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Rural road surface distress
detection algorithm based on
mask R-CNN with data
augmentation

Dongfang Li, Hang Zhang*, Longjin Chen, Yu Zhou, Yulong Li,
Ren Qian and Yue Jiang

Zhejiang Highway Technicians College, Hangzhou, China

Traditional manual detection of rural road surface distress is time-consuming
and labor-intensive. In this paper, we propose a Mask R-CNN algorithm
specifically designed for detecting rural road surface defects. To enhance
precision and recall rates, data augmentation techniques—such as image
translation, flipping, and noise perturbation—were applied to a dataset of 4,000
high-quality images of rural road pavement defects. This combination of Mask
R-CNN with data augmentation is a novel approach that addresses the unique
challenges of rural road distress detection. Experimental results demonstrate
that data augmentation significantly improves recognition precision. The Mask
R-CNN algorithm outperforms the ScNet algorithm in terms of precision for
detecting and segmenting rural road defects. Among the various models
and backbones tested within Mask R-CNN, the ResNeXt-101-FPN backbone
achieved the highest precision and recall rates. Additionally, three field tests
further validate the feasibility and reliability of the developed algorithm for rural
road distress detection. The system, combining the Mask R-CNN algorithm with
data augmentation, effectively distinguishes between varying levels of severity
and classifies defects based on characteristics such as size, shape, and location.
This enables maintenance crews to prioritize repairs more efficiently, resulting
in significant improvements in road safety and durability.
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1 Introduction

Rural road surface damage is a critical factor that restricts traffic flow and safety
in rural areas. Each year, China invests substantial manpower and resources into
the inspection and detection of rural road surfaces. In the past, these inspections
were primarily carried out through manual visual assessments, a method that is not
only highly subjective but also costly (Azimi et al., 2020). As the length of rural
roads in China continues to grow, traditional manual inspection methods have proven
inadequate to meet the increasing demand for efficient and accurate assessments.
With advancements in modern technology, automated road surface damage detection
systems, based on digital image processing and computer hardware and software, have
developed rapidly (Qian, 2024; Hu and Ren, 2023). Early detection methods mostly
relied on traditional image processing techniques, such as threshold segmentation,
edge detection, and wavelet transforms (Du Z. Y. et al., 2021). However, these methods
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were limited to detecting specific types of damage in controlled
scenarios, making them unsuitable for addressing the challenges
of detecting multiple types of damage in complex and varied
environments.

Existing vehicle-mounted road surface detection equipment
utilizes image processing technology to analyze road images
captured by onboard cameras, enhancing detection efficiency and
ensuring operator safety by extracting image features. However,
due to the distance between the camera and the road surface, the
images obtained may lack sufficient clarity, often causing small road
surface damages on rural roads to be overlooked during subsequent
manual reviews.Moreover, vehicle-mounted detection equipment is
expensive, and the complex and variable conditions of rural roads
pose additional challenges and limitations. While laser scanning
technology offers high detection accuracy, its high cost significantly
limits its widespread adoption, making it impractical for large-scale
rural road surface detection in the near future (Arya et al., 2021).

With the rapid development of artificial intelligence technology,
deep learning has made significant strides in efficiently detecting
and identifying road surface damage. Currently, object detection
methods primarily utilize Convolutional Neural Networks (CNNs)
and Transformer technology. For instance, Xiao et al. designed
a novel hybrid window attention ViTransformer framework for
road crack detection. This framework extracts feature semantics
locally through dense windows and globally through sparse
windows, significantly improving semantic detail and detection
accuracy (Xiao et al., 2023). Wang et al. proposed a dual-
path network for road crack segmentation that combines the
strengths of CNNs and Transformers (Wang et al., 2024). Xu et al.
introduced a Locally Enhanced Transformer Network (LETNet)
for detecting cracks in road surface images, incorporating a
convolutional backbone and a locally enhanced module to address
the shortcomings of Transformers in capturing both low-level and
high-level local features (Xu Z. et al., 2022). Transformers, with their
self-attention and multi-head attention mechanisms, can capture
long-distance dependencies within images while maintaining a
global perspective. Although Transformer computations are highly
complex, they generally perform better with objects that exhibit
significant variations in texture, shape, and scale.

CNNs are highly efficient in feature extraction and classification
of data such as images, audio, and text, utilizing multiple layers
of convolution, pooling, fully connected layers, and activation
functions. They can be categorized into single-stage and two-
stage algorithms. Single-stage detection algorithms include the
YOLO (You Only Look Once) series and the Single Shot MultiBox
Detector (SSD).

Ma et al. proposed an improved YOLO v3 algorithm based
on the Median Flow (MF) algorithm for road crack detection,
achieving a best accuracy of 98.47% and an F1 score of 0.958
(Ma et al., 2022). Wang et al. introduced an improved YOLO
v5 model for road damage detection, combining the model with
the Vision Transformer (ViT) to compute attention weights for
image regions and generate new feature maps based on these
weights, demonstrating high precision and speed in detecting
longitudinal, transverse, and fatigue cracks (Wang et al., 2023). Du
et al. trained a YOLOv3 algorithm using images of road damage
captured by vehicle-mounted industrial cameras under various
weather and lighting conditions, optimizing model parameters to

improve detection accuracy and speed (Du Y. et al., 2021). Malhar
et al. proposed a pavement pothole detection solution based on
the YOLOv8 algorithm, using deep learning methods to identify
pavement depressions in real-time, enabling autonomous vehicles
to avoid potential hazards and reduce accident risks (Khan et al.,
2024). Wan et al. developed a lightweight road damage detection
algorithm called YOLO-LRDD, incorporating the Shuffle-ECANet
module to reduce model parameters. The model utilizes BiFPN
to enhance multi-scale feature fusion and extraction, while the
FocalEIOU loss function addresses sample imbalance (Wan et al.,
2022). Yan et al. proposed a novel deformable SSD model by adding
deformable convolution layers to the SSD’s VGG16 backbone feature
extraction network. The model’s road damage detection accuracy
was validated using the PASCAL VOC2007 dataset (Yan and Zhang,
2021). Nomura et al. used onboard camera images to assess crack
propagation in concrete bridges, showing that incorporating image
recognition processing with CNN learning after YOLO detection
could improve the accuracy of YOLO (Nomura et al., 2022).

While YOLO series and SSD algorithms offer fast detection
speeds, making them suitable for real-time applications, their
accuracy in complex scenarios (such as complicated backgrounds,
lighting shadows, and occlusions) and precise bounding box
localization is often lower than that of two-stage algorithms like
Fast R-CNN and Faster R-CNN (Xu X. et al., 2022). In pavement
distress detection, insufficient bounding box precision can lead to
misidentification and mislocalization of distress areas, potentially
affecting subsequent maintenance efforts. Two-stage algorithms,
such as Fast R-CNN (Girshick, 2015) and Faster R-CNN (Ren et al.,
2017), first generate potential target areas (candidate boxes) through
selective search or region proposal networks (RPN). In the second
stage, fine classification and bounding box regression are performed
to complete object detection. Ibragimov et al. applied Faster R-CNN
to detect longitudinal, transverse, and alligator cracks in pavements
and proposed a framework to apply Faster R-CNN technology
to full-size pavement images, enabling the detection of large-size
images (Ibragimov et al., 2022). Song et al. (Song and Wang, 2021)
used Faster R-CNN for the automatic recognition and localization
of pavement cracks, potholes, oil seepage, and surface repairs,
comparing it with CNN and K-means classification methods. The
results showed that Faster R-CNN could more accurately locate
pavement damage with bounding boxes (Song and Wang, 2021).
Kang et al. proposed a method for automatic crack detection
and parameter quantification based on Faster R-CNN, utilizing
different bounding boxes and an improved tubular flow field (TuFF)
algorithm to segment crack pixels and measure crack width and
length (He et al., 2017). In 2018, He et al. introduced the Mask
R-CNN algorithm (He et al., 2016), adding a mask segmentation
network to Faster R-CNN for pixel-level segmentation of targets.
This enhancement addresses pixel misalignment issues caused by
the detection branch, allowing simultaneous target localization and
pixel segmentation. Although deep learning technologies havemade
significant progress in high-grade road distress detection, their
direct application to rural road scenarios still faces challenges such as
feature confusion of roaddistress and the loss of small target features.
Therefore, it is crucial to develop a pavement distress detection
algorithm framework tailored to the characteristics of rural roads.

In this paper, we aim to propose a rural road pavement
distress detection algorithm for rural roads in China. Compared
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FIGURE 1
The overall architecture of the Mask R-CNN instance segmentation network Backbone Layer.

FIGURE 2
ResNet101 and FPN Architecture (using a 512 × 512 image as an example).

to general object detection algorithms like YOLO and SSD, Mask
R-CNN, with its pixel-level instance segmentation capability, can
achieve sub-centimeter-level crack localization in complex rural
road scenarios. Its multi-task joint optimizationmechanism ensures
a higher recall rate for small targets. Meanwhile, the dual-branch
feature decoupling network effectively distinguishes the cross-
material feature differences between asphalt cracks and cement
panel fractures, overcoming the feature confusion defect caused by
SSD’s single-stage detection. Therefore, the Mask R-CNN algorithm
was selected for this study. To enhance its performance, data
augmentation techniques such as image translation, flipping, and

noise perturbation were integrated. The use of these techniques
not only improves image quality but also significantly enhances
the precision and recall rates of defect recognition, making this
approach particularly effective for monitoring rural roads. This
combination of Mask R-CNN with data augmentation is a novel
approach that addresses the unique challenges of rural road
distress detection. The paper is organized as follows: Section 2
outlines the architecture of Mask R-CNN, dataset collection, data
annotation, and data augmentation techniques. Section 3 presents
the experimental results and analysis. Finally, the main conclusions
are drawn in Section 4.
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FIGURE 3
Typical rural road surface images in Zhejiang Province, China.

2 Materials and methods

2.1 Mask R-CNN

2.1.1 Overall architecture
The Mask R-CNN architecture is a powerful and versatile

extension of Faster R-CNN, designed for both object detection and
instance segmentation tasks. Its network architecture is primarily
divided into threemain components: the Backbone layer, the Region
Proposal Network (RPN), and the Head layer. The Head layer
comprises ROIAlign, a class head, a bounding box head, and a
mask head. The overall structure of the algorithm is illustrated in
Figure 1.

Backbone is responsible for extracting feature information
from the input image and generating feature maps. Mask R-CNN
typically uses ResNet (Residual Network) as its backbone structure,
with the main ResNet variants including ResNet18, ResNet34,
ResNet50, ResNet101, and ResNet152, the primary difference
between them being the number of layers updated through training.
The backbone structure efficiently extracts image features, providing
rich information for subsequent processing. The ResNet101 feature
extraction network consists of two basic modules: the convolutional
module (Conv Block) and the residual module (Identity Block),

which enhance the feature extraction capability of the convolutional
network.The backbone part compresses the input image at different
scales and passes the resulting four feature maps of varying scales to
the Neck part.

2.1.2 Neck
In the Neck part, the FPN (Feature Pyramid Network) is

adopted for fusing the feature maps from the backbone ResNet and
generating effective feature maps (Lin et al., 2017). FPN combines
feature maps from different layers through a bottom-up pathway,
a top-down pathway, and lateral connections to form a multi-scale
feature pyramid, enabling the model to better detect and recognize
objects at different scales. The ResNet101 and FPN architecture
(illustrated with a 512 × 512 image) is shown in Figure 2.

2.1.3 Region proposal network (RPN)
The region extraction stage is carried out by the Region Proposal

Network (RPN), which extracts target information through anchor
boxes and generates proposal boxes (Elfwing et al., 2018), while
also obtaining offsets via bounding box regression. In the RPN, the
effective feature map is cropped to obtain proposal boxes, enabling
an initial filtering of objects. The RoIAlign method is then used
to aggregate regional features, cropping the effective feature layers
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FIGURE 4
Annotated road surface images.

to form localized feature layers. The use of ROIAlign, decreasing
a limitation in the original Faster R-CNN’s ROI Pooling, is one of
the critical innovations in Mask R-CNN. ROIAlign correctly aligns
the extracted features with the RoIs by using bilinear interpolation
to preserve spatial accuracy. This results in more precise object
localization and segmentation, which is crucial for tasks that require
fine-grained segmentation, like instance segmentation.

2.1.4 Head layer
The head output part is responsible for further processing the

proposed regions, including bounding box classification prediction
and mask prediction. The local feature layers are passed into a
classification and regression model for object detection and into a
semantic segmentation model for processing the proposed boxes,
achieving semantic segmentation.

The output layer of the ROI Head primarily includes ROIAlign
and three heads: the class head, the bounding box head, and the
mask head. In the preceding RPN network, the anchors generated
in the final step serve as the input for ROIAlign. These anchors are
also used to calculate the IoU (Intersection over Union) with each
ground truth bounding box, ultimately producing the outputs for
localization and classification.

2.1.5 Loss functions
Theoverall loss function L of theMask R-CNN can be expressed

as:

L = Lcls + Lbox + Lmask (1)

where Lcls represents classification loss, Lbox represents bounding-
box loss, and Lmask, calculated by each ROI, represents the average
binary cross-entropy loss. For each ROI, the mask branch generates
an output with k ·m2 dimensions. This output corresponds to
generating an independent binary mask for each category (a total
of k masks). Each pixel in the masks is processed using a sigmoid
function to obtain the probability of each pixel belonging to
the target (Elfwing et al., 2018). This design allows Mask R-CNN to
achieve high accuracy in instance segmentation.

2.2 Dataset collection

The dataset for this study was meticulously gathered from
seventy-four rural roads (approximately 100 km) located in
Zhejiang Province, China, using a road surface inspection vehicle.
The vehicle was equipped with advanced imaging equipment,
which allowed for high-resolution, accurate capture of road surface
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conditions across various regions. This collection process was
crucial for the subsequent analysis of road surface types and the
development of a robust classification system.

In total, 4,000 road surface images were collected during the
study, split equally between two major categories:

(1) 2,000 asphalt pavement images: These images represent a
diverse range of road surfaces made from asphalt, which is
one of the most common materials used in road construction.
The images span different road conditions, including well-
maintained surfaces, worn-out surfaces, and surfaces with
varying degrees of cracks and other damages.

(2) 2,000 cement concrete pavement images: These images cover
a variety of cement-based road surfaces, which are commonly
used in rural and urban areas. Like the asphalt images, these
include different conditions, from newly constructed cement
roads to older, more degraded surfaces with visible wear,
cracks, and other types of damage.

The images were captured at different times of the day and
under variousweather conditions, ensuring that the dataset reflects a
wide range of real-world scenarios that the system would encounter
in practice.

Each image in the dataset captures specific details relevant to
road surface inspection, such as:

(1) Surface texture: The fine details of the surface, such as cracks,
potholes, and wear patterns.

(2) Color variations: Asphalt typically appears darker, while
cement roads often have a lighter color, thoughweathering and
dirt accumulation can influence this.

(3) Structural damage: The presence of potholes, cracks, or
joint failures.

(4) Environmental conditions: Variations in lighting, weather
(such as rain or fog), and time of day, which provide a
more comprehensive set of training data for machine learning
algorithms.

As shown in Figure 3, typical examples of both asphalt and
cement roads are displayed. These images highlight the differences
in road surface characteristics, with asphalt images showing varying
levels of cracking, rutting, and wear, while cement images show joint
lines, cracks, and possible surface flaking.

These images include various road conditions and
environmental factors to ensure the diversity and representativeness
of the dataset, providing a solid foundation for subsequent
road surface detection and analysis. Each image has been
appropriately annotated to facilitate the training and testing of
model performance.

2.3 Data annotation

Examples of the annotated data are shown in Figure 4. The
dataset was annotated using a self-developed data annotation tool,
which generated corresponding JSON format annotation files. Road
surface distresses are primarily classified into two types: area-based
distresses and length-based distresses. Area-based distresses include
broken slabs, alligator cracking, and potholes, while length-based
distresses mainly refer to cracks.
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FIGURE 5
Images before (left panel) and after (right panel) distortion correction.

FIGURE 6
Images before (left panel) and after (right panel) image processing.

2.4 Data augmentation

In real-world scenarios, road surface data is often influenced
by various environmental factors such as lighting variations,
dirt accumulation, and surface impurities. These factors can
significantly affect the quality and clarity of the images, making
it challenging for machine learning algorithms to accurately
process and analyze the road surfaces. To address these challenges
and enhance the performance of the algorithms, several image
preprocessing techniques were applied to the collected road surface
images.

The primary goal of the preprocessing steps is to improve the
quality of the images, standardize the input data, and ensure that
the algorithms can focus on the relevant features (e.g., cracks,
potholes, surface texture) without being distracted by distortions

or environmental factors. The following processing techniques were
applied to the dataset:

(1) Perspective Transformation:

This step corrects for any distortions caused by the angle at
which the image was captured. Perspective transformation helps to
align the road surface features, making them appear as if they were
taken from a top-down view.This is particularly useful when dealing
with images taken at oblique angles, ensuring uniformity across
the dataset.

(2) Noise Reduction:

Noise from various sources such as camera sensors,
environmental interference, or image compression artifacts can
degrade image quality. Gaussian blur or median filtering techniques
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FIGURE 7
Loss function curve.

were applied to reduce random noise while preserving important
structural details in the images, like cracks or potholes.

(3) Size Adjustment:

Images were resized to a standard resolution to ensure
consistency in input data. This step is essential for deep learning
models, which often require inputs of a specific size to maintain
computational efficiency and training stability.

(4) Brightness Adjustment:

Variations in lighting conditions can significantly affect the
visibility of road surface features. Histogram equalization or contrast
adjustment techniques were used to balance the brightness levels,
making the features in the image more prominent and reducing
the effect of lighting inconsistencies. This adjustment is crucial
for ensuring that algorithms can identify defects in poorly lit or
overexposed images.

(5) Pixel Smoothing:

Smoothing algorithms (such as bilateral filtering or box filtering)
were applied to reduce high-frequency noise while maintaining
important edges and contours. This process helps to ensure that
subtle surface defects, like fine cracks, are not obscured by noise or
pixelation.

(6) Other Transformations:

Data Augmentation: To further improve the robustness of the
models, transformations such as rotation, flipping, scaling, and
cropping were applied. These techniques help simulate various road
conditions and angles, increasing the diversity of the dataset and
making the model more adaptable to different input scenarios.

The specific data improvement methods used for different types
of distresses and the quantities before and after improvement
are presented in Table 1. Figure 5 illustrates a comparison of
images before and after distortion correction. As shown in the
figure, the image after distortion correction is clearer and more
standardized, with structural features more distinct, which helps
improve recognition accuracy. Figure 6 compares images before and
after image processing, where the image processing methods mainly
include brightening and denoising. As shown in the figure, the
processed image has significantly reduced noise, with enhanced
brightness and details, making it clearer and easier to recognize,
thereby providing a better foundation for subsequent recognition
processes.

3 Experimental results and analysis

3.1 Experimental setup

The hardware used for the experiments was a server running
the Red Hat 11.4 operating system, a 64-bit system based on
an x64 processor, with a total of 125 GB of RAM. The training
was conducted using Python 3 as the programming language and
PyTorch as the deep learning framework. During the experiments,
Mask R-CNN with ResNet combined with FPN was used as the
backbone network for model training, including three backbone
variants: ResNeXt-101, ResNet-50-FPN, and ResNet-101-FPN.
Additionally, the SCNet network (Liu et al., 2017) with ResNet-
50 and ResNet-101 as backbone networks was also used for
model training.
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FIGURE 8
Algorithm recognition results. Note: The distress regions are delineated. (a) Net-Shaped Cracks; (b) Pits; (c) Cracks; (d) Broken Slabs; (e) Potholes.

3.2 Model training evaluation metrics

In this experiment, the effect of the Mask R-CNN detection
model is evaluated by the Intersection over Union (IoU) between the
predicted bounding box and ground truth bounding box. If IoU ≥
0.5, the detection result is considered aTrue Positive (TP); otherwise,
if 0 < IoU < 0.5, the result is considered a False Positive (FP). If a

mask is generated without distress in the image, the result is also
considered a False Positive. If the image contains distress, but it is not
detected, the result is considered a False Negative (FN). If the image
does not contain distress and no mask was generated, the result is
considered a True Negative (TN).

In the study, the evaluation metrics included Average Precision
(AP), Average Recall (AR) and the mean Average Precision (mAP)
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TABLE 2 Average precision rate.

Mode Backbone APbb
50 APbb

75 APbb
S APbb

M Data augmentation

Mask R-CNN ResNet-50-FPN 62.8 23.2 18.7 28.8 √

Mask R-CNN ResNet-101-FPN 68 31.1 8.3 30.5 √

Mask R-CNN ResNeXt-101-FPN 68.3 32.2 4.2 30.9 √

Mask R-CNN ResNeXt-101-FPN 61.9 27.2 3.8 27.3 ╳

ScNet ResNet-50 19.3 1.8 26.9 14.9 √

ScNet ResNet-101 22.0 5.1 5.3 15.8 √

Note: APbb refers to the degree of overlap between the predicted bounding box and the actual bounding box when the model detects the target object. APbb50 and APbb75 represent the average IoU
value of 0.5 and 0.75. APbbS , APbbS , and APbbS denote the small, medium, and large target, respectively.

TABLE 3 Average recall rate.

Mode Backbone ARbb
0.5:0.95 APbb

S APbb
M APbb

L Data augmentation

Mask R-CNN ResNet-50-FPN 46.1 18.0 38.4 50.2 ╳

Mask R-CNN ResNet-101-FPN 49 8.0 40.1 53.9 √

Mask R-CNN ResNeXt-101-FPN 49.6 4.0 39.9 54.9 √

ScNet ResNet-50 23.7 35.6 20.8 23.8 √

ScNet ResNet-101 27.3 11.9 24.4 27.3 √

Note: ARbb
0.5:0.95 refers to the recall rate of the overlap between the predicted bounding box and the ground truth bounding box, where IoU is between 0.5 and 0.95.

TABLE 4 Average Precision Rate for different types.

Types APbb
50 APbb

75 APbb
S APbb

M APbb
L

Horizontal Cracks 63.5 30.7 3.8 27.4 36.5

Vertical Cracks 65.4 29.3 3 29.1 37.3

Net-Shaped Cracks 66.2 28.5 3.9 25.9 38.9

Potholes 70.9 33 4.6 32.9 43

Broken Slabs 73.3 36.9 4.8 35.6 41.7

Pits 70.5 35 5.2 34.5 39.6

TABLE 5 Average recall rate for different types.

Types ARbb
0.5:0.95 ARbb

S ARbb
M ARbb

L

Horizontal Cracks 48.5 3.6 36.6 53.3

Vertical Cracks 47.4 2.8 37.8 51.7

Net-Shaped Cracks 47.3 3.5 39.3 51

Potholes 50.5 4.3 43.6 57.8

Broken Slabs 52.8 3.8 42.2 58.2

Pits 51 5.1 40 55

for different classes. Precision (P) is the ratio of the number
of correctly detected distresses to the total number of detected
distresses. Recall (R) is defined as the ratio of the number of correctly
detected distresses to the total number of distresses that should have
been detected. Based upon these definitions, the precision and recall
rates can be calculated as follows:

P = TP
TP+ FP

× 100% (2)

R = TP
TP+ FN

× 100% (3)

Recall and Precision often influence each other; aiming
for a high recall can lead to a decrease in Precision, resulting
in false positives, while focusing on improving Precision may
lower the recall, causing missed detections. The mAP@0.5
represents the mean Average Precision values across multiple
classes when the Intersection over Union (IoU) threshold is set
at 0.5, reflecting the overall performance of the object detection
network.

3.3 Result analysis

The experiments were conducted using the dataset allocation
standards outlined in Table 1 for training, validation, and
testing. The processing time per image for the algorithm
was 0.155444 s. For training and validating cases, the loss
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FIGURE 9
Field test photos.

function L (Equation 1) of the Mask R-CNN decreases along
with increasing training steps, as shown in Figure 7. After 50
epochs, the total loss is close to 0.3, oscillating in a small
range.

The algorithm’s recognition results are shown in Figure 8. From
the figure, it can be observed that the algorithm successfully
identifies a variety of defects commonly found on rural roads.These
include net-shaped cracks, pits, ruptures, broken slabs, and other
forms of road damage.

The average precision rate (AP) fromEquation 2 of the algorithm
is presented in Table 2, and the average recall rate (AR) from
Equation 3 is detailed in Table 3. The results show that the data
augmentation indeed increases the precision of the recognition.
Also, the experimental results suggest that the Mask R-CNN
combined with the ResNeXt-101-FPN backbone network can have
the best precision and recall rates among the different modes
and backbone.

The AP and AR rates for different types of diseases are provided
in Tables 4, 5. It is found that due to the different characteristics
and nature of various road surface defects, the resulting AP and
AR rates are also various. For example, potholes, pits, and broken
slab have larger affected areas and more distinct features, which
are less influenced by surrounding environmental factors, their AP
and AR rates are higher compared to other defects. On the other
hand, horizontal and vertical cracks and net-shaped cracks are small
target defects with less obvious features and are more significantly
affected by factors like lighting and water stains, leading to lower AP
and AR rates.

3.4 Field tests

To assess the performance of the developed algorithm, field tests
(see Figure 9) were conducted in Yuhang District, Hangzhou City,
Zhejiang Province, China. Images were captured using a vehicle-
mounted camera (see Figure 9, and an 8 MPRGB camerawith 25 fps
capture rate)while driving approximately 5 kmon asphalt (60%) and
cement concrete (40%) pavements, and these images were processed
with the proposed algorithm.

Figure 10 shows comparisons of the model results with manual
observations. It can be seen that the road distresses detected by
the model are very similar to those identified through manual

observations, which indicates the robustness and accuracy of the
developed model. Table 6 presents the statistical results of three
field tests. By comparing the identified distress areas with the actual
distress areas, the average absolute area error rates ranged from
9.96% to 23.46%, demonstrating that the developed algorithm is
both feasible and effective for detecting various types of distress
on rural roads. Moreover, compared to traditional manual visual
assessments, the time required to detect road distress was reduced
by approximately 40%.

The ability to detect these defects with high accuracy
demonstrates the robustness and versatility of the algorithm in
handling different types of road surface deterioration. Moreover,
the system is capable of distinguishing between different levels
of severity and classifying defects according to their specific
characteristics, such as size, shape, and location. This ensures
that maintenance crews can prioritize repairs more effectively,
potentially leading to significant improvements in road safety and
longevity.

Additionally, the algorithm’s performance suggests that it could
be integrated into an automated road monitoring system, providing
continuous, real-time analysis of road conditions without the need
for manual inspections. This could be particularly beneficial in
rural areas, where road maintenance often faces resource and
manpower limitations. The results also imply that the algorithm
could be adapted to other types of infrastructure, such as bridges
or tunnels, enhancing its applicability in various domains of civil
engineering.

3.5 Limitation and future work

The current algorithm, compared to traditional manual
recognition methods, significantly improves the efficiency of rural
road defect detection. However, based on the current results, there
is still room for improvement in both precision and recall rates.
The primary source of error may be related to image quality. Since
the images are captured by cameras installed on vehicles, factors
such as vehicle speed, lighting, and weather conditions during
image collection can affect image quality. In addition, the quality
of rural roads is generally worse than that of regular roads, which
further complicates image recognition. In the future, combining
multiple deep learning models, such as integrating Mask R-CNN
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FIGURE 10
Comparisons of the model results with the manual observations.

with YOLO, could help reduce false detection rates. Furthermore,
repeated road inspections can improve the accuracy of recognition
on road defect as well.

In the current algorithm, to improve the efficiency of
manual visual inspection, we have adopted a strategy of low
false positive and high false negative detection for common
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TABLE 6 Results of field tests.

Road type Distress type Average distress
areas identified by
the algorithm (m2)

Average actual
distress areas (m2)

Average absolute area
error rates (%)

1 st 2 nd 3 rd 1 st 2 nd 3 rd 1 st 2 nd 3 rd

Asphalt pavement

Cracks 0.8 0.75 0.8 0.68 0.6 0.65 17.65% 25.00% 23.08%

Net-Shaped Cracks 1.5 1.5 1.5 1.3 1.2 1.12 15.38% 25.00% 33.69%

Potholes 1.02 1 1.18 1 1.4 0.83 2.00% 28.57% 42.17%

Cement concrete pavement

Cracks 1.3 1.3 1.3 1.12 1.2 1.1 16.07% 8.33% 18.18%

Broken Slabs 4.8 4.8 4.8 4.8 4.8 4.8 0.00% 0.00% 0.00%

Pits 1.27 1.3 1.2 0.97 1 0.97 30.93% 30.00% 23.71%

Average error rates 13.67% 9.96% 23.47%

defects (such as cracks and repairs). This strategy helps
maximize human efficiency to some extent. However, as data
continues to accumulate and models are iteratively upgraded,
future models will evolve towards a more balanced approach,
aiming to reduce both false positives and false negatives
simultaneously.

4 Conclusion

To address the limitations of traditional image processing and
machine learning techniques in detecting rural road pavement
defects, and to overcome the challenges posed by the low
contrast between defects and their surrounding background, this
paper proposes a Mask R-CNN-based algorithm for rural road
pavement defect detection. The novelty of this approach lies in the
integration of Mask R-CNN with data augmentation techniques,
such as image translation, flipping, and noise perturbation,
which significantly enhance the recognition accuracy of road
surface defects. This method is specifically applied to rural roads
in China. The developed algorithm enables precise detection
and segmentation of road defects. After training on a dataset
of 4,000 high-quality images of rural road pavement defects,
the model’s loss value stabilized, confirming its effectiveness.
Experimental results demonstrate that the Mask R-CNN algorithm
outperforms the ScNet algorithm in terms of precision for
defect detection and segmentation, showcasing its superior
capability for rural road pavement distress detection. Additionally,
three field tests validate the feasibility and reliability of the
proposed algorithm in real-world conditions. The system,
combining Mask R-CNN with data augmentation, effectively
distinguishes between varying levels of severity and classifies
defects based on characteristics such as size, shape, and location.
This enables maintenance crews to prioritize repairs more
efficiently, leading to significant improvements in road safety and
durability.
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