to assumptions such
as the distribution of data software and independent dependent
variables that may exist under certain conditions. In contrast,
machine-based methods, such as forest networks, PLS regression,
and artificial neural models, are able to identify complex and
nonlinear relationships. These models can use a large amount of
information to make more accurate predictions without having to
make strict assumptions about the distribution of the data. One
of the main advantages of HPC is that it can handle multiple

variables and is better at modeling the compressive and flexural
strengths than other models. This feature leads to more stable
and reliable predictions, especially when the inputs are noisy or
measurements are made with lower precision. In addition, while
traditional methods are often developed based on limited data
obtained from controlled experiments, machine learning models
can identify hidden dependencies and have more generalizable
performance by processing a large amount of data. Specifically,
in this study, it was observed that machine learning models
such as linear regression, ridge regression, and PLS were able
to predict HPC compressive strength with an accuracy of more
than 99%, while traditional methods such as lasso regression and
simple linear models had lower accuracy. These results demonstrate
the superiority of machine learning methods in analyzing and
predicting the mechanical properties of HPC.

The results of this study show that machine learning can be
used as a powerful tool in predicting the mechanical properties of
high-performance concrete (HPC). However, it should be noted that
machine learning models cannot completely replace physical tests,
but rather act as a complementary method to reduce the number
of tests, save time and costs, and optimize concrete mix design. In
this study, the results of machine learning models are evaluated and
validated using experimental data obtained from standard tests at
ages of 7, 14, and 28 days. The high values of correlation coefficient
(R2 > 0.99) and the comparison of mean square error (MAE and
RMSE) between predicted and actual values indicate the accuracy
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FIGURE 7
The pair plot of chopped and Minibar BFHPC.

and reliability of the proposed method. However, in practical and
applied projects, it is still necessary to conduct experimental tests
and physical investigations to ensure the mechanical performance
of concrete under different environmental conditions. Machine
learning models can be a complementary tool to accelerate the
development and design of new concretes, but the ultimate accuracy
of predictions needs to be validated through standardized testing.
Future research could focus on developing larger databases and
integrating laboratory data with more advanced machine learning
models to increase the accuracy and generalizability of these models
to real-world construction conditions.

To further enhance the prediction accuracy of mechanical
properties in basalt fiber-reinforced high-performance concrete
(BFHPC), hybrid modeling techniques could be explored.
Combining multiple machine learning algorithms, such as
integrating neural networks with ensemble methods (e.g., gradient
boosting or random forests), may capture complex nonlinear
relationships and interactions between material variables more
effectively. For instance, a hybrid approach like ANN-SVM
(Artificial Neural Network-Support Vector Machine) or XGBoost
combined with feature selection techniques could improve
robustness and reduce overfitting. Additionally, incorporating
physics-based models with data-driven ML could bridge gaps
where experimental data is limited, ensuring predictions align with
material science principles. Such hybrid strategies could achieve
higher R2 values, lower RMSE, and better generalization across

diverse concrete mixtures, advancing the reliability of predictive
tools in civil engineering.

Hybrid modeling approaches could be investigated to further
improve the mechanical property prediction precision in basalt
fiber-reinforced high-performance concrete (BFHPC). Combining
multiple machine learning algorithms, such as integrating neural
networks with ensemble methods (e.g., gradient boosting or
random forests), may capture complex nonlinear relationships
and interactions between material variables more effectively. For
instance, a hybrid approach like ANN-SVM (Artificial Neural
Network-Support Vector Machine) or XGBoost combined with
feature selection techniques could improve robustness and reduce
overfitting. Additionally, incorporating physics-based models with
data-driven ML could bridge gaps where experimental data is
limited, ensuring predictions align with material science principles.
Such hybrid strategies could achieve higher R2 values, lower
RMSE, and better generalization across diverse concrete mixtures,
advancing the reliability of predictive tools in civil engineering.

5 Conclusion

This study evaluates the efficacy of machine learning algorithms
for the prediction of mechanical properties of concrete using
nondestructive testing on high-performance concrete (HPC), which
encourages long-lasting and ecologically friendly building. The
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FIGURE 8
(Continued).

mechanical properties of minibar and chopped basalt fiber-
reinforced high-performance concrete (BFHPC) were investigated.
Sample data for analysis and model creation was obtained
from laboratory experiments conducted under standard controlled
settings at 7, 14, and 28-day curing intervals. In conclusion, this

paper examines models for predicting compressive strength using
three data mining techniques and experiments. They developed a
program to simulate a reinforced building against concrete. They
found 96% accuracy, while the current accuracy was 99% with PR
for minibars and 93% for glass fibers.
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FIGURE 8
(Continued). The regression of chopped and Minibar BFHPC (MPa) (a),
Linear Regression; (b), Lasso Regression; (c), Ridge Regression, (d),
Random forest Regression, (e), K-Nearest Neighbors (KNN)
Regression; (f), Decision tree Regression (g), Partial least squares (PLS)
Regression.

TABLE 10 Regression results.

Regressions R2 RMSE (MPa) MAE (MPa)

Linear Regression 0.99 0.01 0.01

Lasso Regression 0.93 0.96 0.83

Ridge Regression 0.99 0.01 0.01

Random Forest Regressor 0.98 0.02 0.01

KNeighbors Regressor 0.98 0.43 0.34

Decision Tree Regressor 0.99 0.03 0.02

PLS Regression 0.99 0.01 0.01

The failure results demonstrate that the ANNs can predict the
failure and cracks on the surface of the compression cube. Overall,
the current study can help civil engineers predict the compressive
strength of High-Performance Concrete with soft programming,
and Machine Learning for the failure of compressive strength. The
research follows the conclusions.

1. The results indicated that the RMSE was greater than 16.99,
the MAE was greater than 2.1, and the R2 was greater than
0.97. The Taylor diagram of the compressive strength for the
experimental and prediction results.

2. According to the prediction made by Machine Learning,
polynomial regression yields the best results, with correlation
coefficient values of greater than 0.93 and 0.99 for glass fiber
and minibar basalt fibers, respectively.

3. As the limitation of the current study is theminimumdatabase
and the future work can increase the database.

4. The failure test results show that the predictions and the
experimental results are very similar. Because of its great
precision, the machine learning prediction of mechanical
properties will benefit the laboratory’s experimental design.
Future research can also benefit from the identification of
the most sensitive intensity influencers by machine learning
algorithms.
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