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Introduction: The seismic vulnerability of urban critical infrastructure presents
significant challenges for disaster preparedness and riskmanagement. This study
investigates the seismic risks associated with Pressure Reduction Stations (PRS)
in Tehran, Iran.

Methods: An integrated decision-making framework combining Geographic
Information Systems (GIS), Dominance-Based Decision-Making (DBDM), and
Density-Based Spatial Clustering of Applications with Noise (DBSCAN) was used.
Risk factors such as fault line proximity, ground motion, structural integrity, and
population density were analyzed.

Results: High-risk zones and outlier PRS facilities were identified. Districts 2
and 10 were determined to be the most vulnerable. PRS-26 and PRS-10 were
prioritized for retrofitting. The framework enabled robust spatial and probabilistic
assessments.

Discussion: The integration of GIS, DBDM, and DBSCAN enhances the ability
to identify seismic risk hotspots. This approach provides practical guidance for
urban planners to improve resilience and disaster risk management for gas
distribution infrastructure.

KEYWORDS

seismic vulnerability, GIS, pressure reduction stations, dominance-based decision-
making, DBSCAN clustering, disaster risk management, urban resilience

1 Introduction

Urban infrastructure planning and disaster management are facing increasing
challenges due to rapid urbanization and escalating seismic risks worldwide. Addressing
these challenges requires robust analytical methodologies capable of handling diverse
and often conflicting criteria. Multi-Criteria Decision-Making (MCDM) techniques have
emerged as effective tools in this domain, providing structured approaches for evaluating
trade-offs and prioritizing vulnerabilities in critical infrastructure (Mardani et al., 2015;
Triantaphyllou, 2000). Among these techniques, DBDM has gained attention for its ability
to systematically rank alternatives. However, when integrated with GIS, referred to as
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DBDM-GIS, several limitations arise, particularly in handling
spatially dependent and heterogeneous datasets (Greco et al., 2001).

Recent advancements in MCDM methodologies, including
MULTIMOORA, VIKOR, and COPRAS, have extended their
applicability in infrastructure planning by addressing challenges
related to subjective weighting and trade-off complexities (Brauers
and Zavadskas, 2010; Opricovic and Tzeng, 2004). For instance,
VIKOR has been effectively employed in balancing conflicting
criteria in seismic risk assessments, demonstrating its usefulness
in urban disaster management (Shakerian et al., 2016). Similarly,
MULTIMOORA has been utilized in optimizing decision-making
processes for energy and environmental studies, including the
integration of uncertain or incomplete data (Li et al., 2023).
COPRAS has also been instrumental in prioritizing infrastructure
projects under conditions of high uncertainty (Zavadskas et al.,
2008). Despite their strengths, these methods lack advanced spatial
analytical capabilities, limiting their effectiveness in seismic risk
evaluations (Malczewski, 2006).

In parallel, significant progress has been made in seismic
vulnerability assessment methodologies. Traditionally, seismic
fragility analysis has been applied to evaluate the probability of
structural failure under earthquake loads. Recent studies have
proposed automated approaches, such as the META-FORMA-
XL framework, which utilizes mechanical-typological modeling
to derive fragility curves for masonry aggregates in urban
environments (Mansouri Daneshvar et al., 2013). Additionally,
multisource methodologies have been introduced to assess the
regional seismic fragility of historical buildings by integrating
typological, morphological, and construction-related data into
vulnerability classifications (Delavar andMoradi, 2007). Analytical-
mechanical frameworks have also been developed for reinforced
concrete (RC) buildings, focusing on probabilistic fragility
estimation at a municipal scale (Dall’erba and Jiang, 2013).
While these approaches offer valuable insights into building-
level vulnerability, they are primarily designed for urban-scale
or historical structures and may not fully capture the unique
risk factors associated with critical infrastructure such as gas
distribution networks.

Integrating MCDM techniques with GIS helps overcome this
limitation by incorporating spatial data into decision-making
frameworks. GIS facilitates comprehensive analyses of critical
seismic factors, such as proximity to fault lines, ground motion
intensity, and urban density, as demonstrated in studies focused
on earthquake vulnerability assessments in urban environments
(Delgado et al., 2024; Momani and Fadil, 2019). Researchers have
applied fuzzyMCDMmodels withinGIS for seismic risk evaluations
in regions with incomplete or uncertain data (Chen et al., 2018;
Chen et al., 2015). Additionally, hybrid approaches combining
Analytical Hierarchy Process (AHP) and GIS have been used to
determine optimal infrastructure locations and mitigate seismic
hazards (Ebrahimi and Koch, 2019; Cutter et al., 2010). Beyond
earthquakes, GIS-MCDM frameworks have been successfully
implemented in disaster management scenarios, including flood
risk mapping (Hosseini et al., 2020), wildfire control (Malczewski,
1999), and urban resilience planning (Shekhar et al., 2003).
However, despite these advancements, most studies primarily
address general seismic risks and fail to comprehensively assess the

unique vulnerabilities of critical infrastructure, such as gas stations,
particularly in seismically active regions like Iran (Ester et al., 1996).

While the DBDM-GIS framework effectively ranks alternatives,
it faces challenges in handling data complexity and heterogeneity.
Specifically, DBDM-GISmethods frequently assumeuniform spatial
data distribution and fail to account for irregular clusters or outliers
that might indicate heightened vulnerability. For example, the
relationship between fault line proximity and urban density is often
non-linear and cannot be fully captured by conventional DBDM-
GISmodels (Campello et al., 2013). Furthermore, traditionalDBDM
frameworks are less effective in integrating real-world anomalies,
such as isolated areas with high seismic risk or clusters with distinct
vulnerability profiles (Ruggieri et al., 2023).

To overcome these limitations, this study proposes an enhanced
DBDM-GIS framework integrating density-based clustering
through DBSCAN. Unlike traditional clustering methods like
k-means, which rely on pre-defined cluster shapes and assume
equal density, DBSCAN identifies clusters based on point density,
making it particularly suitable for geospatial datasets with irregular
distributions (Tosto et al., 2025). Additionally, DBSCAN explicitly
detects outliers, which enables the identification of unexpected
vulnerability patterns that might otherwise be overlooked in
conventional DBDM-GIS applications (Ruggieri et al., 2022).
Previous research has demonstrated the potential of DBSCAN in
urban planning, such as mapping informal settlements (Mian and
Ghanbari, 2017), analyzing traffic congestion patterns (Lahijanian
and Hashemi, 2016), and geospatial crime analysis (Berberian
and Yeats, 1999). However, its application in seismic vulnerability
assessment remains underexplored.

Urban infrastructure, particularly gas distribution networks,
faces significant risks in earthquake-prone regions such as
Tehran. PRSs, a critical component of these networks, are
especially vulnerable. Their failure during seismic events can
result in cascading consequences, including widespread gas supply
disruptions, fires, explosions, and severe economic losses (JICA,
2000). Recognizing these risks, a systematic and spatially-aware
approach is essential for evaluating the seismic vulnerability of PRS
facilities (Zare et al., 2021).

Tehran’s geological landscape is diverse, with alluvial deposits,
volcanic, and metamorphic rocks contributing to varying degrees
of seismic hazard. The city’s proximity to major faults, including
the Mosha, North Tehran, and Ray faults, further amplifies its
vulnerability. Historical earthquake records and hazard maps
indicate a pattern of high ground motion potential across densely
populated regions (Karimi et al., 2019). However, understanding
the specific seismic vulnerability of PRS facilities requires a tailored
analytical framework that accounts for spatial variability and
structural risk factors (Ebrahimian et al., 2020).

This study aims to develop an advanced DBDM-GIS framework
integrated with DBSCAN clustering to provide a more robust and
spatially-sensitive approach for assessing seismic vulnerability in
Tehran’s gas distribution infrastructure. By incorporating advanced
spatial analysis, probabilistic modeling, and data-driven clustering,
the proposedmethodology will improve risk identification, enhance
predictive accuracy, and support decision-makers in implementing
more effective seismic mitigation strategies for critical urban
infrastructure.
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FIGURE 1
Seismic hazard map of tehran and surrounding areas, highlighting the main faults and ground motion levels based on historical
earthquake records (JICA, 2000).

To provide a spatial understanding of Tehran’s
seismic hazards, Figure 1 illustrates the distribution of major
fault lines and ground motion levels based on historical
earthquake records. This visual representation serves as a
foundation for the vulnerability assessment framework discussed
in subsequent sections.

This study employs a two-tiered seismic risk assessment
framework consisting of:

• BroadVulnerabilityAnalysis (BVA):AGIS-based approach that
maps fault lines, seismic hazard zones, and population density
across Tehran to identify high-risk districts where PRS facilities
may be vulnerable.

• Localized PRS Analysis (LPA): A facility-level assessment that
integrates two analytical techniques. The Dominance-Based
Decision-Making (DBDM) method evaluates PRS facilities
using four key risk factors: (1) proximity to active fault
lines, (2) ground motion intensity, (3) structural integrity, and
(4) population/economic exposure. The resulting composite
vulnerability scores are then analyzed through Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) to
identify spatial clusters of high-risk facilities and outliers with
unique vulnerability profiles.

This two-stage framework ensures that BVA first identifies
vulnerable districts, while LPA prioritizes and spatially clusters
PRS facilities, providing a comprehensive foundation for seismic
mitigation planning.

2 Methodology

The methodology adopted in this study integrates advanced
decision-making and spatial analysis techniques to assess the
seismic vulnerability of PRSs in Tehran’s gas distribution network.
This systematic framework combines the DBDM, DBSCAN,
and GIS, ensuring a robust and spatially-informed vulnerability
assessment (Figure 2).

The methodology is explained in detail in the
following steps:

2.1 Data collection and preparation

A comprehensive dataset was compiled and pre-processed to
support the seismic vulnerability assessment of PRSs in Tehran.
The dataset integrates seismic hazard indicators, infrastructure
characteristics, population exposure, and spatial data into a multi-
layered analytical framework.

The data sources include official records from seismic hazard
assessment agencies, Tehran’s municipal gas authority, demographic
statistics, and geospatial databases. Preprocessing steps involved
georeferencing, missing data interpolation, and standardization to
ensure consistency across datasets. Table 1 summarizes the dataset
components:

The data preparation process involved three key components:

• Seismic Hazard Data:
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FIGURE 2
Framework for seismic vulnerability assessment using DBDM, GIS, and DBSCAN.

TABLE 1 Dataset components.

Category Key parameters Data source

Seismic Hazard Data Fault locations, earthquake history, PGA maps National Earthquake Center of Iran, JICA, IIEES (2020)

PRS Infrastructure Location, structural type, pressure, age Tehran Gas Organization

Population & Economy Population density, land use, economic value Statistical Center of Iran (SCI, 2021)

Geospatial Data Roads, DEM, hazard zones Tehran Municipality dataset

Fault line locations, historical earthquake records, and ground
motion intensity maps were collected from the National Earthquake
Center of Iran. These datasets were georeferenced and analyzed
to calculate seismic hazard intensity at specific PRS locations.
Groundmotion intensity (Ig) for each site was determined using the
following attenuation relationship:

Ig = a.exp(−b.d) (1)

where:
Ig = groundmotion intensity (Peak Ground Acceleration, PGA).
a = site-specific amplification factor.
b = attenuation coefficient.
d = distance from the fault line to the PRS location (km).
This calculation provided a detailed spatial distribution of

seismic intensity across the metropolitan area.

• Infrastructure Information:

Detailed information regarding the PRS facilities, including
their geographic locations, structural characteristics, and
operational importance, was gathered from Tehran’s municipal gas
authority. Facility-specific parameters, such as structural integrity
(Si) and service criticality (Ci), were quantified as follows:

Si =
Ry

Ru
 and Ci =

P0

Pt
(2)

where:
Si = structural resilience index (ratio of yield strength Ry to

ultimate strength Ru).
Ci = criticality index (ratio of operational pressure P0 to design

threshold pressure Pt).
These indices were incorporated into the decision-making

model to prioritize facilities based on their vulnerability and
importance.

• Geospatial Data:
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Topographic maps, population density distributions, and urban
layout information were collected to understand the spatial context
of vulnerabilities. Geospatial layers were integrated using GIS
software, enabling multi-layered analysis. For instance, population
density (Pd) around each PRS was computed using kernel density
estimation (KDE):

Pd(x,y) =
1
h2

n

∑
i=1

K(
√(x − xi)

2 + (y − yi)
2

h
) (3)

where:
Pd(x,y) = population density at location (x,y).
n = number of population data points.
h = bandwidth parameter.
K = kernel function (Gaussian kernel).
This spatial processing allowed for the visualization of

population exposure to potential hazards, which was a critical input
for the GIS-based analysis.

2.1.1 Georeferencing and Pre-Processing
All collected datasets were standardized to a unified spatial

coordinate system (WGS84WGS 84WGS84) to ensure compatibility.
Missing data points were addressed using interpolation techniques,
such as Inverse Distance Weighting (IDW) for geospatial layers
and Bayesian methods for probabilistic data. Additionally, spatial
overlays were performed in GIS to align fault lines, PRS locations,
and population density maps within a single analytical framework.

By completing these data preparation steps, the research
ensured a robust and accurate foundation for integrating seismic,
structural, and spatial criteria into the subsequent vulnerability
assessment process.

2.1.2 Broad vulnerability analysis (BVA)
The Broad Vulnerability Analysis (BVA) was conducted at

the district level using GIS-based spatial mapping. This analysis
identified seismic risk hotspots across Tehran by overlaying
fault lines, ground motion intensity zones, and population
density distributions. The goal of BVA was to highlight high-risk
urban districts likely to contain vulnerable PRS infrastructure.
These findings served as an initial filter for deeper, facility-
level assessments carried out in the subsequent Localized PRS
Analysis (LPA).

2.2 Localized PRS analysis (LPA) – DBDM
approach

DBDM was employed in this study to evaluate and prioritize
the seismic risk associated with PRSs in Tehran. This approach
incorporates probabilistic analysis to address uncertainties inherent
in seismic data and adapt dynamically as new information becomes
available. In this study, the term “alternatives” refers to the
geographic districts of Tehran that were selected for evaluation
based on PRS density, seismic exposure, and urban risk factors. The
following steps were performed:

• Defining Risk Factors

Four critical risk factors were identified to comprehensively
evaluate the seismic vulnerability of PRS facilities:

- Proximity to Active Fault Lines (D f):

The distance from each PRS facility to the nearest fault line was
calculated using GIS tools, ensuring precise spatial measurements.
Facilities closer to fault lines were assigned higher risk levels.

- Ground Motion Intensity (Ig):

Ground motion intensity at each facility location was calculated
using the attenuation relationship (1).

- Structural Integrity (Si):

The structural integrity of each facilitywas quantified as Equation 2
Higher values of Si indicate greater structural resilience.

- Population Density and Economic Loss Potential (Ep):

Population density and potential economic impacts in the
vicinity of each PRS were evaluated using Kernel Density
Estimation (KDE):

Ep = Pd .V e (4)

where:
Pd: Population density (from GIS).
Pd: Economic value of assets exposed in the area.
These factors were selected based on their relevance to seismic

vulnerability and their potential impact on public safety and
economic stability.

• Bayesian Modeling

Probabilities of PRS failure were estimated using Bayesian
inference, which allowed for the incorporation of prior knowledge
and the dynamic updating of risk estimates as new data became
available. The failure probability (P(F|D)) for each facility was
computed as:

P(F|D) =
P(D|F).P (F)

P(D)
(5)

where:
P(F|D): Posterior probability of failure given observed data.
P(D|F): Likelihood of observed data given failure.
P (F): Prior probability of failure.
P(D): Marginal probability of observed data.
Themodel dynamically adjusted P(F|D) as updated seismic data
(D) became available, such as real-time ground motion records or
structural health monitoring data.

• Weight Assignment

To ensure a balanced assessment, weights (wi) were assigned to
each risk factor based on expert judgment and a literature review
of seismic vulnerability studies. The overall risk score (R) for each
facility was calculated as:

R =
n

∑
i=1

wi.Fi (6)
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where:
n: Number of risk factors.
wi: Weight assigned to the i-th factor.
Fi: Normalized score for the i-th factor.
The weights were normalized (∑wi = 1) to ensure consistency

and comparability across all criteria. Expert consultations were
conducted with seismic and infrastructure specialists to determine
the relative importance of each factor.

• Risk Prioritization

The results of the Bayesian modeling and weighted risk scores
were integrated into GIS to spatially visualize and rank PRS facilities
based on their overall risk. High-priority facilities were those with
close proximity to active fault lines, high ground motion intensity,
low structural integrity indices and high population and economic
exposure in surrounding areas.

To facilitate interpretation and support mitigation planning, the
computed composite risk scores from the DBDM model were used
to classify PRS facilities into three distinct risk categories:

• High Risk: Composite score ≥0.50
• Moderate Risk: Composite score between 0.35 and 0.49
• Low Risk: Composite score <0.35

This classification provided a clear basis for prioritizing PRS
facilities for seismic mitigation and retrofitting.

2.3 Localized PRS analysis (LPA) – DBSCAN
clustering

To enhance the seismic vulnerability assessment of PRSs and
address the limitations of conventional DBDM methods, the
DBSCAN algorithm was employed. This clustering technique
effectively identifies spatial patterns and outliers in the
vulnerability data.

• Clustering Process

The DBSCAN algorithm was applied to group PRS facilities
based on their vulnerability scores and geographic distribution.The
clustering process involved the following steps:

- Parameter DDefinition:

Epsilon (ϵ): The maximum radius within which points are
considered part of the same neighborhood. This parameter was
determined using the k-distance method, identifying the elbow
point in the k-distance graph to optimize clustering density.

Minimum Points (MinPts): The minimum number of
neighboring points required to define a cluster. This was set based
on the density of PRS facilities in the study area.

Point Classification:
Core Points: Points with at least MinPts neighbors within the

ϵ radius.
Border Points: Points within the ϵ radius of a core point but

having fewer thanMinPts neighbors.

Noise Points: Points that do not fall within any cluster, treated
as outliers.

Clustering Algorithm:
For each point Pi in the dataset D, Identify the neighborhood

(Ni) of Pi:

N i = {Pj ∈ D|dist(Pi,Pj) ≤ ϵ } (7)

If |Ni| ≥MinPts, classify Pi as a core point and expand the cluster
to include all reachable points.

If |Ni| <MinPts, classify Pi as a noise point unless it is within the
neighborhood of a core point.

• Mathematical Basis

DBSCAN’s clustering mechanism is based on density
connectivity:

A point Pi is density-reachable from Pj if there exists a chain of
core points connecting Pj to Pi.

A cluster is defined as the maximal set of density-
connected points.

Mathematically:
Core points satisfy:

|N i| ≥MinPts (8)

Density-reachable points satisfy:

Pk ∈ {N i|dist (Pi,Pk) ≤ ϵ} (9)

This density-based connectivity ensures that clusters can
take irregular shapes, making DBSCAN highly suitable for
geospatial data.

• Integration with GIS

The output of the DBSCAN algorithmwas seamlessly integrated
into the GIS framework, enabling spatial visualization and further
analysis. The clustering results included geographic groupings of
PRS facilities into clusters and also spatial identification of noise
points, representing outlier PRS facilities.

These spatial insights were utilized in subsequent stages of
the analysis, ensuring the comprehensive assessment of seismic
vulnerabilities.

DBSCAN clustering results were interpreted for risk
classification purposes. Facilities located within dense clusters near
active faults and high PGA zones were classified as High Risk. Noise
points or spatial outliers with elevated vulnerability indicators were
labeled as Localized High Risk, while facilities in lower-density or
less severe clusters were categorized as Moderate to Low Risk.

In the DBSCAN clustering analysis, PRS facilities were classified
into risk categories based on their spatial grouping.

• High Risk: Facilities located within dense clusters identified
near active faults and high PGA zones.

• Moderate Risk: Facilities within medium-density clusters or
mixed-character zones.

• Outlier Risk: Noise points or isolated PRSs flagged by DBSCAN
were treated as unique risk cases and assessed individually for
critical vulnerabilities.

Frontiers in Built Environment 06 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1569624
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Khoshnoud et al. 10.3389/fbuil.2025.1569624

This classification allowed to distinguish clustered high-risk
zones from anomalous but potentially severe outlier risks.

2.4 GIS-based visualization

The integration of results from DBDM and DBSCAN
clustering analysis into GIS enabled spatial visualization of seismic
vulnerabilities across Tehran’s PRS facilities. This step translated
analytical outputs into actionable insights through intuitive and
detailed geospatial mapping.

• Mapping Vulnerability Hotspots

High-risk PRS facilities identified through the DBDM
analysis were georeferenced and visualized in GIS. The mapping
process included:

Fault Line Proximity Analysis:
PRS facilities were overlaid on fault line maps to highlight their

spatial relationships with active seismic zones.The proximity (D f) of
each facility to the nearest fault was calculated, and thresholds were
set to categorize facilities into risk levels (high, medium, low).

D f =min(dist(RPSi,Faultj)) (10)

where:
RPSi: Location of the i-th PRS.
Faultj: Location of the j-th fault line.
Urban Center Proximity:
Urban centers and high-density population zones were overlaid

with PRS locations to identify facilities whose failures could result in
significant public safety and economic impacts.

Hotspot Identification:
Using DBSCAN clusters, spatial groupings of high-risk PRS

facilities were highlighted as vulnerability hotspots. Outliers flagged
during clustering were separately visualized to emphasize facilities
with unique risk profiles.

• Developing Seismic Vulnerability Maps

Seismic vulnerability maps were created by integrating multiple
spatial layers derived from the analysis, including:

Vulnerability Scores:
Each PRS facility was assigned a composite risk score based on

the weighted outputs from DBDM. These scores were visualized
using a gradient scale (red for high risk, yellow for medium risk,
green for low risk).

Cluster Overlays:
DBSCAN clusters were overlaid on the vulnerability map to

distinguish grouped high-risk areas from isolated outliers.
Population and Economic Exposure:
Additional layers for population density and economic exposure

were added to the maps to provide a comprehensive risk context.
This was calculated as:

Ep = Pd .V e (11)

where:
Pd: Population density around the PRS facility.

Ve: Estimated economic value of surrounding assets.
Mitigation Priority Zones:
Areas requiring urgent mitigation efforts were marked based on

their composite risk scores and proximity to urban centers or critical
infrastructure.

• Technical Implementation

The GIS visualization was implemented using the
following steps:

Data Integration:
Outputs from DBDM and DBSCAN analyses were imported

into GIS software (ArcGIS) as geospatial layers.
Symbology and Layer Customization:
Fault lineswere visualized as polylineswith varyingwidths based

on seismic activity levels.
PRS facilities were represented as point features, color-coded by

risk scores.
Vulnerability clusters and outliers were highlighted using

distinct symbology.
Map Composition:
Final maps included essential elements such as legends, scales,

and annotations, ensuring clarity and usability for decision-makers.

• Outputs and Applications

The GIS-based maps developed in this study serve as
actionable tools for:

Identifying high-risk PRS facilities for targeted inspections or
retrofitting.

Prioritizing mitigation efforts in vulnerability hotspots.
Supporting disaster management and urban planning by

providing a spatial understanding of seismic risks.
The proposed methodology combines the strengths of DBDM

and DBSCAN to address the unique challenges of seismic
vulnerability assessment for PRS infrastructure.

• DBDM for Probabilistic Risk Assessment: The model evaluates
the likelihood of failure for each facility based ondiverse factors,
incorporating uncertainty into the analysis.

• DBSCAN for Clustering and Anomaly Detection: The
algorithm identifies spatial clusters of high-risk PRS facilities
and flags outliers with unique vulnerabilities.

• GIS for Visualizing and Prioritizing Risk: Spatial visualization
enhances the interpretability of results, supporting more
effective disaster management planning.

2.5 Decision criteria for PRS seismic risk
evaluation

To systematically evaluate the seismic vulnerabilities of Tehran’s
PRSs, the insights gained from GIS-based spatial visualization and
DBSCAN clustering were integrated into a structured multi-criteria
decision matrix. This matrix accounts for critical factors such as
fault proximity, ground motion intensity, structural resilience, and
population density, ensuring a comprehensive assessment of seismic
risk. Each criterion was carefully selected and weighted based on its
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FIGURE 3
GIS-based Seismic vulnerability assessment criteria.

influence on PRS vulnerability, aligningwith established seismic risk
evaluation frameworks. By leveraging GIS for spatial analysis and
DBSCAN for clustering high-risk areas, this methodology enhances
risk prioritization, guiding targeted retrofitting and mitigation
strategies. Figure 3 illustrates the GIS-based seismic vulnerability
assessment criteria, providing a structured framework for evaluating
PRS seismic risks.

3 Results

The results are presented in alignment with the two-tiered
framework introduced earlier. First, findings from the Broad
Vulnerability Analysis (BVA) are shown to identify high-risk
districts.Then, the LocalizedPRSAnalysis (LPA) results are detailed,
including DBDM-based rankings and DBSCAN spatial clustering
for individual PRS facilities.

As outlined in Section 2.2, the DBDM method was applied
to systematically evaluate the seismic vulnerability of PRS
facilities using four primary risk factors: proximity to fault lines
(D f), ground motion intensity (Ig), structural integrity (Si), and
population/economic exposure (Ep). The DBDM approach was
implemented through a structured decisionmatrix and probabilistic
modeling to rank districts and PRSs. The following steps describe
the execution of the DBDM process as applied in this study:

• Constructing the Decision Matrix, where alternatives are
evaluated across multiple criteria.

• Dominance and Is Dominated Matrices, which analyze the
relationships between alternatives based on benefit and
cost criteria.

• Weighted Dominance Matrices, where expert-
assigned weights are used to refine the dominance
relationships.

• Calculating Dominance Coefficients, which rank alternatives
based on their overall performance.

3.1 Localized PRS analysis (LPA) –
application of DBDM

This study employs DBDM to assess the seismic vulnerability
of PRSs in Tehran. The method evaluates alternatives (districts or
PRS facilities) based on multiple criteria relevant to seismic risk:
proximity to fault lines (D f), groundmotion intensity (Ig), structural
integrity (Si), and population exposure (Pd).The process involves the
following steps:

Step 1: To systematically assess the seismic vulnerability of gas PRSs
inTehran, a decisionmatrix (X)was developed, representing
the performance of m alternatives (Tehran’s districts)
across n evaluation criteria. The criteria were systematically
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TABLE 2 Decision matrix values for criteria across districts.

District/Criteria 10 2 4 5 7 9 11 8 1 3 6

CA.1.1. 4.11 1.59 2.57 1.93 1.87 1.82 1.57 1.47 1.69 1.29 1.58

CA.1.2. 2.83 1.83 2.13 1.83 1.72 1.8 1.69 1.83 2.01 1.88 2.29

CA.1.3. 1991 1989 1991 1990 1991 1989 1988 1990 1990 1989 1991

CA.2.1.1. 0.37 0.2 0.31 0.16 0.28 0.16 0.07 0.01 0.01 0 0.02

CA.2.1.2. 0.51 0.7 0.4 0.49 0.59 0.67 0.55 0.15 0.06 0 0.05

CA.2.2.1. 0.45 0.28 0.49 0.48 0.56 0.45 0.31 0.15 0.15 0.27 0.42

CA.2.2.2. 0.37 0.29 0.3 0.33 0.29 0.33 0.4 0.51 0.48 0.41 0.42

CA.3.1. 0.18 0.43 0.21 0.19 0.22 0.29 0.34 0.38 0.32 0.17 0.27

CB.1.1. 0.31 0.03 0.04 0.03 0.01 0 0 0 0 0 0.02

CB.1.2. 0.31 0.08 0.04 0.03 0.01 0 0 0 0 0 0

CB.1.3. 0.99 0.11 0.1 0.11 0.05 0.02 0 0 0 0 0

CB.1.4. 3.04 0.32 0.35 0.33 0.17 0.06 0 0.01 0 0 0

CB.1.5. 42.32 559.0 272.08 585.3 317.67 533.7 533.1 414.2 516.5 148.71 0

CB.2.1. 0.56 0.03 0.09 0.07 0.06 0.06 0 0 0 0 0

CB.2.2. 0.56 0.03 0.09 0.07 0.06 0.06 0 0 0 0 0

CB.2.3. 1.68 0.09 0.26 0.2 0.18 0.17 0 0 0 0 0

CB.2.4. 3.08 0.28 0.77 0.62 0.53 0.5 0.15 0.01 0 0 0

CB.3.1. 575.0 605.7 593.66 606.0 586.09 405.7 555 603.2 606.2 0 595.0

CB.3.2. 0.41 0.62 0.53 0.65 0.57 0.38 0.38 0.49 0.51 0.42 0.42

CB.3.3. 0.76 1.09 0.94 1.18 1.02 0.98 0.55 0.91 0.92 0.77 0.77

categorized into three main groups: (1) Seismic Hazard
Factors, which have the highest impact on PRS vulnerability
(fault proximity, ground motion intensity); (2) Structural
and Operational Factors, reflecting the resilience of PRSs
(construction material, maintenance status); and (3)
Exposure and Economic Impact Factors, which account
for the consequences of PRS failure (population density,
infrastructure criticality). The relative importance of each
factor was determined based on expert consultation and
literature review, ensuring that the decision matrix reflects
realistic risk priorities. Table 2 presents the decision matrix,
where criteria values are derived from seismic, structural,
and geospatial analyses.

The study focused on eleven key districts in Tehran, chosen
based on three primary factors:

1. PRS Density: Districts with a higher number of PRS facilities
were prioritized, as they play a crucial role in the gas
distribution network.

2. Seismic Exposure: Districts located closer to active fault
lines or with higher recorded ground motion intensity
were included.

3. Urban Risk Factors: Districts with high population density,
aging infrastructure, or significant economic activity were
selected due to their greater potential impact in the event of
a PRS failure.

Based on these considerations, the following eleven districts
were analyzed:

District 2 – High seismic exposure due to proximity to the
North Tehran Fault; multiple PRS facilities located in densely
populated areas.

District 4 – Moderate fault line exposure but significant urban
development, making it a key area for seismic risk evaluation.

District 5 – Located in a region with intermediate seismic
hazard; includes PRS facilities of varying structural conditions.

District 7 – Contains PRS facilities near urban centers; moderate
risk due to structural conditions.
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District 9 – Located near industrial zones, with PRS facilities
serving both residential and commercial areas.

District 10 – One of the most vulnerable areas due to aging
PRS facilities, high ground motion intensity, and proximity to
seismic sources.

District 11 – PRS facilities in this district are critical to the city’s
gas supply infrastructure.

Districts 1, 3, 6, and 8 –These districts were selected due to their
strategic PRS locations and varying levels of seismic exposure.

The values shown in Table 2 were estimated based on the
procedures described in Section 2.2. Specifically, proximity to fault
lines (CA.1.1) and groundmotion intensity (CA.1.2) were calculated
usingGIS-based spatial analysis and the attenuation formula (Eq. 1).
Structural and operational parameters (e.g., CA.1.3, CA.2.1.1) were
derived from infrastructure data provided by the Tehran Gas
Organization. Economic and population exposure values were
computed using kernel density estimation and land-use data from
the Statistical Center of Iran. All criteria were normalized before
inclusion in the matrix.

Step 2: Dominance and Is Dominated Matrices The dominance
relationships between alternatives were evaluated using:

• Dominated Matrix (DoM): Indicates whether one
alternative outperforms another for a specific criterion.

• Is Dominated Matrix (IDoM): Indicates whether an
alternative is outperformed by another.

The matrices are mathematically represented as:

DoMij = {
1 if xi > xj f or benef it criteria,or xi < xj f or cost criteria
0 otherwise

(12)

Step 3: Weighted Dominance Matrices Weights (wj) were assigned
to criteria to reflect their relative importance, as determined
through expert input and literature review. Weighted
matrices (WDoM and WIDoM) adjusted the dominance
relationships accordingly:

WDoMij = wj.DoMij, WIDoMij = wi.IDoMij (13)

Step 4: Calculating Dominance Coefficients For each alternative,
dominance coefficients (SDoM) were calculated to rank
alternatives based on their overall performance:

SDoMi =

∑
j
WDoMij −∑

j
WIDoMij

∑
j
WDoMij +∑

j
WIDoMij

(14)

Higher SDoM values indicate lower seismic vulnerability.
Table 3 summarizes the dominance coefficients (SDoM)

and ranks the districts based on seismic vulnerability. Key
findings include:

• District 2 exhibited the highest vulnerability (SDoM = 0.553).
• District 6 had the lowest vulnerability (SDoM = 0.237).

Figure 4 illustrates the dominance-based ranking of districts
in Tehran, identifying those most at risk and requiring prioritized
interventions. These results, derived from DBDM, account for
proximity to fault lines, groundmotion intensity, structural integrity,
and population exposure.The rankings serve as a robust foundation
for integrating clustering DBSCAN and GIS-based spatial analyses
in subsequent sections.

To integrate PRS-specific vulnerabilities with the district-level
DBDM rankings shown in Figure 4, each facility was georeferenced
and spatially assigned to its corresponding administrative district.
This enabled the visualization of PRS risk profiles within district
boundaries, offering a clearer perspective on how localized
infrastructure vulnerabilities contribute to broader district-level
seismic risk. Notably, Districts 2 and 10—ranked highest in the
DBDM analysis—are also home to PRS-26 and PRS-10, respectively,
both of which were identified as high-risk facilities in the DBSCAN
clustering.

3.2 GIS-based earthquake vulnerability in
Tehran

Tehran’s unique geological and urban characteristics, combined
with its high seismic activity, necessitate a detailed spatial
analysis of earthquake vulnerabilities. This section integrates
GIS with DBSCAN algorithm to evaluate and cluster earthquake
vulnerabilities across the city’s districts and PRSs.

GIS was employed to process and visualize critical spatial
data, including fault line locations, ground motion intensities,
and the distribution of critical infrastructure. The integration
of GIS provided a comprehensive framework for analyzing
spatial relationships and visualizing seismic risks. By overlaying
infrastructure data, geological features, and population density,
GIS facilitated the identification of vulnerability hotspots
across Tehran. Figure 5 presents the geographic clustering of
vulnerabilities based on seismic risk factors, highlighting high-risk
zones and outlier facilities.

To enhance the granularity of the analysis, the DBSCAN
algorithm was applied to cluster PRS vulnerabilities. Unlike
conventional clustering methods, DBSCAN identifies clusters
based on density thresholds, making it well-suited for irregular
and heterogeneous spatial datasets. This approach enabled
the differentiation of clustered high-risk areas from isolated
outliers, which represent unique vulnerabilities requiring focused
interventions. Table 4 summarizes the optimized parameters for the
DBSCAN algorithm, including epsilon (ϵ) and minimum points
(MinPts), which were critical for meaningful clustering.

The clustering process involved the following steps:

1. Parameter Selection: The DBSCAN parameters—epsilon
(ϵ) and minimum points (MinPts)—were optimized using
the k-distance method to ensure meaningful clustering of
vulnerabilities.

2. Point Classification: PRS facilities were classified into core
points, border points, and noise points based on their spatial
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TABLE 3 Final dominance coefficients (SDoM) and district rankings.

District TDoM TIDoM SDoM RANK District TDoM TIDoM SDoM RANK

10 0.315 0.457 0.503 4 11 0.406 0.366 0.403 6

2 0.270 0.502 0.553 1 8 0.469 0.303 0.334 10

4 0.341 0.432 0.475 5 1 0.414 0.360 0.395 7

5 0.283 0.490 0.539 2 3 0.429 0.343 0.377 8

7 0.467 0.306 0.337 9 6 0.557 0.216 0.237 11

9 0.298 0.474 0.521 3

FIGURE 4
Ranking of Tehran’s districts based on seismic vulnerability using DBDM.

proximity and density. Core points formed the backbone of
clusters, while noise points highlighted facilities with atypical
risk profiles.

3. Cluster Formation: DBSCAN identified density-connected
clusters, grouping PRS facilities with similar risk profiles into
high-risk zones. Outliers were flagged for individual analysis,
ensuring no critical vulnerability was overlooked.

While the visual outputs of GIS and DBSCAN analyses provide
valuable insights, this study emphasizes a tabular and textual
interpretation of clustering results. By systematically incorporating
these findings into the decision matrix, the approach ensures
comprehensive seismic vulnerability assessments that remain
robust and reproducible, even in the absence of complete visual
representations.

The results of the DBSCAN clustering were integrated into the
GIS framework, generating detailed spatial maps that highlighted
high-risk clusters and outliers. These maps provided actionable

insights into the geographic distribution of vulnerabilities, guiding
targeted mitigation strategies for PRS infrastructure. Figure 6
visualizes the results of clustering, including high-risk zones near
active fault lines and isolated outliers.

The integration of GIS and DBSCAN revealed critical insights
into Tehran’s seismic vulnerabilities:

• High-Risk Zones: Areas with dense clusters of high-risk PRS
facilities were identified near active fault lines and regions with
high ground motion intensities.

• Outlier Facilities: Isolated PRS facilities with unique
vulnerabilities, such as those located in geologically unstable
areas or serving densely populated neighborhoods, were flagged
for focused interventions.

• Spatial Relationships:The clustering analysis highlighted spatial
dependencies, such as the correlation between fault line
proximity and the density of high-risk PRS facilities.
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FIGURE 5
Geographic clustering of seismic vulnerabilities in Tehran, highlighting high-risk zones and outlier PRS facilities.

TABLE 4 DBSCAN parameter values for clustering seismic vulnerabilities in Tehran.

Parameter Description Value

Epsilon (ϵ) Maximum distance between two points to be considered neighbors 0.3 km

MinPts Minimum number of points required to form a dense region (cluster) 5

Distance Metric Metric used to calculate the distance between points Euclidean Distance

k-Distance Graph Value determined using the k-distance elbow method 4th Nearest Neighbor

FIGURE 6
Results of DBSCAN clustering, visualizing high-risk zones and isolated outliers.
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By integrating GIS-based spatial visualization with DBSCAN
clustering, this study identified high-risk zones and outlier
PRS facilities, enabling a data-driven prioritization of seismic
mitigation efforts. This approach ensures a targeted allocation
of resources for retrofitting and reinforces the resilience of
Tehran’s gas distribution network against seismic hazards,
particularly in regions near active fault lines and densely populated
urban areas.

3.3 Earthquake Vulnerability Decision
Matrix

The insights gained from GIS-based spatial visualization and
DBSCAN clustering were systematically quantified in a multi-
criteria decision matrix to assess seismic vulnerabilities across
Tehran’s PRSs. This decision matrix served as the core tool for
prioritizing mitigation efforts by integrating diverse seismic risk
factors and infrastructure-specific characteristics. In the context of
the decision matrix analysis, “alternatives” correspond to the eleven
selected districts of Tehran, each of which contains one or more
PRS facilities. These districts were evaluated and ranked based on
multiple seismic vulnerability criteria.

The criteria included in the decision matrix were derived
from two complementary sources. The DBDM analysis contributed
quantitative seismic risk indicators such as fault proximity, ground
motion intensity, structural integrity, and population/economic
exposure. These indicators formed the core of the PRS-specific
and GIS-based criteria. Meanwhile, the DBSCAN analysis provided
spatial insights by identifying vulnerability clusters and outliers.
These clustering outcomes were translated into matrix criteria
by assigning additional weights or adjusting scores for PRSs
located in high-risk clusters or flagged as noise points. This dual-
sourced approach ensured that both probabilistic risk factors and
spatial distribution patterns were comprehensively captured in the
decision-making framework.

Thematrix incorporated 21 sub-criteria organized into twomain
categories: PRS-specific characteristics and GIS-based risk factors.
These criteria were selected to capture the multifaceted nature
of seismic vulnerability. Table 5 lists the complete set of criteria,
along with their weights and classifications as either cost or benefit
criteria. The criteria were derived from structural data provided
by the Tehran Gas Company, seismic hazard information from
the Seismic Microzonation Project of Greater Tehran conducted
by JICA, and the 2020 Damavand Earthquake Damage Report
by the International Institute of Earthquake Engineering and
Seismology (IIEES).

The development of the decision matrix followed a systematic
framework, as illustrated in Figure 2, which outlines the integration
of GIS data, DBSCAN clustering results, and weighted criteria
into a cohesive decision-making process. This framework enabled
the evaluation and ranking of PRS facilities based on their
composite risk scores, ensuring a transparent and scientifically
grounded approach.

The 21 sub-criteria were categorized into two main groups:

1. PRS-Specific Characteristics: These criteria assessed the
structural and operational attributes of each PRS. For example:

CA.1.1 (Structural Resilience): A critical benefit criterion
reflecting the capacity of PRS facilities to withstand seismic forces.

CA.1.3 (Maintenance History): A cost criterion addressing the
frequency and effectiveness of maintenance activities.

2. GIS-BasedRisk Factors:These criteria evaluated the spatial risk
characteristics of PRS locations. Key examples include:

CB.1.1 (Fault Density Within 0.5 km): A benefit criterion
assessing the proximity of PRSs to active fault lines.

CB.2.1 (Peak Ground Acceleration at PRS Location): A critical
benefit criterion derived from seismic hazard maps, indicating
expected ground motion intensity.

The assigned weights reflect the relative importance of each
criterion, with higherweights given to factors such as fault proximity
and ground motion intensity. For example, CA.2.1.1 (Seismic Risk)
and CB.1.1 (Fault Density) received the highest weights due to
their direct impact on seismic vulnerability. These weights were
finalized through expert consultations and literature reviews to
ensure reliability and validity (Table 5).

DBSCAN clustering results provided key inputs for refining
the decision matrix. High-risk clusters identified in Section 4 were
assigned elevated scores, reflecting their critical vulnerability levels.
Similarly, outlier facilities flagged by DBSCAN were subjected to
individual analyses, ensuring that unique vulnerabilities were not
overlooked.

For example, densely clustered PRSs near fault lines and high
groundmotion zones were prioritized for retrofitting, while isolated
facilities in geologically unstable areas received additional scrutiny.
This integration of clustering results into the decision matrix
ensured that spatial dependencies and unique risk profiles were
appropriately captured.

Based on these scores, districts and PRSs were ranked to
identify high-priority targets for mitigation. The rankings provided
actionable insights for seismic risk management. Districts such as
District two and District 10 emerged as high-risk zones, primarily
due to their dense fault line networks and high ground motion
intensities. Specific PRS facilities, including PRS-26 and PRS-10,
were identified as top priorities for retrofitting.

The classification into cost and benefit criteria was not
based on numerical estimation but was determined based on
the nature of each factor and its directional impact on seismic
vulnerability. Benefit criteria are those for which higher values
indicate reduced vulnerability (e.g., structural resilience or newer
construction), whereas cost criteria represent factors where higher
values are associated with increased vulnerability (e.g., ground
motion intensity or age of infrastructure). These categories were
defined to guide the dominance-based ranking process and
ensure correct mathematical treatment of each criterion in the
DBDMmodel.

The weights assigned to each criterion were derived through
a structured expert elicitation process using a modified version of
the Direct Rating Method. Experts in seismic engineering, urban
infrastructure, and gas distribution were asked to assign relative
importance values to each criterion on a scale from one to 9. These
raw scores were then normalized to ensure that the total weight
across all criteria equaled 1. The final weights presented in Table 5
reflect the aggregated and normalized consensus of
five experts.
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TABLE 5 Criteria weights and classification for the decision matrix, illustrating the importance of cost and benefit factors in evaluating seismic
vulnerability.

criteria Weight Cost/Benefit Criteria Weight Cost/Benefit

CA.1.1. 0.031 Benefit CB.1.4. 0.015 Benefit

CA.1.2. 0.063 Benefit CB.1.5. 0.008 Benefit

CA.1.3. 0.063 Cost CB.2.1. 0.053 Benefit

CA.2.1.1. 0.144 Cost CB.2.2. 0.044 Benefit

CA.2.1.2. 0.144 Benefit CB.2.3. 0.029 Benefit

CA.2.2.1. 0.032 Cost CB.2.4. 0.015 Benefit

CA.2.2.2. 0.032 Benefit CB.2.5. 0.007 Benefit

CA.2.2.3. 0.067 Benefit CB.3.1. 0.050 Benefit

CB.1.1. 0.051 Benefit CB.3.2. 0.026 Benefit

CB.1.2. 0.044 Benefit CB.3.3. 0.053 Benefit

CB.1.3. 0.030 Benefit

For prioritizing seismic mitigation efforts, we used
the Dominance-Based Decision-Making (DBDM) algorithm
described in Section 2.2. This method evaluates the performance
of each alternative (district or PRS facility) based on cost and
benefit criteria, applying the assigned weights in the construction
of Weighted Dominance Matrices. Facilities or districts were then
ranked using Dominance Coefficients (SDoM), which provide a
composite score representing overall vulnerability. Higher SDoM
values indicate greater seismic risk and were used to identify
top-priority targets for retrofitting or intervention.

3.4 Ranking and prioritization of seismic
mitigation efforts

The integration of GIS-based spatial visualization, DBSCAN
clustering, and the Earthquake Vulnerability Decision Matrix
provided a comprehensive framework for evaluating seismic
risks across Tehran’s districts and PRSs. By synthesizing these
tools, actionable priorities for seismic mitigation were established,
focusing on both district-level and facility-level vulnerabilities.

Thedecisionmatrixquantifiedvulnerabilityscores foreachdistrict
andPRSfacility, revealing significantvariations in seismic risk.Among
Tehran’s districts, District two emerged as the most vulnerable due to
its high density of fault lines, including the North Tehran Fault, and
significant groundmotion intensities. District 10 was identified as the
second most vulnerable, primarily because of its aging masonry PRS
facilities and densely populated neighborhoods. District four ranked
third, withmoderate fault density and structural resilience challenges.
These findings align closely with the Seismic Microzonation Project
of Greater Tehran conducted by JICA, which similarly identified
Districts 2 and 10 as seismic hotspots. Additionally, studies such
as those by Shafiei et al. (2018) corroborate the heightened risk

profile of these districts, particularly regarding fault proximity and
infrastructure vulnerability.

At the facility level, PRS-26 in Shahrak-e Gharb was ranked
as the most vulnerable due to its proximity to high-seismic zones
and inadequate structural capacity to withstand significant ground
shaking. PRS-10 in Saadat Abad and PRS-11 in Tehranpars also
emerged as high-priority targets for retrofitting, reflecting their
location in fault-prone areas and their aging infrastructure. These
results echo findings by Ebrahimian et al. (2020), who highlighted
the disproportionate vulnerability of older masonry-based facilities
in urban seismic risk assessments.

The DBSCAN clustering process provided critical insights into
the spatial distribution of vulnerabilities. High-risk clusters were
identified near fault lines in Districts 2, 10, and 4, highlighting areas
requiring prioritized intervention. Isolated facilities, such as PRS-
23 in Sorkhe Hesar, demonstrated unique vulnerabilities attributed
to their specific geological or infrastructural contexts. These results
emphasize the need for tailored mitigation strategies, as similarly
highlighted by Karimi et al. (2019), who stressed the importance
of addressing outlier risks in urban seismic planning. Moreover,
the clustering revealed strong spatial dependencies between fault
proximity, groundmotion intensity, and PRS density, reinforcing the
critical role of spatial factors in seismic risk assessments.

The rankings derived from the decision matrix provided
actionable insights for mitigation strategies. For Districts 2 and
10, immediate retrofitting of public infrastructure and detailed
microzonation studies are essential to improving local resilience.
District 4 requires targeted interventions to address areas with
moderate fault density. At the facility level, structural reinforcement
of PRS-26, PRS-10, and PRS-11 using advanced techniques such
as FRP wrapping and base isolation is recommended to enhance
their resilience. Installing automated shut-off valves and real-
time seismic monitoring systems across high-priority PRS facilities
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TABLE 6 Ranked list of Tehran’s high-risk districts and PRS facilities.

Rank District PRS facility Composite risk
score

Fault proximity Population
density

Recommended
mitigation

Risk level

1 District 2 PRS-26 85 1.2 km High Retrofitting PRS-26 High

2 District 4 PRS-10 90 0.8 km Medium Install automated
shut-off

High

3 District 5 PRS-19 60 2.5 km High Structural inspection Medium

4 District 3 PRS-33 45 1.9 km Low Routine maintenance Medium

5 District 1 PRS-12 25 3.5 km Low No immediate action Low

is also necessary to minimize operational disruptions during
seismic events.

This study’s findings alignwith prior research but offer enhanced
specificity by integratingDBSCANclusteringwithGIS-based spatial
analyses. The identification of high-risk zones and outlier facilities
provides a nuanced understanding of seismic vulnerabilities,
enabling targeted mitigation strategies. Compared to traditional
clustering approaches, DBSCAN’s ability to identify density-
connected clusters and noise points offers a higher granularity
of analysis, which is critical for urban seismic risk planning.
For example, Zare et al. (2021) highlighted the utility of density-
based clustering in urban seismic assessments, validating the
approach used in this study.

The final rankings of districts and PRS facilities are
summarized in Table 6, offering a clear prioritization for seismic
risk mitigation efforts. Districts 2 and 10, along with facilities such
as PRS-26 and PRS-10, should be the focal points of retrofitting and
disaster preparedness measures.

By focusing on scientifically grounded, data-driven assessments,
this study provides a robust framework for prioritizing seismic
risk mitigation in Tehran. The integration of GIS-based spatial
visualization, DBSCAN clustering, and decision matrix analyses
ensures that resource allocation for retrofitting and disaster
preparedness is both efficient and effective, ultimately enhancing the
resilience of Tehran’s critical gas distribution infrastructure.

The structural damage analysis revealed distinct vulnerabilities
in PRS buildings under fault-specific seismic scenarios. Masonry
structures exhibited significantly higher levels of damage compared
to steel-frame designs, particularly under earthquakes originating
from the Mosha, South Rey, and North Tehran Faults. This
is illustrated in Figure 7, which provides a visual comparison
of damage patterns. Masonry structures consistently showed
extensive cracking and structural instability, emphasizing the need
for retrofitting in older districts, whereas steel-frame structures
demonstrated comparatively better resilience.

3.5 Damage probability distributions for
seismic scenarios

The seismic performance of PRS infrastructure was evaluated
under several critical damage modes that represent typical failure

mechanisms during earthquake events. Figure 8 illustrates the
spatial distributions of damage probabilities for each mode. These
damage scenarios were derived by integrating GIS-based hazard
data with structural vulnerability indicators, calibrated using
empirical fragility curves and expert judgment.The followingmodes
are described:

(a) Ground Shaking on Straight Pipelines:

This mode represents axial and shear stresses induced on
long straight pipeline segments due to strong ground motion.
The probability of damage was calculated based on peak ground
acceleration (PGA) values interpolated across the network and
applied to pipeline fragility thresholds. Higher probabilities were
observed in areas with shallow buried pipelines and poor soil
conditions.

(b) Seismic Effects on Pipeline Bends (Elbows):

Bends and elbows in the pipeline network are especially
vulnerable due to stress concentrations. Damage probabilities were
estimated by correlating geometric discontinuities with site-specific
seismic demand. Areas with multiple directional changes in high-
PGA zones exhibited elevated risk.

(c) Liquefaction-Induced Settlement:

Seismic shaking in saturated, unconsolidated soils may induce
liquefaction, leading to differential ground settlements that affect
pipeline stability. Damage probabilities were modeled by overlaying
liquefaction susceptibility zones with pipeline locations and
assigning risk scores based on empirical pipeline deformation data.

(d) Fault Displacement:

Pipelines intersecting or near active faults are susceptible to
rupture from fault displacement. The damage probability in this
mode was calculated based on buffer zones around mapped fault
traces and displacement projections. These locations pose the
highest risk for catastrophic failure due to direct fault offset.

(e) Composite Damage Probability (Integrated Risk):

This cumulative mode aggregates the probability distributions
from the previous four scenarios to present an overall risk
profile. It reflects the compounded vulnerability of PRS facilities
under multifactorial seismic threats. This comprehensive layer
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FIGURE 7
Major Damage to Gas PRS Buildings (a) Steel frame structure under Mosha Fault earthquake (b) Masonry structure under Mosha Fault earthquake (c)
Steel frame structure under South Rey Fault earthquake (d) Masonry structure under South Rey Fault earthquake (e) Steel frame structure under North
Tehran Fault earthquake (f) Masonry structure under North Tehran Fault earthquake.

was used to prioritize pipeline retrofitting and emergency
response planning.

These damage modes provide a multi-dimensional
understanding of seismic threats, allowing for targeted interventions
at both the component and system levels. The resulting damage
probability maps inform strategic decisions regarding PRS
reinforcement and seismic risk mitigation.

4 Discussion and implications for
seismic resilience

The findings of this study provide a comprehensive framework
for assessing and prioritizing seismic vulnerabilities in Tehran’s
gas distribution network. By integrating GIS and the DBSCAN
clustering algorithm, high-risk zones and outlier PRS facilities were
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FIGURE 8
Damage probability distributions under various seismic modes for PRS facilities (a) Effect of seismic waves on straight pipelines, (b) Effect of seismic
waves on pipeline bends, (c) Settlement caused by liquefaction, (d) Effect of fault displacement, and (e) Overall probability of damage for PRS facilities
under seismic scenarios.

identified with precision, enabling data-driven decision-making
for retrofitting and mitigation efforts. The multi-criteria decision
matrix further quantified these vulnerabilities by incorporating 21
sub-criteria, each weighted to reflect its relative importance. This
systematic approach not only highlights critical areas requiring
intervention but also ensures transparency and reproducibility in the
evaluation process.The decisionmatrix revealed that Districts 2 and
10 emerged as the most vulnerable due to their proximity to active

fault lines, high groundmotion intensities, and the presence of aging
masonry PRS structures. Facilities such as PRS-26 and PRS-10 were
ranked as top priorities for retrofitting, reflecting their critical role
in maintaining the city’s gas distribution network. The integration
of DBSCAN clustering into the decision matrix underscored the
importance of spatial clustering in identifying high-risk areas and
unique outliers, such as densely clustered PRSs near fault lines and
isolated facilities in geologically unstable areas.
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Comparison with similar studies highlights the novelty of
this framework. Unlike previous research, which often focuses on
generalized seismic assessments, this study combines advanced
spatial analysis with infrastructure-specific evaluations. By
incorporating GIS, DBSCAN clustering, and a multi-criteria
decisionmatrix, it bridges gaps in existingmethodologies, offering a
more targeted and actionable approach to seismic risk management.
Despite its strengths, the framework has limitations that should
be acknowledged. The reliability of the findings depends on the
quality and completeness of the input data, including seismic hazard
maps, historical earthquake records, and structural characteristics
of PRS facilities. One of the key limitations is the lack of reliable data
on the year of construction of PRSs in Tehran. The construction
year is a crucial factor in seismic vulnerability assessments, as
older facilities—particularly those built before modern seismic
codes (1990)—tend to exhibit higher fragility. However, due to
the absence of a comprehensive dataset on PRS construction
years, this study relied on alternative structural parameters for
evaluating PRS vulnerability. While these alternative indicators
offer a practical approach, future studies would benefit from a more
complete dataset that explicitly includes age-related deterioration
and retrofitting history of PRSs. Additionally, the selection of
DBSCAN parameters, such as epsilon (ϵ) and MinPts, introduces
subjectivity into the clustering process, which may affect the
classification of high-risk areas. Sensitivity analyses were conducted
to optimize these parameters, but further refinement could enhance
robustness. Another important consideration is the minimum data
requirements necessary to apply this framework in other contexts.
At a minimum, essential datasets should include seismic hazard
information such as fault line locations, ground motion intensity
maps, and historical earthquake records, along with infrastructure
data on PRS locations, structural types, and operational parameters.
Additional geospatial information, including population density,
road networks, and land use classification, is also crucial to ensure a
comprehensive risk assessment.

While the methodology is transferable to other regions or
infrastructure types, the results of this study are specific to
Tehran and should be adapted to account for differing geological
and infrastructural contexts elsewhere. Future research could
enhance the robustness of this framework by incorporating real-
time seismic monitoring data, which would allow for dynamic
updates to risk assessments. Expanding the application of this
methodology to other types of critical infrastructure, such as
transportation networks or water supply systems, would further
strengthen urban resilience by providing a holistic approach to
disaster preparedness. The development of machine learning-based
approaches to optimize DBSCAN clustering and refine seismic
vulnerability classifications could improve clustering accuracy
and predictive modeling. Long-term evaluations of implemented
mitigation measures would provide valuable insights into the
practical effectiveness of the proposed framework. Additionally,
acquiring and integrating historical construction data would
significantly improve vulnerability modeling and provide a more
accurate assessment of aging infrastructure. By addressing these
future research areas, the proposed methodology can continue to
evolve and contribute to seismic risk management strategies for
urban infrastructure systems.

5 Conclusion

This study provides a novel and practical framework for
assessing seismic vulnerabilities in urban infrastructure by
integrating GIS, DBDM, and DBSCAN. The framework effectively
combines advanced spatial analysis and decision-making tools to
offer a reliable and detailed approach to seismic risk assessment. Its
application to Tehran’s PRSs demonstrated the framework’s ability
to identify high-risk zones and critical infrastructure requiring
immediate attention.

The results highlight the significance of integrating clustering
algorithms like DBSCAN, which successfully identified both high-
risk clusters and outliers, offering a level of detail and precision
beyond conventional methods. Additionally, GIS-based spatial
mapping provided clear visualizations of vulnerability distributions,
aiding policymakers in prioritizing interventions. By combining
these tools, the study enables a multi-layered analysis of seismic
hazards, accommodating the complexities of urban infrastructure in
seismically active regions.The adaptability of theDBDMframework,
which dynamically incorporates probabilistic data, ensures that risk
assessments remain relevant and reliable as new seismic or structural
information becomes available.

Despite its strengths, this research is context-specific and
relies on the availability and quality of input data. While the
framework is transferable to other regions or infrastructure systems,
further customization is necessary to account for local geological
and infrastructural conditions. To enhance the robustness of
the framework, future research should explore the integration
of real-time seismic monitoring systems to allow dynamic
updates to vulnerability assessments. Expanding the application
of the framework to other types of critical infrastructure, such
as transportation networks, water supply systems, and power
grids, would also validate its broader applicability. Additionally,
future studies could leverage machine learning algorithms to
improve clustering accuracy and predictive modeling of seismic
risks. Long-term evaluations of the effectiveness of retrofitting
measures and disaster mitigation strategies would provide valuable
insights for optimizing resource allocation and enhancing urban
resilience.

In conclusion, this research offers a scientifically robust
and scalable solution for seismic vulnerability assessment, with
applications that extend beyond the case study of Tehran.
The proposed framework sets a precedent for integrating
advanced decision-making and spatial analysis tools, enabling
effective disaster preparedness and resource allocation in urban
environments. By addressing both spatial and decision-making
complexities, this framework provides actionable solutions to
enhance the resilience of critical infrastructure and lays the
foundation for broader applications in urban disaster management
and resilience planning.
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