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Geometric characterization of
locally corroded surfaces in steel
bridge girders

Tao Zhang, Michael Vaccaro Jr.*, Arash Zaghi* and
Amvrossios Bagtzoglou

School of Civil and Environmental Engineering, College of Engineering, University of Connecticut,
Storrs, CT, United States

The aging of steel bridge girders is often compounded by corrosion at
girder ends due to leaking deck joints. With 6.8% of U.S. bridges in poor
condition, there is an urgent need for accurate yet efficient methods to
assess the residual load-bearing capacity of corroded girders. Traditional
assessmentmethods often represent corrosion as uniform section loss or rely on
simplified surface representations, compromising the accuracy of the residual
capacity estimation. To address these limitations, this paper proposes a novel
approach for characterizing the geometry of locally corroded steel surfaces by
decomposing the corroded region into high-frequency (fine surface textures)
and low-frequency (global shape) components using multilevel Lanczos filters.
Validated using 3D scans collected from a 57-year-old in-service bridge, our
case study shows that each high-frequency component can be modeled as a
stationary random field using a Hole-Gaussian autocorrelation function, with
correlation lengths inversely proportional to the cutoff frequencies of the
Lanczos filters. The low-frequency component is accurately characterized by a
bivariate Lagrange polynomial fitted via a 4 × 4 coefficient matrix, with average
volume errors of less than 1% and normalized root mean square errors under
10% for most surfaces. The technique results in a manage set of parameters that
can be used to investigate the effects of corrosion damage on the behavior of
corroded steel members.

KEYWORDS

corrosion damage, geometric characterization, steel bridge girders, random field, 3D
scanning, Lanczos filters

1 Introduction

The aging of steel bridge girders, often accelerated by corrosion at girder ends due
to leaking deck joints, poses significant safety concerns and maintenance challenges
(Kayser and Nowak, 1989; Kere and Huang, 2019). As a result, repair has become an
increasingly crucial aspect of bridge engineering (Alemdar et al., 2014; Zmetra et al.,
2017; McMullen and Zaghi, 2020). According to a recent report by the ASCE (2025),
45% of bridges in the United States have exceeded their 50-year design life and 6.8%
of all bridges are in poor condition. Despite increased government investment, funding
remains insufficient to perform all necessary repairs (ASCE, 2025). Given these constraints,
assessing the impact of corrosion damage on the residual load-bearing capacity of
steel bridge girders is essential to effectively prioritize future rehabilitation projects.
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Numerous studies have investigated the impact of corrosion-
induced section loss on bridge girders (Liu et al., 2011; Tohidi and
Sharifi, 2016). For example, Tzortzinis et al. (2021b) conducted
numerical studies on corroded girders from decommissioned
bridges and developed closed-form equations to estimate their
residual capacity using parameters such as the average web
thickness. However, the accuracy of these investigations is limited
by challenges in modeling corrosion damage, including the
difficulty of obtaining detailed data and accounting for the
irregular geometry of the remaining steel surfaces. Traditional
inspection methods measure corrosion depths at only a few
discrete locations, providing insufficient data to accurately estimate
a corroded girder’s residual capacity. Conversely, highly detailed
representations require thousands of data points to capture the
corroded surface’s intricate geometry (Qin et al., 2016; Zhang
and Zaghi, 2023). Incorporating such detail into analysis is
computationally prohibitive due to the need for large data
structures and significant processing power (Tzortzinis et al.,
2022). Thus, there is a critical need for methods to distill high-
dimensional representations of corrosion damage into manageable
parameter sets.

Characterizing the geometry of corrosion damage offers one
approach to address these challenges. Rather than relying on a
detailed corrosion depthmap, geometric characterization represents
the damage using a small set of key parameters. Past studies
have extracted various characteristics from corrosion damage to
facilitate girder capacity evaluations (Appuhamy et al., 2011; Sharifi
and Tohidi, 2014; Tohidi and Sharifi, 2016; Tzortzinis et al.,
2021a). For example, Khurram et al. (2014a) and Khurram et al.
(2014b) proposed the use of corrosion damage height, depth, and
a reduced thickness ratio to characterize the damage. In another
study, Bao et al. (2021) described corrosion damage using a
uniform section loss parameter, reducing the thickness of the web.
Kanakamedala et al. (2023) also modeled corrosion damage using
an effective web thickness. In their study, the effective thickness was
applied to a trapezoidal region of the beam defined by the length
and height of the corroded area. Although these methods have
improved analysis outcomes, they make significant simplifications
and fail to account for the intricate geometry of the corroded surface.
Such simplifications can be problematic as corrosion can lead to
stress concentrations (Shojai et al., 2022) that cause significant errors
in residual capacity estimates (Prucz and Kulicki, 1998; Mokhtari
and Melchers, 2018). In some cases, up to 100% error can be
present in the final estimate (Hain et al., 2021; Tzortzinis et al.,
2021a). To overcome these limitations, this study develops a novel
characterization method to decompose the nuanced geometry of
a corroded steel surface into information-rich parameters, moving
beyond the use of simple geometric parameters like average
corrosion depth.

In addition to geometric parameters, many researchers have
used statistical models to characterize corroded surfaces (Teixeira
and Soares, 2008; Melchers et al., 2010; Deliang et al., 2021). For
instance, Htun et al. (2013) used random fields to model the
surface geometry of a uniformly corroded plate on a ship, using
statistical features such as mean, variance, and correlation length.
Their analysis demonstrated that a random field can accurately
model a corroded surface when the correlation length is less than
one-third of the plate size. However, this approach is limited

to uniform corrosion damage because it assumes the corroded
surface to be a stationary random field. In the case of a uniformly
corroded surface, the mean and variance calculated from the
entire surface can be used to characterize the entire surface.
Unlike uniformly corroded surfaces, the textures of locally corroded
members vary by location. For example, corrosion depth is not
uniform. Because of this, the topology of a locally corroded surface
is defined by multiple waves with different wavelengths that cannot
be accurately represented by a single set of statistical parameters
(Leach, 2013).

Kriging is a classic geostatistical method for spatial modeling
and random field prediction that estimates values at unsampled
locations based on autocorrelation and observed values (van Beers
and Kleijnen, 2003; Bagtzoglou and Hossain, 2009; Kleijnen,
2009). Universal kriging, which models the overall shape and
variation—the two fundamental components of a locally corroded
surface—as the sum of a trend function and a random field
(Zimmerman et al., 1999), cannot adequately model the multiple
scales of texture present on locally corroded surfaces because only
the component with the largest variation is captured. To address
this limitation, our study uses Lanczos filters (Duchon, 1979)
to decompose the true geometry of a locally corroded surface
into several high-frequency components, each corresponding to a
distinct random fields.

Note that characterizing a corroded surface requires a model
of the existing corrosion damage. Researchers have proposed
various approaches to develop these models, including the use of
cellular automata models and 3D scanning. While cellular automata
models can be used to generate artificial corroded surfaces (Pérez-
Brokate et al., 2016; Zhu et al., 2018; Stępień et al., 2019), they cannot
be used to model real corroded surfaces. In contrast, 3D scanning
technology captures the complex geometry of real corroded surfaces
with high precision (Hain et al., 2019; Tzortzinis et al., 2022).
Accordingly, this study leverages 3D scanning to advance the
novel image processing technique for the characterization of a
corroded surface.

Image processing has proven to be a crucial tool. As a recent
review by Salunkhe et al. (2022) has shown, image processing
has been widely applied in civil engineering to both the repair
and maintenance of structures. For example, some researchers
have developed corrosion detection algorithms using unmanned
aerial vehicles (Das et al., 2023), while others have developed
neural network-based classifiers of corrosion damage and corrosion
intensity (Forkan et al., 2022; Munawar et al., 2022). These image
processing methods, however, fail to provide formal assessments
of capacity loss. To overcome this, researchers have developed
finite element models of corroded members from 3D scans.
While these models have proven to be accurate (Sun et al.,
2025), the method becomes computationally prohibitive as the
size of the corroded region increases. This has led researchers
to develop global characterizations, using parameters like percent
mass loss, to investigate corrosion’s impact on a material’s nominal
properties (Yan et al., 2024). As noted earlier, though, these
parameters do not account for the unique surface geometry of the
corroded region.

To address these challenges, the technique developed in
Section 2 decomposes a locally corroded surface into multilevel
high-frequency components and a single low-frequency component

Frontiers in Built Environment 02 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1561429
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Zhang et al. 10.3389/fbuil.2025.1561429

that represent the different scales of textures and the overall
shape of the corroded surface, respectively. By decomposing
the corroded surface into multiple components, the original
surface can be characterized on multiple levels. This results
in a richer characterization than would result from simple
geometric or otherwise universal parameters that can be used to
inform future bearing capacity evaluations. The high-frequency
components are characterized using statistics describing the
distribution of height values and the autocorrelation function
(ACF) since they can be considered stationary random fields.
The low-frequency component is characterized via a polynomial
function that preserves the overall shape of the corroded surface
(Weiss et al., 2002; Nurunnabi et al., 2014).

2 Methodology

This section proposes a comprehensive geometric
characterization method for corrosion damage at the ends
of steel girders. The geometry of a locally corroded surface
comprises two main components: the fine textures of the
remaining steel (high-frequency components) and the underlying
shape of the corroded region (low-frequency component). We
decompose the corroded surface into these components using
Lanczos filters. These filters ensure a consistent and predictable
decomposition across different corroded surfaces when compared
with other approaches such as wavelets, which require careful
selection of the mother wavelet and extensive parameter tuning
(Guo et al., 2022).

We use different methods to characterize the high- and low-
frequency components due to their distinct properties. For the
high-frequency components, the statistical distribution of corrosion
depth values and the ACF are used. For the low-frequency
component, a bivariate polynomial function is used. Together, the
properties of the high- and low-frequency components yield a
numerically concise yet substantial set of parameters that describe
the original corroded surface.

2.1 Decomposing the locally corroded
surface into high- and low-frequency
components

To facilitate the decomposition, the corroded surface is
represented using a corrosion depth map. Figure 1a shows an
example of a locally corroded surface obtained from a 3D scan of
an in-service steel bridge girder. The extent of corrosion damage
is indicated by the color intensity, with darker colors representing
greater corrosion depths. Figure 1b displays the same corroded
surface as a 2D corrosion depth map, represented mathematically
as a matrix.

The locally corroded surface is first decomposed into multilevel
high-frequency components and one low-frequency component.
Generally, there are two ways to decompose a surface into high-
frequency and low-frequency components. The first is the surface-
fitting method in which a function with unknown parameters
is proposed to fit the surface. Here, the parameter values are
determined using the least squares method based on sample points

on the surface (Weiss et al., 2002; Nurunnabi et al., 2014). The
resulting function is the low-frequency component, while the
high-frequency component is obtained by subtracting the low-
frequency component from the original surface. This method is
typically used when the shape of the surface can be represented
using a simple, closed-form expression. The other technique is
the surface-filtering method in which a filter with a defined cutoff
frequency is applied to the surface. The latter method is used in
this research for two reasons. First, by defining the same cutoff
frequency, the high-frequency and low-frequency components for
different corroded surfaces will be separated at the same frequency,
ensuring consistency in the decomposition and subsequent
characterization. Second, the surface-fitting method cannot
extract multilevel high-frequency components. By using multiple
filters with different cutoff frequencies in the surface-filtering
method, the high-frequency components can be decomposed
into multiple levels.

Lanczos filters are used in this study to decompose the locally
corroded surfaces as they can be easily constructed and are able to
accurately separate low-frequency and high-frequency components.
The Lanczos filter is a low-pass filter created by multiplying a
sinc function, shown in Equation 1 and plotted in Figure 2a, by a
window function. The sinc function is a symmetrical decayed sine
wave and is the impulse response of an idealized low-pass filter,
as demonstrated by the rectangular frequency response shown in
Figure 2b (Woodward and Davies, 1952). Convolution of a surface
with this filter ideally removes the components above the cutoff
frequency without affecting the low-frequency components. Due to
its infinite length in the spatial domain, the sinc filter is not physically
realizable. Thus, a scaled sinc window is applied to the sinc function
to limit the length of the filter. The result is a Lanczos filter, shown
in Equation 2 (Lanczos, 1988). The parameter k is a positive integer
that determines the filter size. The larger the parameter k, the closer
the performance of the Lanczos filter is to the ideal sinc filter, but the
higher the computational complexity. The most common values for
k are 2 or 3.

sinc(x) =
{{
{{
{

sin (πx)
πx

x ≠ 0

1 x = 0
(1)

Lanczos(x) =
{
{
{

sinc(x)sinc(x
k
) −k < x < k

0 otherwise
(2)

The proposed method constructs a series of 2D Lanczos filters
with the parameter k = 3 (hereon referred to as Lanczos3 filters)
to decompose a locally corroded surface. The Lanczos3 filters have
larger roll off rates than Lanczos2 filters (k = 2), resulting in a clearer
separation of the frequency components. Further, Lanczos3 filters
provide a reasonable balance between filter size and computational
complexity. Increasing the value of k further has limited impact
on the results while increasing the computational complexity. To
adjust the filter’s cutoff frequency, we substitute the x in Equation 2
with x/2l (where l = 1, 2, 3 …), as shown in Equation 3. Each
increment in l halves the cutoff frequency and doubles the filter
size. Next, the filters are discretized by computing the values of the
filter at all integers between −3 × 2l and 3 × 2l. For each level l,
the discretized filter is a vector vl of length 3 × 2l+1-1. For instance,
when l is equal to 1, 2, and 3, the corresponding vector lengths are
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FIGURE 1
A typical locally corroded surface obtained from a 3D scan of an in-service steel-girder bridge. (A) 3D representation of the corroded surface, and (B)
the corresponding 2D corrosion depth map.

FIGURE 2
Sinc function and its frequency response. (a) Sinc function in the spatial domain between −10 and 10, and (b) Frequency response of the sinc function.

11, 23, and 47, respectively. The vectors of the discretized Lanczos3
filters are then normalized such that the elements in each vector
vl sum to 1, ensuring that the passed low-frequency component
has the same mean value as the original surface. Figure 3 illustrates
the normalized Lanczos3 filter and the corresponding frequency
response for l = 1 and l = 2. By comparing Figure 3a with Figure 3c,
it can be seen that when l increases from 1 to 2, the domain of
the Lanczos3 function changes from [−6, 6] to [−12, 12]. In total,
11 discretized points ranging from −5 to 5 are obtained from the
Lanczos3 function with l = 1. Note that the zeros at −6 and 6 are
not included. Due to the limited ranges of these Lanczos filters,
the corresponding frequency responses (Figures 3b, d) exhibit roll-
off between the passband and the stopband. However, the shape
of the Lanczos filter’s frequency response is similar to that of the
sinc filter, with roll-off occurring around the cutoff of the sinc
filter (see Figures 3b, d). Therefore, the cutoff frequencies of the
Lanczos3 filters are approximated as those of the corresponding
sinc filters, which are 0.5/2l. Finally, the 2D Lanczos3 filters are
constructed. A 2D discrete Lanczos3 filter is created as the outer
product of the normalized vector vl with itself, yielding a (3 × 2l+1−1)
× (3 × 2l+1−1) matrix.

Lanczos3(x, l) =
{{{
{{{
{

sinc( x
2l
)sinc( x

3(2l)
) −3(2l) < x < 3(2l)

0 otherwise
 l = 1,2,3,… (3)

Once the 2D Lanczos3 filters are constructed, the locally
corroded surface is decomposed into multilevel high-frequency
components and one low-frequency component following the
procedure shown in Figure 4. The first step is to convolve the
corroded surface with the first Lanczos3 filter (l = 1 in Equation 3).
Because the Lanczos filters are low-pass filters, the resulting surface
includes the components with frequencies lower than the cutoff
frequency. For the first Lanczos3 filter, this is 0.5/21, or 0.25. The
first high-frequency component is then obtained by subtracting the
filtered surface from the original corroded surface. These two steps
are then repeated using Lanczos3 filters with increasing values of l to
extract subsequent high-frequency components.Thewavelengths of
the extracted high-frequency components increasewith the levels (l)
of the Lanczos filters.The process is repeated until the wavelength is
comparable to the size of the corroded surface. The last remaining
filtered surface is taken as the low-frequency component.

The convolution process produces an output surface of size M-
N+1, in which M is the length (or width) of the original image in
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FIGURE 3
Normalized Lanczos3 filter and the corresponding frequency response for l = 1 and 2. (a, b) are the Normalized Lanczos3 filter for l = 1 and its
frequency response, (c, d) are the Normalized Lanczos3 filter for l = 2 and its frequency response.

pixels andN is the corresponding side length of the filter. Because the
convolution process reduces the image size, we use padding (Strang
and Nguyen, 1996) to preserve the original dimensions. Specifically,
antisymmetric padding is used in this study since it ensures that the
padded surface and its derivative are continuous at the boundary,
minimizing the boundary errors in the filtered surface. Therefore,
the original corroded surface can be fully reconstructed by summing
all frequency components.

2.2 Characterizing the high-frequency
components

Each high-frequency component is considered a stationary,
isotropic 2D random field. Two random field features are computed
to characterize each component: the statistical distribution of height
values and the ACF. The distribution of height values characterizes
the magnitude of the waves in each high-frequency component,
describing its out-of-plane dimension, while the ACF characterizes
the wavelength of the waves in each high-frequency component,
describing its in-plane dimension.

2.2.1 Statistical distribution of height values
The distribution of height values is investigated by plotting the

histogram of height values for each high-frequency component
and comparing the shapes of the histograms with the normal
distribution. While mean and standard deviation are both
commonly used to characterize random fields, all high-frequency
components have theoretical means of zero (see Figure 4).
Therefore, the proposed method uses the standard deviation only

to characterize each high-frequency component. Section 3.2.1
demonstrates this process using a case study.

2.2.2 Autocorrelation function
The ACF is commonly used to characterize how points in

a random field are correlated (Lin et al., 1997). In physical
applications, such as modeling a corroded surface, the field’s height
values are usually continuous. As a result, two points that are close
together tend to be highly correlated. This correlation diminishes as
the distance between the two points grows. The ACF quantifies the
rate at which these correlations decay with increasing distance. In
this study, the ACF is used to characterize the spatial dependence of
the height values in the high-frequency components, which is crucial
for subsequent analysis and modeling of corroded surfaces.

Because the high-frequency components are considered
stationary and isotropic, the correlation between any two points
depends solely on the distance between them (Htun et al., 2013).
The ACF, shown in Equation 4, is the expected autocorrelation
value of two points as a function of the distance d between them.
Here, x1 and x2 are two points in a random field, Y(x1) and Y(x2)
are the height values at points x1 and x2, and μ and σ denote the
mean and standard deviation of all height values in the random
field, respectively. Although the theoretical mean values of the high-
frequency components are zero, the actual means may not be due to
the limited size of the corroded surface.

ρ(d) =
E[(Y(x1) − μ)(Y(x2) − μ)]

σ2
(4)

The shape of the ACF can vary widely for different random
fields. Researchers have proposed various autocorrelation
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FIGURE 4
Decomposing a locally corroded surface into multilevel high-frequency components and one low-frequency component.

models using different functions, such as exponential, linear-
exponential, Gaussian, and spherical (Ababou et al., 1994). Each
autocorrelation model has a distance-related parameter termed
the correlation length (lc), which can be calculated by fitting the
corresponding function to the ACF. In this study, the Hole-Gaussian
ACF is used (Ababou et al., 1994).

2.3 Characterizing the low-frequency
component

The low-frequency component represents the underlying shape
of the corroded surface. A bivariate polynomial function is chosen to

characterize the low-frequency component since these components
are generally smooth surfaces and a bivariate polynomial can
be fit to a smooth surface with high accuracy. In this way,
a low-frequency component initially represented as a matrix
with many elements can be characterized using a small number
of polynomial coefficients. In addition, surface features can be
easily obtained from the polynomial function. For instance, the
slope and curvature of a surface can be obtained by calculating
its derivatives.

Two primary methods exist for constructing a bivariate
polynomial, z = f (x, y), from a surface using a set of sample
points: fitting and interpolation. The fitting method aims to find
a polynomial surface that is overall the closest to the sample
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FIGURE 5
The 4 × 4 sampling points using different methods – (a) n-section points sampling and (b) Gauss points sampling.

FIGURE 6
The corrosion depth maps (inches) of five locally corroded surfaces from real bridge girders – (a–e): corroded surfaces 1 to 5, respectively.

points without necessarily passing through them using the least-
squares method. Typically, a much larger number of sample points
is used compared to the polynomial’s degree and a bivariate
polynomial with unknown coefficients is assumed. On the other
hand, interpolation ensures that the generated surface passes
through all sample points. This method is more computationally
efficient because there is no need to compute the matrix inverse. In
2D cases, given a grid-pattern sample-point set withm + 1 columns
in the x direction and n + 1 rows in the y direction, a unique
polynomial with a degree of m for x and n for y can be found. In
this study, the Lagrange interpolation method is used as it provides
an efficient way to identify the unique polynomial (Werner, 1984).
In addition, the Lagrange polynomial is comparably accurate to the
least-squares method when the surface is smooth, as is true for the
low-frequency components.

Assuming the sample-point set can be represented as (xi, yj, zi,j),
i = 0, 1, 2, …,m; j = 0, 1, 2, …, n, the Lagrange basis corresponding
to the sample point (xi, yj, zi,j) can be constructed (Equation 5).This
basis has the following properties: (1) li,j (xp, yq) = 0 if p ≠ i or q ≠ j,
(2) li,j (xi, yj) = 1, and (3) li,j (x, y) has a degree of x asm and a degree
of y as n. The Lagrange polynomial representing the surface can be
constructed as a linear combination of the bases with weights equal
to the corresponding z values, as shown in Equation 6.

li,j(x,y) =∏0 ≤ p ≤m
p ≠ i

x− xp
xi − xp
∏0 ≤ q ≤ n

q ≠ j

y− yq
yj − yq
 (0 ≤ i ≤m,0 ≤ j ≤ n)

(5)

f(x,y) = ∑
0≤i≤m,0≤j≤n

zi,jli,j(x,y) (6)
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FIGURE 7
The high-frequency and low-frequency components of corroded surface 1 – (a–g): Seven high-frequency components, and (h): One low-frequency
component.

We construct the Lagrange polynomial from a grid of sample
points. Two sampling methods are compared: n-section points
sampling and Gauss points sampling (Swarztrauber, 2003). Figure 5
demonstrates 4 × 4 sampling using these two different methods.
In the n-section points sampling, shown in Figure 5a, the rectangle
has a size of a × b and the origin is at the lower left. The positions
of the sample points in the x and y directions are the trisection
points of the edges, i.e., 0, 1/3, 2/3, and 1. For the Gauss points
sampling in Figure 5b the plate size is, by convention, defined as 2a
× 2b and the origin is at the middle of the rectangle. The positions
of the sample points in both directions are the four-point case Gauss
points, i.e., −0.86, −0.34, 0.34, and 0.86.

After determining the polynomial for the low-frequency
component, the approximated surface can be constructed by
calculating the z value at any position on the fitted surface based
on its coordinates (x, y), as shown in Equation 7. The n × m
coefficientmatrixA governs the approximated surface. Representing

the low-frequency component as a bivariate Lagrange polynomial
simplifies the characterization of a matrix with thousands of
elements (corresponding to a single low-frequency component) into
an n × m coefficient matrix in which aij is the coefficient of the
polynomial term xjyi.

z = yTAx =
[[[[

[

1

⋮

yn

]]]]

]

T

[[[[

[

a00 ⋯ a0m
⋮ ⋱ ⋮

an0 ⋯ anm

]]]]

]

[[[[

[

1

⋮

xm

]]]]

]

(7)

The three steps discussed above decompose a locally corroded
surface into high-frequency and low-frequency components and
characterize them individually.The high-frequency components are
characterized using the statistical distribution of the height values
and the ACF, while the low-frequency component is characterized
using a bivariate Lagrange polynomial function. Section 3 will
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FIGURE 8
(a–g) Histograms of the height values in high-frequency components 1 to 7, respectively, of corroded surface 1.

demonstrate the application of the proposed methodology with a
case study.

3 Case study

The proposed methodology is applied to and validated using five
locally corroded surfaces obtained from 3D scans of steel girders
from a 57-year-old in-service bridge.The five surfaces weremeasured
using an Artec Eva 3D scanner, which has a resolution of 0.5 mm
and an accuracy of 0.1 mm (Artec3D, 2019). The five surfaces
are shown in Figures 6a–e. Surface 3 results from a scan of a corroded

stiffener plate, while the remaining four surfaces are from scans of
corroded web plates. The dimensions of the five corroded surfaces
are as follows: 7.9 inches (200 mm) × 4.7 inches (119 mm), 7.4
inches (188 mm) × 3.4 inches (86 mm), 6.9 inches (175 mm) × 6.3
inches (160 mm), 7.8 inches (198 mm) × 4.8 inches (122 mm), and
6.4 inches (163 mm) × 3.9 inches (99 mm), respectively. Maximum
corrosion depths of the five surfaces range from 0.2 to 0.5 inches
(5–12.7 mm).Thepixel size for all five corroded surfaces is 0.02 inches
(0.5 mm).Toevaluatetheconsistencyofthecharacterizationtechnique
proposed above, we compare characteristics such as the height value
standard deviation and the correlation length for the high-frequency
components of these five corroded surfaces.
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FIGURE 9
Error between the scanned corroded surface and the reconstructed surface excluding high-frequency components 1, 2, and 3 (inches). These three
frequency components are left out of the analysis as they primarily correspond to noise.

TABLE 1 The standard deviation of the height values in the high-frequency components for all five corroded surfaces and corresponding cutoff
frequencies.

High-frequency component 4 5 6 7

standard
deviation (std)

Surface 1 (10−3 inches) 5.09 10.2 19.1 48.6

Surface 2 (10−3 inches) 3.02 6.21 10.2 25.9

Surface 3 (10−3 inches) 5.02 9.24 22.0 38.8

Surface 4 (10−3 inches) 3.49 8.43 13.7 28.0

Surface 5 (10−3 inches) 3.39 8.22 14.4 19.7

average of std (10−3 inches) 4.00 8.47 16.0 32.2

CV of std 0.244 0.176 0.280 0.356

cutoff frequency (inch−1) 1.563 0.781 0.391 0.195

3.1 Decomposing the locally corroded
surface

Each of the five corrosion depth maps is decomposed into seven
high-frequency components and one low-frequency component
following the procedure described in Section 2.1. As an example,
Figure 7 illustrates the decomposition of corroded surface 1 from
Figure 6a. Based on Section 2.1, the cutoff frequencies of the
Lanczos3 filters are (0.5/2l)/L, where L represents the pixel size (0.02
inch). The cutoff frequencies for the seven filters are 12.5 in−1, 6.25
in−1, 3.125 in−1, 1.563 in−1, 0.781 in−1, 0.391 in−1, and 0.195 in−1,
respectively. The last high-frequency component has a wavelength
of approximately 5.1 inches, which is comparable to the dimensions

of the corroded surfaces shown above in Figure 6.Therefore, further
extraction of high-frequency components (Figures 7a–g) is not
required, and the remaining surface is the low frequency component
(Figure 7h).

3.2 Characterizing the high-frequency
components

As discussed in Section 2.2, two random field
features—the statistical distribution of height values and
the ACF—are calculated to characterize each of the high-
frequency components.
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FIGURE 10
(a) Standard deviations of height values in high-frequency components of the corroded surfaces vs. the cutoff frequency of Lanczos3 filters. (b) The
fitted function for correlation lengths of the high-frequency components against the cutoff frequency of the Lanczos3 filter.

FIGURE 11
(a–d) Hole-Gaussian autocorrelation functions of high-frequency components 4 to 7, respectively, of corroded surface 1.

3.2.1 Statistical distribution of height values
Figure 8 displays histograms of height values for each of the

high-frequency components from corroded surface 1 (Figure 6a).
We compute the mean and standard deviation for each component
to assess their distribution. It is observed that the standard deviation
of height values increases with the level of the high-frequency
component and that all mean height values are much less than
the corresponding standard deviations. This is expected since the

theoretical mean of the high-frequency components is zero. The
small non-zero mean values are attributed to the errors caused
by the limited sizes of the corroded surfaces. The histograms are
compared qualitatively to the probability density function of a
normal distribution with the same mean and standard deviation.
This normal distribution is plotted in red in Figure 8 for each
component. It is observed that the distributions of the height
values in high-frequency components 1 to 5 are very close to the
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TABLE 2 The correlation length of high-frequency components 4 to 7
for all the corroded surfaces.

High-frequency component 4 5 6 7

Correlation length
(lc)

Surface 1 (inch) 0.162 0.306 0.734 1.755

Surface 2 (inch) 0.163 0.318 0.791 1.460

Surface 3 (inch) 0.160 0.297 0.763 1.412

Surface 4 (inch) 0.161 0.318 0.647 1.574

Surface 5 (inch) 0.166 0.320 0.660 1.125

average (inch) 0.162 0.312 0.719 1.465

cutoff frequency (inch−1) 1.563 0.781 0.391 0.195

normal distribution. For high-frequency components 6 and 7, the
discrepancy between the histograms and the normal distribution
can be attributed to the limited fluctuation of waves captured in the
corroded region. The distributions of the height values have similar
ranges and trends for all five corroded surfaces.

Before a more detailed investigation of the statistical
distribution, it is first necessary to verify the accuracy of
the extracted high-frequency components. Two vertical red
lines are drawn at +/−0.05 mm (+/−1.97 × 10−3 inch) in each
histogram in Figure 8. These lines correspond to the positive
and negative half of the scanner’s accuracy. Data between these
lines represent fluctuations in corrosion depth that are smaller
than the scanner’s accuracy. These two lines are not displayed for
high-frequency components 1 and 2 since all height values are
in ranges smaller than the scanner’s accuracy. This is also true
for most data in the third high-frequency component. As such,
the accuracy of high-frequency components 1, 2, and 3 cannot
be guaranteed. The following discussion therefore focuses on
high-frequency components 4 to 7 for all five locally corroded
surfaces. As shown by Figure 9, excluding these three high-
frequency components does not lead to significant errors between
the reconstructed and as-scanned surfaces. We further note that
0.1 mm is a relatively high accuracy for investigating corrosion
on steel bridge girders. When compared to typical plate member
thicknesses, which range from 0.375 inches (9.5 mm) tomore than 2
inches (50.8 mm), the error is around 0.2%–1%, which is acceptable.

The relationship between the standard deviation of height
values and the cutoff frequency of the Lanczos3 filter used for
decomposition is used to quantitatively characterize the high-
frequency components.The standard deviations of the height values
in high-frequency components 4 to 7 and the corresponding cutoff
frequencies of the Lanczos3 filters are listed in Table 1. The average
value of the standard deviations for each high-frequency component
is calculated across the five surfaces. For every increase in the high-
frequency component level, the cutoff frequency halves while the
average standard deviation of height values approximately doubles.
A reciprocal function y = b/x is proposed to fit the standard
deviation as a function of the cutoff frequency. The parameter b is
obtained using the least-squares method as 6.297 × 10−3. All the
standard deviation values and the fitted curve y = 6.297 × 10−3/x

(solid curve) are plotted in Figure 10a. The curve fits the trend
of the standard deviations well; however, the standard deviations
for each cutoff frequency still show some variation due to the
varying corrosion intensities. The coefficient of variation (CV) of
the standard deviations is used to quantify this variation. The CV
of the standard deviation values for each level of high-frequency
component is listed in Table 1, ranging from 0.176 to 0.356. The
average of all CV values is 0.264, which quantifies the overall
variation of the standard deviation values. The two dashed black
curves drawn in Figure 10a correspond to this CV and show the
variation in the standard deviations of height values across the five
corroded surfaces.

3.2.2 Autocorrelation function
TheACF is calculated for each high-frequency component using

Equation 4. The resulting ACFs are plotted in blue for corroded
surface 1 in Figure 11. As expected, the autocorrelation value is 1
when the distance between the two points is 0. As the distance
increases, the autocorrelation decreases and approaches 0. From a
comparison of the ACFs with the most common autocorrelation
models, the Hole-Gaussian ACF (Ababou et al., 1994) is adopted.
The Hole-Gaussian function is depicted in Equation 8 as a function
of the distance d between points, where lc refers to the correlation
length for the Hole-Gaussian autocorrelation model.

S(d) = (1−( d
lc
)
2
)exp(−1

2
( d
lc
)
2
) (8)

The fitted Hole-Gaussian autocorrelation model for high-
frequency components 4 to 7 of corroded surface 1 are plotted
in red in Figure 11, and the fitted correlation lengths, lc, for
the high-frequency components of all five corroded surfaces are
listed in Table 2. The correlation length of the high-frequency
components approximately doubles for each increase in high-
frequency component level due to the Lanczos3 filter used to extract
each component. Similar to the standard deviation of the height
values in the high-frequency components, lc is fitted as a reciprocal
function of the cutoff frequency of the Lanczos3 filter, y = c/x, where
the fitted value for c is 0.283, as plotted in Figure 10b. The variation
in lc is much smaller than the variation in the standard deviation
of height values in the high-frequency components, especially for
components 4 and 5. This is because the correlation length is not
significantly affected by corrosion intensity. For a defined cutoff
frequency of the Lanczos3 filter, the corresponding lc value does
not change much. The increased variation in lc for components 6
and 7 is mainly because insufficient waves are captured due to the
surface size.

3.3 Characterizing the low-frequency
component

Bivariate Lagrange polynomials are constructed to characterize
the low-frequency components based on n-section points sampling
and Gauss points sampling. Three different-sized grid-pattern point
sample sets, 3 × 3, 4 × 4, and 5 × 5, are created for each sampling
method. Lagrange polynomials are then constructed based on
Equations 5, 6. The accuracy of the constructed polynomials is
evaluated based on relative volume error (RVE) and normalized

Frontiers in Built Environment 12 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1561429
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Zhang et al. 10.3389/fbuil.2025.1561429

TABLE 3 Errors between the low-frequency components and the Lagrange polynomials constructed using n-section points sampling and Gauss
points sampling.

Error
Type

Corroded
Surface

n-section points sampling Gauss points sampling

3 × 3 4 × 4 5 × 5 3 × 3 4 × 4 5 × 5

RVE

1 1.77% −0.52% −0.75% 1.67% 0.12% 0.10%

2 −0.63% −0.68% −0.33% 0.38% −0.33% 0.02%

3 4.23% 0.20% −1.13% 1.76% −0.32% 0.14%

4 9.55% 1.61% −2.16% 2.20% −0.47% 0.17%

5 −2.19% −1.07% 0.20% −0.02% 0.20% −0.08%

Averagea 3.68% 0.82% 0.91% 1.21% 0.29% 0.10%

NRMSE

1 10.25% 4.66% 2.66% 8.18% 3.75% 1.88%

2 5.07% 2.41% 1.49% 3.77% 1.90% 0.99%

3 36.92% 9.99% 6.00% 25.18% 6.76% 4.16%

4 16.17% 10.30% 4.99% 12.34% 8.26% 3.09%

5 4.69% 1.90% 0.67% 2.90% 1.28% 0.41%

Averagea 14.62% 5.85% 3.16% 10.48% 4.39% 2.11%

aThe average of the absolute values of individual errors are listed in bold.

root mean square error (NRMSE) (Shcherbakov et al., 2013),
as shown in Table 3. The RVE (Equation 9) is the ratio of the
difference between the volumes of the constructed surface and
the low-frequency component to the volume of the low-frequency
component. It measures the first-moment accuracy of the fitted
polynomial. The NRMSE (Equation 10) is the ratio of the root
mean square error to the mean value of the original low-frequency
component, evaluating the second-moment accuracy of the fitted
polynomial.

RVE =
∑n

i=1
( f(xi,yi) − zi)

∑n
i=1

zi
× 100% (9)

NRMSE =
√ 1

n
∑n

i=1
( f(xi,yi) − zi)

2

1
n
|∑n

i=1
zi|

× 100% (10)

The average of the absolute values of the RVE for the n-section
points sampling with 3 × 3, 4 × 4, and 5 × 5 sample points are
3.68%, 0.82%, and 0.91%, respectively, and for the Gauss points
sampling are 1.21%, 0.29%, and 0.10%, respectively. The averages of
the NRMSE for the n-section points sampling are 14.62%, 5.85%,
and 3.16%, and for theGauss points sampling are 10.48%, 4.39%, and
2.11%. As expected, both average errors decreased with the increase
of polynomial degrees. When the same sample point size is used,
the error for Gauss points sampling is smaller than for n-section
points sampling. Thus, a 4 × 4 Gauss points set is selected to model
the low-frequency components in this case study. For a 4 × 4-point
set, the polynomial has a degree of 3 for both x and y. Therefore, the
polynomial can be represented using a 4 × 4 coefficients matrix A,

in which aij is the coefficient of the polynomial term xjyi.

A =

[[[[[[[

[

a00 a01
a10 a11

a02 a03
a12 a13

a20 a21
a30 a31

a22 a23
a32 a33

]]]]]]]

]

Figure 12 shows the low-frequency components and the
bivariate Lagrange polynomials constructed using a 4 × 4 Gauss
sample point set for the five corroded surfaces. When the low-
frequency component is concave in the entire corroded region
(corroded surfaces 1, 2, and 5), the fitted Lagrange polynomial can
accurately represent the low-frequency component with NRMSE
values between 1% and 4%. However, the NRMSE is relatively large
(6%–9%) when the low-frequency component has a concave shape
in a local region, as is the case for corroded surfaces 3 and 4.

4 Conclusion

This paper proposed a novel method for characterizing
the geometry of locally corroded steel surfaces. The approach
decomposes a corroded surface into multilevel high-frequency
components and a single low-frequency component using
Lanczos3 filters, and then characterizes these components using
statistical models and polynomial functions. The methodology was
successfully evaluated on five real corroded surfaces obtained from
the 3D scanning of corroded bridge girder ends from a 57-year-old
in-service bridge.
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FIGURE 12
The low-frequency components (left) and the fitted bivariate Lagrange polynomials using a 4 × 4 Gauss point set (right) for the five corroded surfaces
(inch) – (a–e) corroded surfaces 1–5.

The analysis of the high-frequency components revealed that
the height values follow a normal distribution and that the ACFs
are well represented by a Hole-Gaussian model. In addition, two
reciprocal functions were observed to describe the relationship
between the statistical features and the cutoff frequencies of the
Lanczos3 filters. Specifically, the standard deviation of the height
values is proportional to a constant, b, divided by the cutoff
frequency of the Lanczos filter, and the correlation length is
proportional to a constant, c, divided by the same cutoff frequency.
For the low-frequency component, a bivariate Lagrange polynomial

constructed from a 4 × 4 Gauss point sampling set effectively
captured the underlying surface geometry with low normalized root
mean square errors.

This decomposition provides a comprehensive characterization
of corrosion damage by capturing both fine textures and the overall
shape and eccentricity of the corroded surface. Because the original
surface can be reconstructed from its frequency components,
the method also enables the generation of artificial corroded
surfaces, addressing challenges in large-scale data collection for
computational corrosion damage investigations. Specifically, the
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artificially generated corroded surfaces may be used to train
neural networks that predict the residual bearing capacity for the
intricate surface geometry of real corroded surfaces (Zhang et al.,
2023). The proposed method also helps overcome computational
challenges associated with large-matrix representations of corrosion
by reducing the surface description to a small, information-rich set
of parameters.

While the results are promising, the methodology was only
applied to five 3D scans of locally corroded surfaces. Therefore, the
resulting statistical analyses should be considered carefully. Future
research should validate the approach on a broader range of surfaces
that span various exposure durations and corrosion patterns.
In addition, the first three high-frequency components—affected
primarily by noise due to the scanner accuracy and the filter cutoff
frequencies—were excluded from the analysis, which limits the
method’s ability to characterize fine surface textures. We further
note that the use of k = 3 in the definition of the Lanczos filters
was selected to balance the filter’s roll off with computational
complexity. A more detailed sensitivity analysis of this parameter
or the use of alternative surface filtering techniques (e.g., wavelet
transforms) could clarify how variations in the filter design affect the
decomposition results. Finally, while the criterion used to determine
the number of high-frequency components extracted—where the
filter’s wavelength is comparable to the surface size—produced good
results in this study, future work should explore whether it remains
optimal for larger and smaller scans.
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Nomenclature

Abbreviations

ACF Autocorrelation function

CV Coefficient of variation

NRMSE Normalized root mean square error

RVE Relative volume error

Parameters and Constants

A: Coefficient matrix of the bivariate Lagrange polynomial

b Constant in the reciprocal fit for standard deviation

c Constant in the reciprocal fit for correlation length

d Distance between two points in a random field

k Lanczos window parameter

L Pixel size

lc Correlation length

l Lanczos filter level

M Length/width of the original corroded surface

m Degree of the bivariate Lagrange polynomial in the x direction

μ Mean of height values in a random field

N Side length of the filter

n Degree of the bivariate Lagrange polynomial in the y direction

σ Standard deviation of height values in a random field

vl Discretized Lanczos filter of level l

Functions

f (x, y) Equation of the bivariate Lagrange polynomial

li,j(x, y) Lagrange basis

ρ(d) Autocorrelation between two points in a randomfield a distance

d apart

S(d) Hole-Gaussian autocorrelation between two points a distance

d apart
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