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With the rapid growth of urbanization, construction sites are increasingly
confronted with severe safety hazards. Personal protective equipment (PPE),
such as helmets and safety vests, plays a critical role in mitigating these
risks; however, ensuring proper usage remains challenging. This paper presents
SD (Small object detection and DilateFormer attention mechanism)-YOLOv5s,
an improved PPE detection algorithm based on YOLOv5s, designed to
enhance the detection accuracy of small objects, such as helmets, in complex
construction environments. The proposed model incorporates a dedicated
feature layer for small target detection and integrates the DilateFormer attention
mechanism to balance detection performance and computational efficiency.
Experimental results on the CHV dataset demonstrate that SD-YOLOv5s
achieves an average precision (AP) of 93.7%, representing an improvement of
2.8 percentage points over the baseline YOLOv5s (AP = 90.9%), while reducing
the model’s parameter count by up to 14.6%. These quantitative improvements
indicate that SD-YOLOv5s is a promising solution for real-time PPE monitoring
on construction sites, although further validation on larger and more diverse
datasets is warranted.

KEYWORDS

personal protective equipment (PPE) detection, YOLOv5, small object detection,
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1 Introduction

In the process of urbanization, a significant number of workers are employed on
construction sites, which often present numerous safety hazards (Cheng, 2024; Jia et al.,
2025). Consequently, construction safety has consistently been amajor concern, particularly
in environments where workers frequently operate in dangerous conditions. According
to statistics, the injury rate on construction sites exceeds 71% (Waehrer et al., 2007;
Ahmed, 2019; Hwang et al., 2023; Soltanzadeh and Mohammadfam, 2022). However,
the proper use of personal protective equipment (PPE) such as helmets, safety vests,
and other items can mitigate these risks. For instance, correctly worn helmets not only
protect against the impact of falling objects but also significantly reduce the severity
of injuries from falls, potentially saving workers’ lives (Hume et al., 1995). Safety vests,
another essential form of PPE, enhance visibility, especially in low-light conditions, thereby
helping to prevent accidents. Additionally, the colors of safety helmets indicate different
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job roles, facilitating the smooth execution of tasks (Wang et al.,
2021). Despite the clear benefits, workers on construction sites
often neglect to wear PPE, leading to increased dangers. Ensuring
the correct use of PPE is crucial for reducing accidents. However,
relying solely on manual inspections to enforce compliance is both
time-consuming and inefficient (Yang et al., 2024).

In recent years, the rapid advancement of artificial intelligence
technology and the significant improvement in computer processing
power have made intelligent detection a prominent area of
current research (Aradhya and Ravish, 2019; Masita et al.,
2020; Chandan et al., 2018). Computer vision has emerged
as the mainstream method for target detection, characterized
by its contactless nature, high accuracy, and continuity. With
the enhancement of computational power and the continuous
optimization of algorithms, convolutional neural networks have
become the leading approach in deep learning technology (Du,
2018; Chen et al., 2017). The development of target detection
technology can be divided into two stages: the traditional target
detection era before 2014 and the deep learning-based detection
era post-2014. This technology has found widespread applications
in fields such as security detection, intelligent perception, and
autonomous driving. Target detection methods are primarily
categorized into one-stage methods (e.g., the YOLO model) and
two-stage methods (e.g., the R-CNN model). One-stage methods
are known for their fast detection speed, making them suitable
for real-time applications (Diwan et al., 2023), while two-stage
methods excel in accurately detecting small objects, offering higher
detection accuracy (Ren et al., 2017). Both approaches have distinct
advantages and are extensively utilized in the detection of personal
protective equipment.

The two-stage target detection method divides the entire
detection process into two phases as shown in Figure 1: first,
generating high-quality candidate regions, and then conducting
further feature extraction on the selected windows, followed by
classification andwindow regression based on the extracted features.
In 2014, Girshick et al. (2014) proposed the R-CNN target detection

algorithm, which identifies and locates targets by using selective
search to generate candidate regions, employing SVM classifiers and
bounding box regressors for target identification and localization,
thereby significantly improving efficiency. Subsequently, in 2015,
Girshick (2015) introduced Fast R-CNN, which integrates feature
extraction, classification, and regression into a single network,
accelerating both the training and testing processes while enhancing
memory efficiency. Ren et al. (2017) advanced this further with
the Faster R-CNN algorithm, introducing the Region Proposal
Network (RPN) to replace traditional selective search, thereby
achieving faster candidate region generation. In the context
of worker safety, Madihah Saudi et al. (2020) developed an
image detection model based on the R-CNN algorithm to
assess PPE compliance, with experimental results showing an
average accuracy of 70%. Riaz et al. (2023) proposed a novel
method called PPE_Swin, which automatically detects PPE on
construction sites by combining the Swin-Unet self-attention
mechanism with global and local feature extraction, achieving a
detection accuracy of 97%. Xiong and Tang (2021) introduced
a scalable pose-guided anchoring framework for detecting multi-
class PPE, utilizing a pose estimator and body-knowledge-based
rule compliance, alongside a shallow CNN classifier to identify
PPE classes, demonstrating high detection accuracy and scalability
on the CPPE dataset. While the two-stage method excels in the
accuracy of target detection, its slower detection speed limits its
practical implementation.

In order to improve in the problem of a large number of small
targets and a large Traditional one-stage methods primarily include
the SSD and YOLO models. In 2016, Liu et al. (2016) introduced
the SSD (Single ShotMultiBox Detector) target detection algorithm,
which eliminated the proposal generation and resampling phases
by integrating all computations into a single network, thereby
simplifying the training process. Tests on the PASCALVOC,COCO,
and ILSVRC datasets demonstrated that SSD competes effectively
with traditional methods in terms of speed and accuracy, making
it widely used for the detection of safety and protective equipment.

FIGURE 1
Development process of target detection.
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FIGURE 2
YOLOv5s model.

Wu et al. (2019) implemented color inspection of safety helmets
using the SSD algorithm. In the same year, Redmon et al. (2016)
proposed the YOLOv1 model at the IEEE International Conference
on Computer Vision and Pattern Recognition. This model treated
object detection as a regression problem involving spatially
separated bounding boxes and correlated class probabilities,
achieving a detection speed of up to 45 fps but with low detection
accuracy. To address these issues, YOLOv2 was developed, which
improved precision and recall (Redmon and Farhadi, 2017).
YOLOv3 further enhanced YOLOv2 by utilizing multi-scale feature
maps for detection and replacing the softmax function with an
independent logistic regression classifier for prediction category
classification, effectively improving prediction accuracy (Redmon
and Farhadi, 2018). YOLOv4 introduced more advanced techniques
such as CSPDarknet53, SPP, PANet, and Mish activation functions,
along with more sophisticated data augmentation and automatic
learning rate tuning strategies to enhance detection accuracy
and speed (Bochkovskiy et al., 2020). YOLOv5 improved target
detection performance and usability by incorporating a lightweight
network architecture, advanced data augmentation techniques,

and model export support (Zhu et al., 2021). Although the
YOLO model demonstrated superior capabilities in detection
speed and accuracy, it encountered challenges in detecting small
targets. Numerous researchers have since conducted studies to
address these shortcomings. Wang et al. (2023) propose an
improved YOLOX method and a new dataset for detecting
low light and small PPE. The ConvNeXt module is added to
the backbone for deep feature extraction, a fourth YOLOX
header is introduced to enhance multiscale prediction, and
the CLAHE algorithm is employed to enhance the low-light
images to achieve a higher performance detection. Yang and
Wang (2022) proposed an improved helmet detection algorithm
based on YOLOv4, which significantly enhances the detection
accuracy of small and occluded targets by improving multi-
scale feature extraction, introducing a channel attention module,
and optimizing model training with the Eiou loss function
and K-means clustering. Li et al. (2023) introduced a novel
lightweight helmet detection algorithm, YOLO-PL, based on
YOLOv4, which improves small target detection accuracy, reduces
model parameters, and enhances the robustness and deployability
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FIGURE 3
Mosaic algorithm for merging data.

of the model by optimizing the network structure, introducing E-
PAN and DCSPX modules, and designing the lightweight VoVNet
(L-VoVN) structure. This algorithm outperforms existing detectors
in helmet detection and shows potential for practical applications
in the industry. Qian and Yang (2023) proposed a lightweight
model, YOLO CA, based on YOLOv5, which automates the
detection of construction workers’ helmet usage by incorporating
enhancements such as coordinate attention (CA), depthwise
separable convolution (DWConv), and the Ghost module. These
improvements significantly boost detection accuracy and model
efficiency in complex scenarios while reducing model parameters,
making it suitable for lightweight embedding applications. Lian et al.
(2024) introduced a novel deep learning framework called HR-
YOLO, which substantially improves the accuracy of helmet
detection, particularly in complex environments and small target

detection, by combining helmet object features with human pose
information and optimizing residual networks with the Laplace
Perceptual Attention Model (LAAM). Chen et al. (2023) proposed
an improved convolutional neural network model, YOLOv7-
WFD, for detecting workers not wearing helmets, enhancing
feature extraction capability, detail reconstruction, and model
generalization through the introduction of the DBS module,
Content-Aware ReAssembly of Features (CARAFE) module, and
Wise-IoU loss function.

These studies have successfully applied deep learning computer
vision to buildings and industries, although especially in the
field of small target detection and fast detection, researchers
have made relatively significant progress, however, often the
introduction of small target detection will somewhat increase the
computational cost of the model, therefore, we would like to
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FIGURE 4
Overall architecture of DilateFormer.

FIGURE 5
Graphical representation of Multi-Scale Dilated Attention (MSDA).

adopt a method that makes it possible to keep the computational
cost of the model does not increase after adding the small target
detection, i.e., to ensure that the real-timedetection to improve
the performance of the overall model ultimately achieving faster
detection coordinated with smaller computational cost, based on
this to improve the detection performance of YOLOv5s for small
targets (e.g., helmets) in complex architectural environments, this
paper proposes the MSD-YOLOv5s algorithm, with the main
contributions as follows.

1. To enhance the detection of small targets, such as safety
helmets, in construction site environments, a dedicated
feature layer for small target detection has been added
to the YOLOv5s model, significantly improving detection
accuracy.

2. The DilateFormer attention mechanism is introduced,
reducing the redundancy of the self-attention mechanism,
enhancing model accuracy, and lowering computational costs

by integrating multi-scale dilation attention with multi-head
self-attention.

3. Based on these improvements to the YOLOv5s model, termed
SD-YOLOv5s, a PPE detection model is established, achieving
an average precision (AP) of 93.7%.

2 Methods

YOLOv5 is currently the most widely used object detection
model, as mentioned previously, due to its fast label detection
algorithm (Wu et al., 2021; Zhang and Yin, 2022). Based on the
depth of its network and the width of its feature maps, YOLOv5
is classified into several models: YOLOv5s, YOLOv5m, YOLOv5l,
and YOLOv5x, all of which share the same network structure,
consisting of a backbone, neck, and head (Zhou et al., 2021;
Chen et al., 2022). Among these, YOLOv5s boasts the highest
detection speed, while YOLOv5x achieves the highest detection
accuracy. Compared to other models, YOLOv5s maintains a high
level of accuracy with a more lightweight architecture, which
has contributed to its widespread adoption. The YOLOv5s model
is composed of four main components: input, trunk, neck, and
prediction. YOLOv5 employs a standalone CNN model for end-
to-end target detection. First, input images are standardized to a
uniform size after data augmentation and then fed into the CNN
network. The network outputs prediction results at three different
scales, each corresponding to N channels containing prediction
information. The network’s prediction is then processed through
network management operations to obtain the detection targets.
Finally, the prediction results are refined using Non-Maximum
Suppression (NMS) to finalize the detected targets. The structure
of the network module is illustrated in Figure 2. Key components
include Conv2d (2D convolution), BN (batch normalization),
SiLU (activation function), Upsample (upsampling), and SPPF
(a modified Spatial Pyramid Pooling module). Although the
SPPF module offers fast computation, it remains computationally
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FIGURE 6
Comparison of DilateFormer before and after adding YOLOv5s.

intensive, necessitating modifications to the network’s backbone to
address this issue.

2.1 The mosaic algorithm

In the field of small target detection, optimizing the dataset
through data augmentation is particularly important. First,
data augmentation increases the diversity of the dataset, and
second, it helps the model achieve better generalization. In
this paper, the mosaic data augmentation method is employed,
which enhances the dataset by randomly cropping, rotating, and
joining any four images. This approach increases the variety of
complex scenes and small targets, thereby improving the model’s
generalization ability and robustness. Figure 3 illustrates the
enhanced image.

2.2 Backbone improvement

DilateFormer is a deep learning model based on a pyramid
structure, primarily designed for processing fundamental visual
tasks. The key concept behind its design is to utilize multi-scale
dilated attention to capture multi-scale semantic information while
reducing the redundancy of the attention mechanism (Jiao et al.,
2023). As illustrated in Figure 4, the model consists of four main
stages. In the first two stages, multi-scale dilated attention plays
a crucial role, while the latter two stages employ standard multi-
head self-attention. Upon image input, DilateFormer first applies
an overlapping downsampler for patch embedding, where the
resolution of input feature maps is adjusted by alternating the step
size of the convolutional kernel. For initial patches, an overlapping
downsampler with a kernel size of three and a step size of two
is utilized. Conditional Positional Embedding (CPE) is employed
throughout the model to adapt positional encoding to inputs of

varying resolutions. The overall architecture of the model is as
follows:

X = CPE(X̂) + X̂ = DwConv(X̂) + X̂

Y =
{
{
{

MSDA(Norm(X)) +X,atlow− levelstages,

MHSA(Norm(X)) +X,atlow− levelstages

Z =MLP(Norm(Y)) +Y

Where X̂ represents the input of the current block, either
the image block or the output from the previous block. In
practice, we implement the Conditional Positional Embedding
(CPE) with zero padding and a 3 × 3 kernel size. We have
also added a Multi-Layer Perceptron (MLP) to the previous work
(Liu et al., 2021; Touvron et al., 2021), which consists of two
linear layers with a channel expansion rate of four and a GELU
activation function.

The core component of DilateFormer is its Multi-Scale Dilated
Attention (MSDA) module. As illustrated in Figure 5, the MSDA
module employs a multi-head design, where the channels of
the feature map are divided into nnn different heads, and
Sliding Window Dilated Attention (SWDA) is applied using
different dilation rates for each head. This approach aggregates
semantic information at various scales within the receptive field
and effectively reduces the redundancy of the self-attention
mechanism, all without the need for complex operations or
additional computational costs. The specific operations are as
follows: First, each head is assigned a distinct dilation rate. Next,
slices are taken from the feature map, and SWDA is applied
to obtain the output. Finally, the outputs from all heads are
concatenated, and feature aggregation is performed through a
linear layer.

DilateFormer effectively addresses the long-range dependency
problem through its hybrid use of multi-scale dilated attention
and multi-head self-attention, while maintaining computational
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TABLE 1 Comparison of small target detection before and after
incorporating YOLOv5s.

Models mAP@0.5

Person Vest Helmet

YOLOv5s 92.6% 85.1% 93.8%

YOLOv5s + small 92.6% 92.6% 92.6%

efficiency and adaptability to inputs of varying scales and
resolutions. As shown in Figure 6, the red regions indicate areas
requiring high attention during feature extraction, with darker
colors signifying greater significance. From the experimental results,
it is evident that the inclusion of the DilateFormer module enhances
the feature representation of targets in complex scenarios, as clearly
illustrated in Figure 6.

2.3 Neck network improvement

The original YOLOv5 model includes three feature layers: 80
× 80, 40 × 40, and 20 × 20, corresponding to receptive fields of
32 × 32, 16 × 16, and 8 × 8, respectively. However, in practical
applications, especially in dense scenes, some targets in the dataset
are smaller than 8 × 8 pixels, such as helmets. The shallow feature
information in these cases cannot be fully utilized, resulting in
insufficient accuracy for small target recognition. To address this
issue, a dedicated detection layer for small target detection is added
to the YOLOv5s structure. This new feature layer has a size of 160
× 160, with a receptive field of 4 × 4, enabling the detection of
targets as small as 4 × 4 pixels (Shan et al., 2024). In this dataset,
helmets of different colors are considered smaller-scale objects.
Table 1 lists the mean Average Precision (mAP) values for persons,
vests, and helmets. The results show a significant improvement in
the detection accuracy of helmets and vests after the addition of the
small target detection layer. The improved SD-YOLOv5s model is
shown in Figure 7.

2.4 Evaluation indicators

Detection accuracy and detection speed are critical indicators
for evaluating model performance. Precision, recall, and average
precision (AP) are key metrics used to assess the detection
accuracy of a model, while frames per second (FPS) is an
important metric for evaluating the speed of model detection.
The relevant formulas are provided below (Jiang et al., 2022;
Tian et al., 2019):

F = TP
TP+ FP

× 100%

R = TP
TP+ FN

× 100%

AP = ∫
1

0
P(R)dR

mAP = 1
n

n

∑
i=1

APi

FPS = N
t

Where TP represents the number of correctly predicted positive
samples, FP denotes the number of incorrectly predicted positive
samples, and FN indicates the number of incorrectly predicted
negative samples. The variable n refers to the number of target
classes being tested, and APi is the Average Precision (AP) of the
i target class.

3 Experimentation

3.1 Experimental environment

In this experiment, model construction, training, and validation
were performed in a Windows environment using an NVIDIA
Tesla T4 graphics card, with PyTorch version 1.8.2 and Python
version 3.8.19. The input image size was set to 640 × 640,
the weight decay coefficient was 0.0005, the initial learning
rate was 0.01, and 300 epochs of optimization iterations were
conducted.

3.2 Dataset characteristics

The dataset containing helmets of different colors was
sourced from Wang et al. (Wang et al., 2021), and includes
protective vests, four helmet colors (blue, red, white, and yellow),
and images of individuals. This dataset is referred to as the
CHV dataset. The majority of the images were captured at
construction sites, providing an accurate reflection of real-world
conditions. The dataset contains a total of 1,330 photographs
with varying angles, distances, lighting conditions, and character
states, encompassing a total of 9,209 instances. Figure 8 shows
the distribution of images across the training, validation, and
test sets.

The training set is used for the model’s training process, the test
set serves as a basis for evaluating the model’s performance, and the
validation set is utilized for model prediction. Figure 9 illustrates
the percentage of each category label within the training, test, and
validation sets.

The labeled visualization of the dataset distribution provides
insights into the distribution of different categories of samples
within the dataset. The top left image illustrates the dataset
type, which has been described in detail in the previous section.
The bottom left image shows the distribution of the objects’
center of mass coordinates, emphasizing information about
the focus and position of the samples. The top right image
displays the bounding box coordinates in horizontal and vertical
dimensions, aiding in understanding the dataset’s skewness. The
bottom right image shows the distribution of object sizes. This
labeled visualization helps assess the reliability and usability
of the dataset.
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FIGURE 7
Improved YOLOv5s model.

FIGURE 8
(a) Distribution of images in the training, test, and validation sets. (b) Percentage of each class in the training, test, and validation sets.
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FIGURE 9
Distribution of label visualisations.

4 Results and discussion

4.1 Performance visualization

Figure 10 presents a visualization of the results from 300 rounds
of training using the SD-YOLOv5s algorithm on the dataset. The
images show minimal fluctuations in accuracy and recall metrics.
The loss curves, including bounding box regression loss (box_
loss), object confidence loss (obj_loss), and classification loss (cls_
loss), for both the training and validation sets, converge gradually
without significant fluctuations. This indicates that the model is
neither overfitting nor underfitting during the training process.
Additionally, the mAP_0.5 and mAP_0.5:0.95 accuracy metrics
show a steady increase throughout the training, underscoring the
robustness of the model.

Figure 11showstheconfusionmatrix forboththeimprovedmodel
andthebaselinemodelonthedataset.Comparedtothebaselinemodel,
the improvedmodelexhibitsa reducedconfusionrateandsignificantly
enhanced classification accuracy across all categories.

The results of the image comparison before and after applying
the SD-YOLOv5s algorithmare shown in Figure 12.The comparison
clearly demonstrates that the improved model outperforms the

YOLOv5 model, particularly in the detection of complex and small
scenes. The improved model effectively reduces misdetections and
omissions, exhibiting higher positional accuracy and robustness.

4.2 Results of improving the backbone
network

To verify the effectiveness of the attention mechanism, various
attention mechanisms, including CA (Wu et al., 2023), SE (Niu et al.,
2023), and ECA (Zhang et al., 2023), were embedded into the
algorithm. These attention mechanisms were integrated into the
backbone network without any modifications to other parts of
the model. The improved model was then tested and compared
on the CHV dataset, with the experimental results presented in
Table 2.Table 2displays thedetectionaccuracy and speedofYOLOv5s
after integrating CA, SE, and ECA attention mechanisms. The
results indicate that DilateFormer demonstrates the most superior
performance under the same running environment and initial
parameters.This superiority is attributed to the attentionmechanism’s
ability to account for the locality and sparsity of the shallow self-
attention mechanism, effectively aggregating multi-scale information
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FIGURE 10
Visualisation of the improved YOLOv5s model training process.

FIGURE 11
Confusion matrix for YOLOv5s and MSD-YOLOv5s. (a) YOLOv5s; (b) MSD-YOLOv5s.

while reducing redundancy.As a result,DilateFormer achieves leading
computational performance with lower computational costs.

4.3 Ablation experiment

To explore the contribution of different components in our
proposed model, an ablation test was conducted on the dataset
as shown in Table 3. After applying the mosaic augmentation,
the model’s size and FLOPs remained unchanged, while accuracy
improved by 0.8%, verifying that this improvement enhancedmodel

accuracy by increasing the sample diversity. The inclusion of the
small target detection layer led to a 1.1% improvement in themodel’s
mAP. This enhancement allowed the model to learn more features
related to small targets, significantly improving detection accuracy
for these targets, albeit with a noticeable increase in model size.
The introduction of DilatFormer contributed to a 1.7% increase in
mAP, while reducing the model’s parameters by 14.6% compared to
the baseline model. Finally, when both DilateFormer and the small
target detection layer were integrated into the model, the overall
mAP increased by 2.3% compared to the baseline model, and the
model size was also significantly reduced.
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FIGURE 12
Comparison of detection effectiveness of improved algorithms.

TABLE 2 Comparison of different attention mechanisms.

Model P R mAP@0.5 mAP@0.95 FPS

YOLOv5s 92.2% 85.8% 90.9% 53.0% 52.99

YOLOv5s +
CA

92.7% 87.5% 91.5% 51.6% 50.26

YOLOv5s +
SE

93.8% 87.0% 91.6% 51.5% 48.34

YOLOv5s +
ECA

92.7% 87.9% 92.1% 53.7% 40.12

YOLOv5s +
DF

92.9% 87.9% 92.6% 52.3% 58.25

4.4 Results of the comparative experiment

In this study, we analyze the YOLOv5, YOLOv8, YOLOv11 and
YOLOv11 models in comparison with our proposed SD-YOLOv5s
model. As shown in Figure 13, the SD-YOLOv5smodel outperforms
the other models in terms of mAP@0.50, demonstrating greater
accuracy and stability, especially in the later stages of training.
This improvement is attributed to the addition of a small target
detection layer and the introduction of the DilateFormer attention
mechanism, which effectively enhance the model’s accuracy and
robustness. In addition, in terms of model parameters, compared
to the traditional YOLObv5 model, the improved model results in
a significant reduction in model parameters, although its model
parameters are higher compared to more advanced models such as
YOLOv8, in that it is smaller and has optimal detection accuracy
compared to the traditional model. Therefore, the SD-YOLOv5
model has superior detection accuracy and is suitable for use in
complex construction scenarios that require real-time processing or
resource constraints.

5 Conclusion and limitations

5.1 Conclusion

In conclusion, this study presents the SD-YOLOv5s model, an
improved version of YOLOv5s specifically designed for detecting
personal protective equipment in construction sites. By incorporating
a dedicated small target detection layer, the method effectively
addresses the challenges of identifying small and occluded objects in
complexenvironments.Moreover, theintegrationoftheDilate-Former
attention mechanism not only enhances detection accuracy but also
reduces computational overhead, ensuring real-time performance.
As a result, the SD-YOLOv5s model achieves an average precision
(AP) of 93.7%, providing a highly effective solution for worker safety
monitoring. Overall, the model demonstrates clear improvements in
detection speed, accuracy, and reliability, underscoring its potential
for practical deployment in safety monitoring systems and marking a
significant advancement in intelligent detection technologies.

5.2 Limitations

While the SD-YOLOv5s model demonstrates significant
improvements in detecting small and occluded targets, the study has
several limitations. First, the dataset used for training and evaluation
was relatively small, consisting mainly of images captured under
controlled conditions.As a result, themodel’s generalization capability
invarying real-world environments, suchasnighttimeconstructionor
adverse weather conditions, remains uncertain. Second, the addition
of the small target detection layer increases the computational
complexity and inference time, which may hinder its deployment on
low-power or edge devices. Lastly, while the DilateFormer attention
mechanismhelps reduce computational costs, it may not fully address
the redundancy issues in more complex scenarios with highly dense
objects. Future research should aim to incorporate additional datasets
and further optimize the network structure to enhance detection
robustness and computational efficiency.
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TABLE 3 Ablation studies of different components in the improved model.

Model mAP0.5 (%) FPS Parameters FLOP(G)

YOLOv5s 91.6% 52.8 7.03 15.8

YOLOv5s + small 91.9% 41.90 7.17 18.6

YOLOv5s + DilateFormer 92.6% 58.26 6.00 13.7

YOLOv5s + small + DilateFormer 93.7% 45.14 6.09 15.4

FIGURE 13
Comparison between different models (a) mAP values; (b) model
parameters.
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