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This paper focuses on the abilities of the Large High-Performance Outdoor
Shake Table (LHPOST6) at UC San Diego to investigate the combined effects
of realistic near-field translational and rotational earthquake ground motions
applied as dynamic excitation to 3-D and large- or full-scale structural,
geotechnical, or soil-foundation-structural systems. The LHPOST6 supports
the advancement of innovative materials, manufacturing methods, detailing,
earthquake protective systems, seismic retrofit methods, and construction
methods, and is a driving force towards improving seismic design codes and
standards and developing transformative seismic-resistant concepts. This paper
provides: (i) a brief overview of the 6-DOF capabilities of the LHPOST6 facility;
(ii) an overview of the research projects conducted so far at the LHPOST6
facility focusing on the performance of the facility, and (iii) new seismic research
opportunities enabled by the LHPOST6 to provide data and fragility information
on structural and geotechnical systems that can support the full realization of
performance- and resilient-based seismic design.

KEYWORDS

shake table testing, structural systems, geotechnical systems, earthquake engineering,
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Introduction

The six-degree-of-freedom (6-DOF) large high-performance outdoor shake table
(LHPOST6) at UC SanDiego is a shared-use facility enabling the next-generation of seismic
testing of large structural, geotechnical, and soil-foundation-structural systems due to its
ability to accurately reproduce far- and near-field ground motions. The LHPOST6 was
originally conceived as a 6-DOF shake table but was built as single-degree-of freedom
(1-DOF) shake table and operated from 2004 to 2019 to perform thirty-four projects as
a national shared use equipment facility funded by the US National Science Foundation
through the Network for Earthquake Engineering Simulation (NEES) and then the Natural
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FIGURE 1
Schematics of LHPOST6: (a) During operation as a 1-DOF shake table (2004-2019): (b) after upgrade to a 6-DOF shake table (2022-present).

Hazard Engineering Research Infrastructure (NHERI, 2025)
program. The details of the 34 projects and the upgrade of
LHPOST6 to its 6-DOF capabilities were summarized in detail
by Van Den Einde et al. (2021). Schematics of the LHPOST6 before
and after the upgrade are shown in Figure 1. The LHPOST6 is the
largest shake table facility in theUS and possesses the largest payload
capacity globally, and its 6-DOF capabilities permit investigation of
important aspects of the seismic response of 3-D systems to realistic
multi-directional input.

The NHERI@UC San Diego Experimental Facility, which
hosts and operates the Large High-Performance Outdoor Shake
Table (LHPOST6), is rooted in three critical needs for advancing
the science, technology, and practice in earthquake disaster
mitigation and prevention: (1) Fundamental knowledge for
understanding the earthquake system-level behavior of buildings,
critical infrastructure, utilities, and geo-structures, from the
initiation of damage to the onset of collapse; (2) Experimental data
to support the development, calibration, and validation of high-
fidelity physics-based computational models that will progressively
shift the reliance on physical testing to model-based simulation and
address epistemic uncertainties in these models; and (3) Proof of
concept testing for novel protective systems and innovativematerials
which can enhance community protection against earthquakes
for either new or existing structures. Since completion of the
upgrade in April 2022, four major projects have been performed
on the facility which will be summarized in this paper. This
paper will also discuss new opportunities to explore the effects
of realistic ground motions on structural and geotechnical systems
to advance seismic design practice and predictive capabilities for
structural, geostructural, and nonstructural systems, leading to
improved earthquake safety in the community overall. Indeed,
the ability to test full-size structures has made it possible to
physically validate the seismic performance of various systems
that previously could only be studied at reduced-scale or with
computer models.

Need for 6-DOF ground motion capability

The propagation of waves induced by earthquakes produces
simultaneous horizontal, vertical and rotational movements of
the ground surface. Therefore, the complete characterization of
an earthquake ground motion at a given location consists of
the three translational (ux, uy, uz) and three rotational (θx,
θy, θz) degrees of freedom in a Cartesian coordinate system.
Dynamic seismic response analyses of systems for either design or
evaluation purposes commonly ignore the rotational components
of earthquake ground motions. This has been a widely accepted
practice in the earthquake engineering community due to: (1)
the lack of recorded rotational ground motions during strong
earthquakes and (2) a common assumption in the seismological
community that rotational components are small enough to be
neglected (Kalkan and Graizer, 2007). Nonetheless, Rosenblueth
(1976) discussed the potentially damaging effects of these rotational
components on tall buildings, which attracted research interest
on the effect of the rotational ground motion components on
the seismic behavior of structures (e.g., Ghafory-Ashtiany and
Singh, 1986; Zembaty and Boffi, 1994; Trifunac, 2009a; Falamarz-
Sheikhabadi, 2014; Falamarz-Sheikhabadi et al., 2016; Falamarz-
Sheikhabadi et al., 2017). Moreover, structural failures and damage
caused by past earthquakes have been linked to rotational and
differential ground motions. For example, the torsional responses
of tall buildings during the 1971 San Fernando earthquake were
attributed to torsional ground motion (Hart et al., 1975), while
rotational and differential ground motions may have caused the
collapse of bridges during the 1971 San Fernando, 1978 Miyagi-
ken-Oki (Bycroft, 1980), and 1994 Northridge (Trifunac et al., 1996)
earthquakes. The high translational accelerations recorded during
the February 2011 Christchurch earthquake suggest that rotational
motions could have played a significant role in the widespread
damage of the area and especially in the central business district
consisting of a dense urban setting with closely spaced high-
rise buildings (Guidotti, 2012). Numerical studies also indicate
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FIGURE 2
(a) Geometric interpretation of how horizontal translation and rocking may contribute to total drift in a simple building during the passage of a Rayleigh
wave (from Trifunac, 2009b) and (b) response of a building under (top) high- and (bottom) low-frequency content rotational ground
motions (from Castellani et al., 2012).

that rotational ground motion components can significantly affect
structural response (e.g., Trifunac, 1982; Ghafory-Ashtiany and
Singh, 1986; Zembaty and Boffi, 1994; Kalkan and Graizer, 2007;
Trifunac, 2009a; 2009b; Jalali and Trifunac, 2009; Castellani et al.,
2012; Basu et al., 2015; Falamarz-Sheikhabadi et al., 2017;
Bońkowski et al., 2018; Guidotti et al., 2018; Meza Fajardo and
Papageorgiou, 2018). It is hypothesized that the significance of this
effect is dependent on the magnitude and frequency content of the
rotational components as well as the dynamic characteristics of the
structure (e.g., Figure 2).

The LHPOST6 will enable the experimental investigation in full
3D and at large- or full-scale of the combined effects of realistic near-
field translational and rotational groundmotions applied as dynamic
excitation to a structural, geotechnical, or soil-foundation-structural
system, including the effects of kinematic and inertial soil-structure
interaction (SSI), nonlinear soil and structural responses, and soil
liquefaction.The data acquired from such landmark tests will enable
calibration, validation, and improvement of (mechanics-based,
physics-based) analytical and numerical models able to capture the
seismic response of civil infrastructure systems, accounting for these
realistic and important effects. The LHPOST6 will also be a key
experimental facility to deploy, test, and validate sensors to measure
rotational components of motion, which may open new frontiers
for advanced system and damage identification of structures and
structural health monitoring (Trifunac, 2009b).

The 6-DOF capabilities of the LHPOST6 provide new
opportunities for studying these different geotechnical applications
under realistic 3-D ground motions. As the stiffness and shear
strength of soils depend on self-weight, vertical accelerations may
lead to changes in soil properties during earthquake shaking, the
effects of which are poorly understood in 2-D or 3-D site analyses
(Hashash et al., 2010). At some sites, the vertical component of an
earthquake motion may exceed the horizontal at short periods (e.g.,
Bozorgnia et al., 2000; Beresnev et al., 2002; Elgamal and He, 2004).
Several element-scale studies have shown that deformations during
2-D horizontal shaking are underestimated when using methods

based on unidirectional shaking (e.g., Ishihara and Nagase, 1988;
Kammerer et al., 2002; Rutherford and Biscontin, 2013). Pyke et al.
(1975) performed 1-g shake table tests on small samples of sand
under 3-D motions and observed that while shaking in the vertical
direction alone with acceleration amplitudes of less than 1 g did
not affect the volumetric contraction of soils, combined vertical
and horizontal shaking led to greater settlements than those from
horizontal shaking alone.

Capabilities of the LHPOST6

The design of the LHPOST6 was informed using inverse
simulation and was then validated using forward simulation. The
MTS forward model of the LHPOST6 includes the rigid body
dynamics in 6-DOFs of both the platen and a rigid specimen,
servovalve and actuator dynamics (with nonlinear flow equations),
accumulator banks and line accumulators, and a virtual replica
of the MTS 469D controller that has been installed on the
LHPOST6. In the forward model, the controller was tuned for the
characteristics of the LHPOST6 design using the new 469D Auto-
Tuner capability. The tuned closed-loop forward model provides
the ability to perform “dry runs” of the LHPOST6 system and
thus evaluate, pre-construction, its signal tracking performance
capability. The forward model will also allow for offline tuning
or pre-tuning based on the test specimen characteristics and will
be very useful for safe offline operator training (i.e., shake table
simulator). Figures 3a–c compare the target (or desired or reference)
and achieved (under bare table condition) translational acceleration,
velocity, and displacement time histories of the shake table,
respectively, and Figure 3d compares the target and achieved five-
percent damped tri-partite (displacement/pseudo-velocity/pseudo-
acceleration) linear response spectra for the three translational
components of the 1995 Kobe earthquake record. Similar levels
of agreement between target and achieved table motions (i.e.,
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FIGURE 3
Comparison of target and achieved tri-axial 1995 Kobe earthquake record under bare table condition: (a) acceleration time histories, (b) velocity
time-histories, (c) displacement time histories, and (d) 5% damped tri-partite spectra for linear response.

signal tracking fidelity) were observed for the other strong tri-axial
earthquake records considered for the upgrade design.

The comparisons in Figure 3 show a very good signal tracking
capability of the LHPOST6. This is especially true for the vertical
ground motion component, given the fact that the vertical actuators
of the LHPOST6 are single-acting, i.e., these can only push
(upwards) and cannot pull (downwards) the platen since they have
zero retraction force. The nitrogen-filled hold-down struts pull the
platen down but without closed-loop dynamic capabilities. The
level of fidelity in signal reproduction for the vertical component
and other motion components can also be further improved
through the advanced control capabilities built in the MTS 469D
controller, such as Adaptive Inverse Control (AIC), Online Iteration
(OLI), and Specimen Dynamics Compensation (SDC) as well
as the tools available in MTS STEX-Pro. A digital twin of the
shake table and hydraulic system has been developed by Lai and
Conte (2024), which can be used to simulate the interaction
between a specimen on the table and the performance of the
LHPOST6. A range of instrumentation including potentiometers,
accelerometers, strain gages, load cells, earth pressure cells, and
advanced kinemetric sensors are available for deployment on a
given project.

Projects performed on the LHPOST6

Modular testbed building

The Modular Testbed Building, or MTB2, was the first
specimen tested on the LHPOST6 after the upgrade. Experimental
data from this program is available within the DesignSafe
Data Depot (Hutchinson et al., 2024), including a detailed
technical report (Morano et al., 2024a) and two journal papers
(Morano et al., 2024b; 2025). The MTB2 is designed to be a
reconfigurable and reusable community shared-use equipment
resource. Reuse is accomplished by having a connection scheme
that allows yielded members to be replaced, while leaving the rest
of the structure in place. This modular design enables low-cost
testing of components and subsystems at large to full-scale under
simulated dynamic 3D loading. It enables seismic performance
verification and acceptance testing of innovative designs, including
seismic protective systems, lateral force resisting systems, stairs,
nonstructural systems, among others. The MTB2 structure also
provides for payload opportunities within the broader community.

The MTB2 reconfiguration allows for different structural
configurations. The moment frame configuration consists of a three
story (3.7 m/story), two bay (4.9 m/bay) by one bay (6.1 m) frame
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FIGURE 4
Photographs with annotated dimensions of the MTB2 structure (after Morano et al., 2025): (a) Moment frame configuration; (b) BRB configuration.

structure shown in Figure 4a. The moment frame configuration
involves a moment frame with replaceable shear fuse plastic hinges
in the longitudinal direction. A second configuration involves three
levels of braced frames with buckling restrained braces (BRBs)
placed at each story shown in Figure 4b. A third configuration is
identical to the second except for the replacement of the BRBs at
the first story with moment shear fuses to promote a softer first
story. The MTB2 study also capitalized on the staging slab space
at LHPOST6, using it as an area for pre-test assembly in one of
the configurations to test fit and assembly efficiency. This exercise,
while LHPOST6 was completing upgrade, allowed the specimen
to be tested and characterized under a variety of low amplitude
vibrations (Morano et al., 2024b), prior to its assembly on the
shake table.

NHERI TallWood project

With global urbanization trends, the demands for tall residential
and mixed-use buildings in the range of 8–20 stories are increasing.
One new structural system in this height range is tall mass
timber buildings. Granello et al. (2020) provided a review of
research, testing and implementation of mass timber in buildings.
The vision of the NSF-funded six-university collaborative research
NHERI TallWood Project (Pei et al., 2024a) is to develop and
validate a resilience-based seismic designmethodology for tall wood
buildings. During the second year of the NHERI TallWood project,
an investigative testing program was completed at the NHERI@UC
San Diego shake table facility on a full-scale two-story mass timber
building with a resilient cross-laminated timber (CLT) rocking wall
lateral system (Pei et al., 2017; 2019). The final capstone shake
table test of a full-scale 10-story mass timber building equipped
with nonstructural components was performed in 2023 as shown

in Figure 5. These tests represented the tallest full-scale building
structure ever tested on a shake table yielding unprecedented data
which has been reported so far (Pei et al., 2024b) which will help
push the boundary of resilient tall wood construction worldwide.

NHERI Converging Design project

The NHERI Converging Design project is an NSF-funded
research effort led by Prof. Andre Barbosa from Oregon State
University with collaborators from Colorado State University,
Stanford University, and Penn State University. The vision of
this project is to create a new design paradigm within structural
engineering that employs multi-objective optimization to maximize
functional recovery while integrating additional sustainable
building design principles. This design methodology was validated
through shake-table testing of a full-scale six-story mass timber
structure at the NHERI@UCSD outdoor facility. This six-story
specimen emerged from the previously tested ten-story shake-
table specimen from the NHERI TallWood project where the top
four stories were deconstructed to leave a six-story specimen to
be reconfigured for the NHERI Converging Design project. The
six-story structure was then subject to three distinct phases of
shake-table testing that include different lateral force resisting
systems with details summarized in Figure 6. The first phase of
testing featured post-tensioned mass timber self-centering rocking
wall lateral force-resisting systems consisting of mass timber wall
panels, bounding columns, and U-shaped flexural plates (UFPs)
(e.g., Chen et al., 2024) distributed over the height of the building as
energy dissipators. The second phase of testing featured buckling-
restrained braces (BRBs) as energy dissipators at the base of
post-tensioned mass timber rocking walls to serve as the lateral
force-resisting system. The third phase of testing featured yield
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FIGURE 5
TallWood 10 story structure: (a) Schematic; (b) Photo on the LHPOST6.

FIGURE 6
NHERI Converging Design 6-story specimen: (a) Three-dimensional rendering of the tested specimen with indication of location of different mass
timber wall panels, including cross-laminated timber (CLT) and mass ply panels (MPP); (b) Main components of the self-centering rocking wall system
tested in phase 1; (c) Schematics of different components used in the North-south direction in phase 2; (d) Picture of phase 1 tested specimen on
the LHPOST6.

link brace connections in exploration of hybrid steel mass timber
structural system solutions. Data from this project has been archived
in DesignSafe (Barbosa et al., 2025) and more information can be
found at the NHERI Converging Design Project Website (2025).

Seismic response of spent nuclear fuel
casks

In the United States, Spent Nuclear Fuel (SNF) is currently
stored onsite at 73 Nuclear Power Plants because a site for a
geological repository for permanent SNF has not been identified

and permitted. The SNF inventory stored on-site either in pools
or dry storage was 84,500 MTU in 2020, with 46% being stored
in dry storage with a rate of increase of 3,500 MTUs per year.
As the SNF will be stored onsite for longer than expected, the
dry storage facilities involving SNF in casks as shown in Figure 7a
could experience earthquakes of a different magnitude than the one
for which they were originally designed. However, there is little
data on the response of SNF inside dry storage systems to seismic
loads in the U.S., and the various gaps and nonlinearities between
storage containers, canisters, baskets, aggregates, and fuel make it
very difficult to evaluate by analytical methods. A 1468 kN generic
vertical storage overpack (cask) shown in Figure 7b was tested on
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FIGURE 7
Sandia SNF casks: (a) Field setting; (b) Schematic of test setup on the LHPOST6.

the LHPOST6 in summer 2024. It was equipped with a canister
and a fuel basket with a thirty-two fuel assembly capacity. A mix
of surrogate fuel assemblies and dummy assemblies filled all basket
locations. An eight-inch-thick concrete slab was built on top of
the shake table platen to act as the cask’s bearing surface. This
slab had a surface finish mimicking the one found in real-world
conditions.The cask, its components, and content was instrumented
with a dense array of sensors consisting of accelerometers strain
gauges, pressure indicating films, inclinometers, and displacement
transducers. In addition, a series of high-speed, high-resolution
cameras were used to monitor the local displacements of the
fuel assemblies and the global displacement of the cask. The
accelerometers and strain gages were fastened to fuel rods to
monitor their dynamic response under generic ground motions
representative of hard rock, soft rock, and soil sites in the U.S.

CFS-NHERI capstone test building

As a capstone to the multi-university-industry collaborative
CFS-NHERI project, a full-scale 10-story cold-formed steel (CFS)-
framed building is currently being constructed on the LHPOST6
and will be tested in Summer 2025 under increasing, multi-
directional earthquake motion intensity along with subsequent live
fire testing. Coined CFS10 (cfs10.ucsd.edu) the capstone effort
follows successful prior system-level 2-story (CFS-NEES) and 6-
story (CFS-HUD) structures previously tested on shake tables, the
later program at LHPOST prior to its upgrade to 6-DOFs. The
CFS10 project is being led by Tara Hutchinson from UC San Diego,
Benjamin Schafer from Johns Hopkins University, and Richard
Emberley from CalPoly University San Luis Obispo. In addition,
collaborations with Thomas Gernay of Johns Hopkins University,
Kara Peterman of the University of Massachusetts Amherst, Monica
Kohler of Caltech, and Richard Allen of the University of California
Berkeley enrich the program.

The CFS-NHERI capstone test building is designed with a
height of 31.6 m, exceeding the height limitation of 19.8 m set

by the current ASCE 7–22 design standard as shown in Figure 8
(see Singh et al., 2022; 2024; Zhang et al., 2024a; 2024b). The
design also advances lateral force resisting system (LFRS) details
to provide for the increases in seismic shear and overturning
moment demands associated with increases in building height.
Data generated will shed light on the impact of architectural
exterior and interior finishes, non-designated systems, such as
gravity walls or window/door framing. Higher mode effects, which
can significantly influence the structural and nonstructural seismic
response of tall buildings, will also be studied for the first time for
repetitively framed structures. The experiments will provide vital
full-scale system-level benchmark test data for a state-of-the-art CFS
building under multidirectional seismic input. It will also advance
knowledge of the post-earthquake fire performance of mid-rise CFS
construction, by incorporating a live fire test sequence following the
seismic test phase completion.

Research enabled by the LHPOST6

Importance of large-scale seismic testing of civil
infrastructure

The seismic response of structures involves complex
physics of heterogeneous materials with highly nonlinear
constitutive properties and depends on the boundary/interface
conditions, such as the interaction between the structure and
the supporting/surrounding soil. There are many open issues
regarding how to accurately model these phenomena at the
different length and time scales over which the physical processes
develop. There are significant knowledge gaps about the seismic
response of structures that have been damaged or have partially
collapsed and their possible failure modes as identified in the 2011
NRC report (National Research Council, 2011). State-of-the-art
nonlinear structural analysis methods are still fairly limited in their
ability to model the nonlinear dynamic response of structures,
especially when approaching collapse (Deierlein, 2011). Failure
is often triggered by localized strain concentrations resulting in
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FIGURE 8
CFS-NHERI 10 story structure (at structural height completion, 21 Feb 2025): (a) Construction of the CFS-10 structure on the LHPOST6; (b) Schematics
of the structure and construction methods (by J. Zhang and D. Rivera).

stiffness and strength degradation that is sensitive to loading history.
Examples of such behavior include local buckling and fracture
in steel (both structural steel and reinforcing steel in concrete),
shear failures in reinforced concrete (R/C) columns and walls,
and connection or splice failures. While significant experimental
research has been performed on individual structural components
(e.g., beams, columns, slabs) and subassemblies (e.g., beam-column
joints, beam-slab-column joints) at various scales (all the way to
full-scale) in the US and other countries, the boundary conditions
imposed on these test specimens may not be realistic as compared
to their actual boundary conditions within structural systems. The
scale of these physical models can also be an issue since some design
details, construction materials, and damage and failure mechanisms
cannot be accurately reproduced in reduced-scale models. These
include the spacing of reinforcement in concrete structures, the size
of aggregates in concrete, the quality and properties of welds, and the
degree of plastic strain or damage localization, all which affect the
ability of a structure to sustain inelastic deformations and the failure
mechanisms. Hence, large- or full-scale structural system tests are
essential to identifying and overcoming modeling deficiencies and
validating these models and design details.

The mechanical behavior of most civil infrastructure systems
under extreme earthquake loads is highly nonlinear and complex
and varies significantly depending on the structural type and
detailing, construction materials, and regional construction
practice. Unlike aerospace structures, civil structures cannot be
prototyped for mass production or designed to remain within the
elastic limit during severe load events. To ensure that structures of
different types, system properties and materials have a consistent
level of safety and predictable performance in earthquake events,
a performance-based design (PBD) approach was extensively
developed in the mid-1990s. It is based on a structural reliability
framework and enables engineers to design structures and facilities
to meet specific performance objectives with quantifiable and
acceptable risks of (i) exceeding various damage states, (ii) casualty,

(iii) loss of occupancy (downtime), and (iv) economic losses in
future earthquakes.

Although the PBDmethodology has not been fully implemented
in practice, simplified PBD methods have found their way into
seismic design codes, such as AASHTO-COPRI 6 (2014), design
guidelines like LATBSDC (2020) and assessment guidelines such as
ASCE 41 (ASCE, 2017) for the evaluation and retrofit of existing
buildings. Notably, the risk-targeted seismic hazard maps that
form part of ASCE 7 (ASCE, 2022) rely not only on probabilistic
seismic hazard data but also on structural fragility functions
to achieve a uniform risk of structural collapse across the US.
Furthermore, the recently developed and adopted FEMA 695
Methodology (FEMA, 2009) that quantifies structural performance
factors for new structural systems to be designed with ASCE seven is
also based on the notion of a uniform and acceptable risk of collapse.
It is noteworthy that the development of reliable fragility functions,
which are central to PBD, requires relevant experimental data
and high-fidelity simulation models that can predict the nonlinear
behavior of structural materials, components, and systems under
different hazard scenarios. Experimental programs conducted at
the LHPOST6 facility provide landmark experimental data at the
subsystem and system levels.

It is well established that the extensive damage exhibited by
code-compliant conventional buildings during strong earthquake
ground motions, while avoiding collapse, has caused a push in
earthquake-affected communities in the past 2 decades to use low-
damage structural earthquake protective systems. Such systems can
sustain significant nonlinear response, large lateral displacements,
and dampingwith practically no damage andmaintained operability
throughout. Multi-axial large/full-scale shake table tests of building
structures are needed to understand their response in 3-D,
including the effects of rotational components of earthquake
ground motions, and support the development of future design
codes. Also, innovative seismic retrofit strategies that will be
used and implemented for existing older non-ductile (wood,
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masonry, concrete, and steel) buildings should be validated through
large-scale shake table system testing to better understand the
force redistributions and the overall implications on the system
ductility. Limited recent full-scale building shake table tests that
incorporate non-structural components and systems, supported
by field observations, demonstrate the importance of advancing
our understanding and predictive capabilities of nonstructural
components and structures (NCSs) in building systems when
subjected to multi-directional seismic loading. Full-scale multi-
axial shake table tests are needed to support the development of a
reliable, unified designmethodology for NCSs accounting formulti-
directional earthquake excitation. Finally, there is a strong emphasis
on the need to develop new sources of energy while preventing or
reversing the degradation of the environment (i.e., renewable energy
sources). Important examples of the supporting infrastructure are
wind turbine farms (onshore and offshore), solar arrays, concrete
dams, containment/reactor vessels of nuclear power plants and dry
storage casks of spent nuclear fuel, which when built in seismic
regions all require better understanding of their seismic response
behavior and reliable performance-based assessment and design
using experimentally validated high-fidelity computational models.

Understanding inherent damping
Inherent damping (also simply termed intrinsic or elastic

damping) is introduced in time-history analyses of the inelastic
seismic response of structures to account for damping before the
onset of hysteretic response. The pioneering work of Carr (2005)
established that the details of the inherent damping model may have
significant effects on the calculated inelastic structural response.
Several studies have studied inherent damping experimentally (e.g.,
Takayanagi and Schnobrich, 1979; Otani, 1980; Satake et al., 2003;
Rodríguez et al., 2006; Petrini et al., 2008; Moaveni et al., 2010;
Papagiannopoulos and Beskos, 2012; Astroza et al., 2016), but the
optimal damping model has not been identified. It is also difficult
to experimentally separate the inherent and hysteretic damping
associated with the inelastic response or soil-structure interaction
effects (e.g., Celebi, 1996).

Due to the lack of experimental data, a number of options
involving Rayleigh, Caughey (Caughey, 1960; Caughey and O’Kelly,
1965), and modal (Wilson and Penzien, 1972) viscous damping
matrices based on initial or tangent (degraded) stiffness properties
have been proposed as models (Chrisp 1980, Shing and Mahin,
1987; Bernal, 1994; Carr, 1997; 2005; Hall, 1998; 2006; 2016a; 2017;
Ryan and Polanco, 2008; Zareian and Medina, 2010; Jehel et al.,
2014; Hardyniec and Charney, 2015; Chopra and McKenna, 2016a;
2016b). Warnings regarding the unintended consequences of these
choices and possible remedies have been presented by several
authors (Hall, 2006; Charney, 2008; Ryan and Polanco, 2008; Luco
and Lanzi, 2019; Anajafi et al., 2020). In recent years, several studies
havemore closely investigated the problems associated with existing
damping models and proposed solutions to overcome some of
these problems (Carr et al., 2017; Luco and Lanzi, 2017; Lanzi and
Luco, 2018; Chambreuil et al., 2022). The need to better identify
the actual inherent damping mechanism(s) suggests the use of
harmonic vibration tests (as opposed to seismic simulations) in
the vicinity of resonance for excitations close to those leading to
instability in the absence of inherent damping (Caughey, 1960; Luco,
2014). Shake table experiments with full 3-DOF or 6-DOF seismic

base excitation on large- or full-scale building specimens with and
without non-structural components and systems and large-scale
bridge sub-structures (e.g., bridge bent) will guide the development
and selection of optimum inherent damping models.

Dynamic response of geotechnical
soil-foundation-structure systems

The LHPOST6 is ideally suited for experimental investigations
of dynamic soil-structure and soil-foundation-structure interaction
(Mylonakis and Gazetas, 2000; Gavras et al., 2020; Antonellis et al.,
2015; Ebeido et al., 2019; Elsawy et al., 2019; Shahbazi et al., 2020a;
Zayed et al., 2020; Zayed et al., 021). For example, the kinematic
interaction between a foundation and soil (in the absence of the
superstructure) under internal seismic wave excitation leads to
translational and rotational components of the foundation input
motion. This occurs for embedded foundations for all types of
elastic wave excitation and for surface foundations subjected to
non-vertically incident seismic waves and to spatially random
ground motions. When a superstructure is present, the inertial
interaction results in additional rocking components of motion of
the foundation and additional torsional components, particularly,
when the structure is not symmetrical. Thus, even when it can be
assumed that the foundation is sufficiently rigid, the motion of the
foundation will have at least 6 DOFs (e.g., (Roesset, 1981; Luco,
1981)). The 6-DOF capabilities of LHPOST6 will enable new types
of full-scale dynamic SFSI studies needed to validate analytical or
numerical simulations.

Along with the large laminar soil box and the large “rigid” soil
box, the LHPOST6 is also ideally suited for experimental studies
on the dynamic deformation response of geosynthetic reinforced
soil (GRS) retaining walls (El-Emam and Bathurst, 2004; Ling et al.,
2005; Ling et al., 2012; Sander et al., 2013; Latha and Santhanakumar
2015; Fox et al., 2015; Zheng et al., 2018a; Zheng et al., 2018b;
Zheng et al., 2019a; Zheng et al., 2019b), cantilever retaining walls
used in dam spillways (Kim and Elgamal, 2017a), shallow tunnels
and buried water reservoirs (Kim et al., 2016; Hushmand et al.,
2016a; 2016b; Durante et al., 2022), and slopes or embankments
(e.g., Wartman et al., 2005; Nakamura et al., 2011; Sogabe et al.,
2013; Yarahuaman and McCartney, 2022). The behavior of shallow
buried structures (water reservoirs, tunnels, lifelines, utilities) has
been well studied using centrifuge techniques (Hushmand et al.,
2016a; 2016b) and large-scale soil-boxes (O'Rourke et al., 2008),
but the soil containers on LHPOST6 can accommodate additional
instrumentation and better capture system responses. The depth
and flexibility of the tunnel structure and the soil compaction
techniques were found to have a major effect on the seismic earth
pressures in these experiments. Analytical techniques for seismic
earth pressure estimation have advanced over time (Davis, 2003;
Durante et al., 2022), which require detailed validation from full-
scale experiments. The scale of the soil boxes permits dynamic
experimental studies on the efficacy of conventional or bio-mediated
soil improvement using actual construction techniques (Van Impe,
1989; DeJong et al., 2014) and experimental investigations of
geotechnical issues that cannot be studied in laboratory-scale
experiments like lateral spread in layered soils (Youd et al., 2002;
Zayed et al., 2021), liquefaction of gravelly soils (Hubler et al.,
2017), seismic or cyclic response of alternative backfill materials
like tire derived aggregates with large particle sizes (Ahn and
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Cheng, 2014; McCartney et al., 2017) or expanded polystyrene foam
(Trandafir and Bartlett, 2010; Athanasopoulos-Zekkos et al., 2012),
seismic settlement of saturated soils (Tokimatsu and Seed, 1987;
Bray andOlaya, 2022), and seismic compression of unsaturated soils
(Stewart et al., 2004; Ghayoomi et al., 2011a; Ghayoomi et al., 2013a;
Rong and McCartney, 2020; 2021).

Seismic testing of geostructures in the centrifuge permits
construction of multiple specimens with different configurations
to understand the impacts of different geometric variables or
design features. Different from seismic testing of geostructures
in the centrifuge, testing of geostructures in the large soil boxes
on the LHPOST6 permits use of actual construction procedures
for compacting soils, consideration of foundation installation
effects, consideration of actual ground improvement techniques,
and use of actual geosynthetic reinforcements. Accordingly,
there are opportunities for collaboration with geotechnical
centrifuge facilities to perform multiple simplified parametric-
study type experiments in the centrifuge, then consider the
effects of full-scale construction features like those permitted in
the LHPOST6. Different from centrifuge testing on small-scale
models, large-scale testing permits the incorporation of large
instrumentation like earth pressure cells and settlement plates (e.g.,
Keykhosropour et al., 2018; Zheng et al., 2019a; 2019b; Yarahuaman
and McCartney, 2022). Use of the large soil boxes available at
the LHPOST6 may also help minimize near-field and boundary
effects encountered when applying in-situ shear wave velocity
tomography techniques that may be encountered in centrifuge-scale
experiments (Ghayoomi and McCartney, 2011b). Centrifuge testing
often uses transparent soil boxes (Ghayoomi et al., 2013b) or even
transparent soils (Black, 2015) to visualize soil-structure interaction
mechanisms. Accordingly, data obtained from centrifuge and 1-g
shake table testing may be complementary.

In many cases, full-scale geostructures can be investigated
on the LHPOST6 (e.g., Sander et al., 2013; Fox et al., 2015;
Shahbazi et al., 2020a; 2020b). However, in other cases, it may
not be possible to test a full-scale geotechnical structure due to
the large size of the structure under investigation, such as cut-
and-cover tunnels and dam spillways (Kim and Elgamal, 2017a;
2017b; Kim et al., 2016) or deep foundations (Ebeido et al., 2019;
Zayed et al., 2020; Zayd et al., 2021). Numerical simulations are
often used to extrapolate measurements from reduced-scale tests
to large scale tests (e.g., Pereira and Koltuniuk, 2018; Li et al.,
2020), but it is more reliable to use scaling relationships to avoid
self-weight stress-dependent issues like arching that affect soil-
structure interaction.Unlike centrifuge testingwhere a single scaling
factor associated with the g-level can be used to reach geometric
similitude, where stresses and strains are the same in a model and
prototype, 1 g scale modeling requires a more nuanced approach.
Scaling relationships like those developed by Iai (1989) permit
extrapolation ofmeasurements from reduced-scale tests to full-scale
field conditions by establishing similitude between the model soil
layer tested on the shake table and the prototype soil layer in the
field. Iai (1989) built upon the work of Rocha (1957) to develop an
approach to reach similitude between a reduced scale model and a
prototype by considering a geometric scaling factor, a density scaling
factor and a strain scaling factor. As the self-weight stresses are lower
in a reduced scale 1 g model, the main effect of the scaling approach
of Iai (1989) is to reduce the density (and thus stiffness) of themodel

soil layer so that it has a similar stress strain curvewhen scaled by the
three scale factors. Zheng et al. (2019b) found that it is possible to use
only a geometric scaling factor when using a strategically selected
relative density that leads to a softer stress-strain response but not
a major change in unit weight. Centrifuge modeling can be used
to validate the scaling approach of Iai (1989) using the “modeling
of models” technique (Ko, 1988). Specifically, models with different
length scales (including a prototype at 1 g) can be tested under
different g-levels to validate scaling relationships. When studying
phenomena like liquefaction, post-liquefaction seismic settlements,
seismic compression of unsaturated soils lateral spreading, or
the efficacy of soil improvement techniques, scaling may not be
necessary for simulating near-surface soil layers having a thickness
less than the height of the laminar and rigid soil boxes.

The large soil boxes permit control of the boundary conditions
necessary in modeling geostructures, which can have a major
effect on the measured seismic response. The large “rigid” soil box
permits control of plane strain boundary conditions representative
of long geostructures (embankments, slopes, dams). It could also
be used to assess soil-structure interaction behavior associated with
reinforced concrete retaining wall systems (Castaldo and De Iuliis,
2014). While the rigid back wall boundary condition may not
represent those for geostructures in the field, it is straightforward
to consider in numerical simulations. The “rigid” soil box at UC
San Diego is particularly suitable for tests with 2D shaking (vertical
and horizontal shaking in one direction). The large laminar soil box
is currently configured for uni-directional horizontal shaking that
simulates a flexible shear soil column.While tests with shaking in the
vertical and one horizontal direction can be accommodated with the
laminar soil box in its current configuration, the laminar container
will be upgraded using point-roller bearings for bi-directional
horizontal shaking.

Three general types of experimental SSI studies are envisioned
using the LHPOST6.

(1) Verification Studies under Tri-axial Excitation: Computational
models of the complete soil-foundation-structure system can
be used to obtain the total translational and rotational
motion of the foundation which would then be applied at
the base of the structure placed on the shake table. The
resulting response of the structure will be compared with the
predictions through numerical simulation to validate both
theoretical models and computational methods. Independent
of the validation justification, the response of structures to
simultaneous translational and rotational base motions is of
interest for research intended to represent the free-field ground
motion as consisting of both translational and rotational
components. This would extend the current design practice of
including only translational components (in the absence of SSI)
(e.g., Lee and Trifunac, 1985; 1987). Such tests will also open
an avenue for blind prediction contests and discussions about
the models used to augment knowledge in the community.

(2) Laminar and Rigid Soil Box Studies under Tri-axial
Translational Excitation: In these studies, full-scale or scaled
models of structures can be supported on soils placed in either
the 1D laminar or rigid soil boxes available at the facility. The
soil box can be subjected to tri-axial translational basemotions
to better simulate the seismic input excitation. Such tests could
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be used to study the nonlinear response of soils, the response
of partially saturated soils, alternative backfill materials, and
the nonlinear interaction between foundations, structures,
and the soil (e.g., Shahbazi et al., 2020a). The contribution of
radiation damping into the soil to the apparent damping in
the structure (Cruz and Miranda, 2017) could also be studied
using this approach. The effects of coupling through the soil
on the seismic response of adjacent structures (i.e., structure-
soil-structure interaction), a topic of importance in the urban
environment and in farms of storage tanks and wind turbines,
could also be investigated through this approach. Liquefaction,
seismic-induced settlements and lateral soil spreading in urban
areas have accounted for a large percentage of the damage to
the built environment in cities stricken by a strong earthquake,
such as in the 2010 and 2011 Christchurch earthquake swarm
(Bray et al., 2017; Cubrinovski et al., 2014). Liquefaction effects
on the seismic response of soil-foundation-structural systems
can be studied with the LHPOST6 with one of the two large
soil boxes available equipped with a flexible membrane liner
to retain the water inside the soil box.

(3) Hybrid Tests: These will be ambitious tests in which the soil
will be modeled in the computer and the superstructure on the
shake table. The foundation input motion (i.e., the response
of the foundation to seismic waves in the absence of the
superstructure) and the response of the foundation to the total
base inertial forces from the superstructure will be obtained
numerically, in real-time. These tests will be used to study the
nonlinear seismic response of structures in the presence of
soil-structure interaction, including the torsional response of
structures.

Advanced and/or innovative earthquake
protective systems

Extensive damage in conventional buildings and bridges
has caused a push in earthquake-affected communities in
the past 2 decades to use low-damage structural earthquake
protective systems. Such systems can sustain significant nonlinear
response, large lateral displacements and damping with practically
no damage and maintained operability throughout. This is a
very active research area that includes base isolation, rocking
foundations and systems, self-centering systems, inertial force-
limiting floor anchorage systems, various types of dampers,
buckling-restrained braces, and new materials (e.g., Housner, 1963;
Zhang and Makris, 2001; Ozbulut et al., 2011; Clayton et al.,
2012; Belleri et al., 2014; Kramer et al., 2016; Tian et al., 2016;
Agalianos et al., 2017; Ganey et al., 2017; Moghadam and
Konstantinidis, 2017; Silva, 2019).

Many structures have survived strong earthquakes unscathed,
courtesy of rocking of the foundation (Housner, 1963). In competent
soils not susceptible to liquefaction, rocking can be used as a
mechanism to concentrate the nonlinear response and provide
energy dissipation in some structures. This aspect has been widely
demonstrated in centrifuge, field and 1-g shake table testing (e.g.,
Chang et al., 2007; Paolucci et al., 2008; Deng and Kutter, 2012;
Gelagoti et al., 2012; Anastasopoulos et al., 2013; Liu et al., 2013;

Pecker et al., 2014). Antonellis et al. (2015) carried out shake-
table testing of two 1:3 scale bride piers with shallow foundations
designed to rock. The test specimens were placed inside the large
confinement soil box described by Fox et al. (2015), which was
partially filled with poorly graded medium sand and water. Because
of the uni-directional limitation of the LHPOST at the time, one
of the test units was aligned with the direction of the shake table
excitation, whereas the other was rotated 30°. While this provided
multi-directional input to the specimens, the obvious correlation of
the pair of translational input motions was present. This limitation
no longer exists with the LHPOST6. The direction of shaking is also
critical when studying geosynthetic-reinforced bridge abutments.
Zheng et al. (2018a), Zheng et al. (2018b) and Zheng et al. (2019b)
performed transverse and longitudinal shaking tests on GRS bridge
abutments, respectively, and found a major difference in behavior.
However, the geometries of the GRS bridge abutment specimens
were different due to the limitations in the size of the UC San Diego
Powell Laboratory shake table. Using the LHPOST6, the dynamic
behavior of GRS bridge abutments in transverse and longitudinal
directions can be evaluated using a single specimen.

To design structural systems for low-damage and reduced
inertia forces, Zhang et al. (2018c) conducted shake table testing
using the LHPOST on a half-scale four-story building equippedwith
different types of energy dissipation devices and rocking structural
walls. The wall acting in the E-W direction was significantly offset
from the floor center of mass to purposely create a strong coupled
lateral-torsional response and subject the specimen to complex
kinematics. Multi-directional input motion capability would have
greatly simplified the specimen design in this research program
and facilitated the acquisition of more complete information on
the seismic response behavior of this innovative building archetype.
Furthermore, these tests would have benefitted from the use of
high-resolution piezometric strain gages recorded by the new DAQ
system of the LHPOST6 to obtain principal strains in the footings of
the bridge piers and rocking walls which experienced large impacts
and remained within their quasi-linear range of behavior.

The LHPOST6 will make possible realistic seismic testing of
prototype structures equipped with various types of earthquake
protective systems at scales which are large enough so that the
experimental findings aremeaningful for full-scale implementation.
For example, testing of a base-isolated structure on the LHPOST6
would account for the variation in axial load on isolation bearings
due to multiple components of earthquake ground motion at
the base of the structure. Benchmark shake table tests on full-
scale rocking structures are needed because the response of such
structures depends crucially on their size (e.g., Agalianos et al.,
2017). The data from such tests is needed to verify and validate
numerical models of rocking structures.

A wide range of promising and/or innovative passive and
semi-active seismic response modification devices (SRMDs)
must be tested in large- or full-scale structural systems for
their ultimate validation and acceptance in real-world structural
seismic design. Passive SRMDs include (Housner et al., 1997)
metallic yield dampers, friction dampers, viscoelastic dampers (e.g.,
viscoelastic walls), viscous fluid dampers, tuned mass dampers,
tuned liquid dampers, lead extrusion dampers (Parulekar et al.,
2004; Soydan et al., 2012), carbon fiber reinforced isolators
(Angeli et al., 2013), and shape memory alloys (DesRoches and
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Delemont, 2002; Ozbulut et al., 2011). A passive seismic response
mitigation strategy based on extremely rapid nonlinear “scattering”
of the seismic input energy from low-to high-frequency modes
of a structure achieved through a system of strategically placed
nonlinear vibration absorbers (termed nonlinear energy sinks)
has been investigated numerically and experimentally (on a
reduced-scale idealized structural model) shows promising results
for practical implementation in civil infrastructure (Luo et al.,
2014; Wierschem et al., 2017). Semi-active SRMDs include
(Housner et al., 1997) variable-orifice fluid dampers, controllable
friction devices, variable stiffness devices, semi-active impact
dampers, adjustable tuned liquid dampers, controllable fluid
dampers, magneto-rheological dampers (Cha et al., 2013; 2014),
and electro-rheological dampers (Spencer et al., 1998).

The LHPOST6 facility will enable the performance validation
of full-scale buildings protected with innovative low-cost seismic
isolation technologies such as low-cost fiber-reinforced elastomeric
isolators (Calabrese et al., 2019). It will also enable the evaluation
of the earthquake performance of low-damage rocking-isolated
structures, including bridge pier systems (Piras et al., 2022)
and buildings with controlled-rocking lateral-force resisting
frames subjected to multi-component earthquake base excitation
(including rotational components) and validation of high-fidelity
models of structural systems equipped with seismic isolation and
other structural control devices (e.g., whole-building models).
Base isolation for residential construction using geosynthetics
or compressible fills like tire derived aggregates is another topic
that has been studied with centrifuge modeling and small-scale
shake table testing (Yegian and Kadakal, 2004; Tsang, 2008;
Hernández et al., 2020; Yarahuaman and McCartney, 2024),
but not full-scale testing. Mitigation of seismic pressures on
retaining walls using alternative lightweight backfills like EPS
or tire derived aggregates that have high damping are topics of
interest that have not been explored in full-scale applications
(Tsang, 2008; Athanasopoulos-Zekkos et al., 2012).

Retrofit systems/strategies for non-code
compliant structures

To promote public welfare and safety by reducing the risk of
injury and loss of life that may result from the effects of earthquakes
on existing buildings, a number of cities on the west coast (e.g.,
Los Angeles, San Francisco) have adopted or are in the process
of adopting mandatory seismic retrofit ordinances for seismically
vulnerable existing buildings that have known deficiencies such
as limited ductility, soft story susceptibility, and lack of proper
hierarchy of strength in the members and connections. The seismic
retrofit strategies that will be used and implemented must be
validated through large-scale shake table testing, which serves as
the final verification of acceptable performance. The LHPOST6 is
well suited to support verification tests of new, innovative retrofit
strategies being required by the design community.

Through ATC 78 (Holmes et al., 2017), researchers have
been developing a methodology to address the vulnerability of
older (pre-1980) nonductile concrete buildings, which represent a
significant threat to life safety (Moehle, 2000). By evaluating the
likelihood of system collapse, rather than component failures, the

approach focuses on assessing existing buildings to find the critical
structures without being overly conservative. Other retrofit and
repair techniques to improve the seismic performance for soft-story
buildings using prestressed concrete jacketing and masonry block
techniques have also been tested on shake tables (Bracci et al.,
1995). However, there is still a need for research to support
the practical and effective application of seismic retrofitting to
existing buildings both in the physical implementation of retrofit
techniques and methodologies for the numerical evaluation of
the performance of retrofitted systems. Other examples of retrofit
and repair techniques include: (1) the rehabilitation of reinforced
concrete construction using fiber reinforced polymer composites
(e.g., Silva and Kanitkar, 2018; Wu and Pantelides, 2019), (2)
the use of shape memory alloy on the seismic performance of
concrete bridges (Johnson et al., 2008), (3) the use of rocking steel
braced frames for the retrofit of seismically deficient steel buildings
(Tremblay et al., 2016;Mottier et al., 2018), and (4) the use of various
seismic responsemodification devices such as base isolation, seismic
dampers, etc.

Building structures

One of the largest and most diverse areas of research
is in low-rise, mid-rise, or high-rise buildings made from
a variety of materials such as structural steel, cold-formed
steel, reinforced/prestressed/precast concrete, high-performance
concrete, wood-frame, cross-laminated (heavy) timber,
unreinforced and reinforced masonry, and advanced materials
such as Ultra-High Performance Concrete and non-metallic
reinforcements. Research topics also include the seismic
performance of total building systems, those designed with super
columns or outriggers, and special issues such as floor vibration
isolation.

Unreinforced Masonry (URM) buildings have suffered severe
damage or collapse in past earthquakes. The failures of URM
buildings in seismic events have often been characterized by the
out-of-plane collapse of the walls (Felice and Giannini, 2001). In
addition to other factors, such as the wall aspect ratio and the
material properties, the resistance of a URMwall to in-plane seismic
forces depends heavily on the gravity load carried by the wall.
The gravity load can enhance the shear strength of the bed joints
and provide resistance to the overturning moment imposed on
the wall. In addition, the resistance of an URM wall to out-of-
plane forces relies on arching action, which could be weakened by
damage caused by in-plane forces. As a result, bi-axial horizontal
ground motions are particularly damaging to an URM building and
URM walls subjected to uniaxial in-plane forces tend to exhibit
significantly better performance compared with bi-axial loading
conditions. Furthermore, the vertical ground acceleration could
change the axial load on a wall and thus its in-plane and out-of-
plane shear resistance, again affecting the arching mechanism and
stability of the wall. The LHPOST6 will enable robust assessment
of the seismic safety of URM buildings, development of effective
retrofit methods, and improvement of design provisions.

Current seismic design standards for reinforced concrete and
masonry wall systems, such as ACI 318-25 (ACI, 2025) and TMS-
402-16 (TMS, 2016) are largely based on data obtained from
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quasi-static testing of structural components, most of which were
conducted with in-plane horizontal loading. While such data are
crucial for the development of design and detailing requirements
to ensure the ductile behavior of structural members, building
performance in an earthquake is also highly dependent on how
these components are proportioned, connected, and interact with
each other as a system. Without due consideration of the system’s
behavior in design, the actual seismic response and load-resisting
mechanism of a building could differ significantly from what is
anticipated by design standards. The uniaxial LHPOST has enabled
large-scale structural system tests that have provided the much-
needed data to understand the behavior of structural systems as a
whole and validate analytical models that can be used to support
the development of improved design standards. An important
example is the tests on two reinforced masonry wall systems, one
system designed according to current codes and the other with a
displacement-based method (Mavros et al., 2016; Stavridis et al.,
2016). Owing to the strong coupling between the walls and the
slabs, both structures exhibited shear-dominated wall behavior,
although the code-conforming structure had been designed to avoid
this behavior. Despite this, both structures performed satisfactorily
under the maximum considered earthquake (MCE). In both cases,
the wall systems exhibited a much higher resistance and ductility
than what had been observed from shear-dominated walls tested
individually under quasi-static loading. This study underscored the
importance of considering system behavior in design and providing
data to develop and calibrate refined computational models.

The performance of shear-wall systems under bi-axial horizontal
seismic actions is not well understood. A planar wall with a
rectangular cross-section is designed to carry in-plane seismic
forces. However, under multi-axial ground motions, its vertical
load-carrying capacity can be significantly jeopardized when it is
subjected to a large out-of-plane drift (Tomassetti et al., 2016).
Flanged walls are normally designed to resist seismic forces in
both horizontal directions, but the bi-axial behavior of flanged
walls is not as well studied as that of reinforced concrete columns.
The bi-axial behavior of a flanged wall is complicated as in-plane
shear cracking or toe crushing in a wall flange could affect the
flexural resistance of the wall in the other loading direction. The
performance of reinforced masonry archetype buildings under
biaxial ground motions have been numerically studied with refined
3D nonlinear computational models that were calibrated with
experimental data from uni-directional wall component and system
tests (FEMA, 2020; Koutras and Shing, 2021). The numerical results
have been used to calibrate simplified simulation models to assess
the collapse probability of the building archetypes using the FEMA
P695 procedure (FEMA, 2009). Figure 9 also shows the numerical
results obtained with the nonlinear computational model of a two-
story building. It can be observed that the performance of a building
with flanged reinforced masonry walls under bi-axial horizontal
groundmotions can be significantlyworse than that under a uniaxial
ground motion. Multi-axial shake table tests are needed to validate
such computational models and acquire a better understanding
of the behavior of shear walls under earthquake actions. This
information is invaluable for developing improved code provisions
and assessment methods to enhance the safety and cost-efficiency of
reinforced concrete and masonry buildings.

Structural concrete and precast systems have been a prevailing
construction material for low, high-rise, and super-tall buildings.
However, most research supporting seismic design with structural
concrete has been limited to components (e.g., Kurama et al.,
1999; Lehman et al., 2004; Naish et al., 2013; Tazarv and
Saiid Saiidi, 2016) or reduced-scale models of building systems
(e.g., Shahrooz and Moehle, 1987; Rodríguez et al., 1995). In
the US, only three landmark building tests were performed at
large- or full-scale on a shake table (Schoettler et al., 2009;
Belleri et al., 2014; Chen et al., 2016; Zhang et al., 2018c) but
under single-axis excitation. Therefore, research is needed on
innovative, resilient, seismic-resistant concrete systems undermulti-
axial seismic base excitation, specifically to validate earthquake
protective systems under more realistic conditions and improve
modeling and analysis capabilities for component and system
behavior. Of particular interest are the use of high strength (or
ultra-high performance) materials (reinforcing bars and concrete)
and advanced materials (e.g., fiber-reinforced concrete wrapping
and non-metal reinforcement) for seismic civil applications, special
concrete moment frames, and structural walls, including the
combination of dual systems, precast concrete frame, and wall
structures, and sustainable reinforced concrete structures utilizing
recycled materials. The current building code in the US allows
seismic applications of Grade 100 reinforcement only in Special
Structural Walls. Insufficient test data was the leading cause for not
allowing high-strength reinforcement in Special Moment Frames.
Shake-table tests of Special Moment Frames and their interaction
with Special Structural Walls (with and without coupling beams)
are needed to support their introduction in the building code
and to improve methods of analysis, linear and nonlinear, for the
design office. There are also important research needs to better
understand: (1) the influence of dynamic shear behavior on flexural
deformation capacity inRC structural systems, (2) complex dynamic
system interactions in the context of realistic multi-component
earthquake base excitations to improve our current ability to model
system behavior (Panagiotou et al., 2011), and (3) influence of
diaphragm connections within the lateral load resisting system,
especially if frames are considered.

Of great interest and somewhat neglected in research is
the evaluation of the seismic performance of commercial tilt-up
buildings. Many such buildings behaved poorly during the 1994
Northridge earthquake (Mitchell et al., 1995), which prompted
the need to revisit various diaphragm-to-wall connection methods.
Recent research indicates that some of these structures may still be
vulnerable to earthquakes (Koliou et al., 2016; Henry and Ingham,
2011). To date, no shake table testing has been conducted on a partial
or complete tilt-up structural system. The LHPOST6 will benefit
the above research areas by providing the opportunity to conduct
large-scale multi-axial shake table tests of complete buildings and
structures of complex geometries.

Since the 1994 M6.7 Northridge earthquake, the precast
concrete industry has been heavily involved in the research
and development of new seismic systems and in developing
design methods for building diaphragms (Priestley et al., 1999;
Fleischman et al., 2013; Kurama et al., 2018). The speed and
quality of construction, durability, and the lower carbon footprint
of this industry, compared with the concrete or steel industries,
make precast concrete an attractive structural solution for some
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FIGURE 9
(a) FE model assessment of collapse potential of a reinforced masonry building under bi-axial ground motions; (b) Response of a two-story reinforced
masonry building with flanged walls to uniaxial and biaxial motions (Koutras and Shing, 2021).

building archetypes in the industry. Buckling-restrained braces
(BRBs), which originated in Japan as joint venture between the steel
and precast concrete industry (Wakabayashi et al., 1973), are one of
the most widely used bracing methods in the US for structural steel
buildings. Precast frames incorporating reinforced concrete BRBs
have significant advantages as these BRBs are precast at the plant
and require no special site connections (Oh et al., 2021). Moreover,
the precast BRBs can be repaired and replaced at the site should these
elements be severely damaged during an earthquake. Research using
the LHPOST6 on building systems with precast braced frames has
the potential to impact the precast concrete industry.

There has been research on the seismic performance of
hot-rolled structural steel and cold-formed steel systems in the
areas of structural stability and progressive collapse mitigation,
connection behavior, seismic risk, and life-cycle cost quantification
(Stojadinović et al., 2000; Khandelwal et al., 2008). However,
research is needed to assess interactions in building systems
undergoing earthquakes to improve seismic design codes for steel
building like AISC 341-16 (AISC, 2016). For example, by competing
inelasticity in vertical and horizontal lateral-force resisting systems,
overstrength, and system effects derived from the participation
of gravity and non-structural framing in lateral response (e.g.,
Imanpour et al., 2016; Peterman et al., 2016; Cravero et al.,
2020). An important area of research that will benefit significantly
from the LHPOST6 is the development of innovative low damage
seismic resistant steel structures, modeling, and analysis of floor
diaphragms, chords, and seismic collectors (Agarwal et al., 2018).
The ability to subject a large-scale test specimen of a building or
a key portion of a building to a multi-component excitation will
be particularly beneficial in the study of the above topics, given
their complex and extended geometries and distributed boundary
conditions and sensitivity to out-of-plane and vertical excitation.
Other research needs are in progressive collapse mitigation, the
seismic stability of multi-tiered braced frames under bi-directional

shaking, and dynamic collapse evaluation for low-ductility braced
frame systems. A critical component of successful large-scale
shake table testing is the precise and reliable measurement,
synchronization, and storage of numerous sensor channels at a
sufficiently high sampling rate. Additionally, efficient data access
and organization are essential for real-time visualization and rapid
evaluation during a sequence of tests. This aspect helps make
decisions on proceeding or pausing the test sequence.TheLHPOST6
enables this key aspect of large-scale shake table testing.

An innovative technique for enhancing the seismic performance
of steel brace frame and moment frame buildings involves
strategically placing seismic fuses in steel frame structures by
locally changing the mechanical properties (lowering strength
while increasing ductility and toughness) of steel through local
exposure to high temperatures followed by slow cooling. The
technique lowers seismic force demands on critical elements
(promoting economic use of materials), enhances ductility and
energy dissipation, and mitigates brittle failures such as connection
fractures (Morrison et al., 2015) (Figure 10). With its unique
capabilities, the LHPOST6will provide validation of the benefits this
approach provides and will provide knowledge on construction and
designmethods for applying this technique in new buildings and for
retrofit of seismically venerable steel structures.

Nonstructural components and systems
(NCSs)

NCSs are generally categorized as elements (e.g., architectural,
mechanical, electrical, plumbing, building contents) that facilitate
the operation of a building. Importantly, they typically comprise
75%–85% of the construction cost of commercial buildings (Taghavi
and Miranda, 2003; FEMA, 2012). NCSs have suffered significant
damage, led to appreciable losses, and endangered occupants during
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FIGURE 10
Schematic showing local heat-treated regions of brace (HTBs) and
gusset plate (HTGPs) intended to enhance seismic performance.

past earthquakes (e.g., Taghavi and Miranda, 2003; FEMA, 2012;
Ayres et al., 1973; Steinbrugge and Schader, 1973; Filiatrault et al.,
2001; Meneses, 2010; Dhakal et al., 2016). Laudable efforts have
been undertaken to develop simplified design procedures to account
for the range of practical NCSs configurations (e.g., Asfura and
Der Kiureghian, 1986; Burdisso and Singh, 1987a; 1987b; Villaverde,
1997; Bernal, 1999; Pozzi and Der Kiureghian, 2015). The wide
range of types, varying mass distribution, and multiple connection
locations in a structure have hampered the advancement of a
reliable, unified design strategy. Thus, the shortcomings/limitations
of modern codes are well-known (e.g., (Filiatrault and Sullivan,
2014; Lim et al., 2017)). The scarceness of full-scale building shake
table tests that incorporate NCSs limits our understanding of the
seismic response of these NCSs. For example, the landmark NSF-
funded Building Nonstructural Components and Systems (BNCS)
test program (Pantoli et al., 2016a) incorporated a complete suite
of NCSs, including operable egress (stairs and elevators), facades
(precast concrete and light-weight cold-formed steel), and interior
equipment and architectural support contents (ceiling, HVAC,
piping, etc.). This project focused on the “total building” and, in
particular, the interactions between components (nonstructural-
to-nonstructural and structural-to-nonstructural) and offered new
insight into understanding the seismic response of a wide range
of NCSs, but the tests were carried out under single-axis ground
motions. This test program would have immensely benefited from
the capability of the LHPOST6 (Hoehler et al., 2009; Chen et al.,
2016; Pantoli et al., 2016a; 2016b). NCSs are by their nature
secondary systems; their response depends upon the response of
the supporting primary system, in most cases a building. The
varying vibratory response of a building under multi-directional
input motion will then naturally affect the input motion to the
NCSs. Certain systems have beenwell documented to be particularly
susceptible to certain components of ground motion. For example,
due to their light weight and hung configurations, the presence of
the vertical ground motion component has been shown to greatly
affect the response of ceiling subsystems (e.g., Soroushian et al.,
2012; Ryan et al., 2016; Wang et al., 2016). Similarly, systems
with well delineated weak axes and abrupt bends (often a design
feature of a NCS to accommodate necessary layout changes) are
vulnerable to failure along these weaker axes (e.g., Ryan et al.,

2016). Important to enveloping a building, the wide range of
architectural facades have a high degree of variability in their
connectivity to the supporting structure, and thus their response
to multi-directional input requires understanding (Pantoli et al.,
2016c). Limited recent tests (e.g., Pei et al., 2024a), supported by
field observations, demonstrate the importance of advancing our
understanding and predictive capabilities under multi-directional
seismic loading of NCSs in building systems. Full-scale multi-
axial shake table tests are needed to advance the development of a
reliable, unified designmethodology for NCSs accounting formulti-
directional earthquake excitation. In this case, full-scale is required
due to the difficulty/impossibility to obtain NSCs at a reduced-scale.

Energy structures

There has been a strong emphasis on the need to develop new
sources of energy while preventing or reversing the degradation
of the environment (i.e., renewable energy sources). Engineering
solutions for wind and solar power, nuclear fusion, electrical and
hydrological energy are necessary, not only to find cost effective
technical solutions for harvesting the energy, but also for designing
the infrastructure to support it (National Research Council, 2011).

Research on wind turbine structures has mostly focused on
the structural analysis, design and/or assessment of wind turbines
primarily against traditional environmental loads rather than
extreme natural hazards such as earthquakes, hurricanes and
tsunamis. With numerous wind farms being built in seismic regions
such as China, the United States, India, Southern Europe and
East Asia, more research on the seismic performance of wind
structures is needed (Fitzwater and Cornell, 2002; Saranyasoontorn
and Manuel, 2006; Burton et al., 2011; Guanche et al., 2013;
Katsanos et al., 2016). For this reason, research utilizing the
LHPOST6 will provide critical data to improve analysis tools and
the seismic design of wind turbines on the dynamic response
of these tall and slender structural systems. SSI effects may be
considered in scaled systems or using hybrid testing. Areas of
research include investigating the performance of newer, larger wind
turbines and the effects of multi-directional near-field earthquake
base excitations (including rotational components) to develop
advanced methodologies to perform multi-hazard risk assessment
of wind turbines (Katsanos et al., 2016). A series of full-scale tests of
a 22 mhighwind turbinewith rated power of 65 kWwere conducted
on the LHPOST (Prowell et al., 2009). The experimentally estimated
natural frequencies and mode shapes closely matched those derived
from the finite element model developed and calibrated for this
specific wind turbine (Prowell et al., 2009).

The performance of Electric Power Supply Systems (EPSSs)
is also critical to the seismic resilience of a society (Franchin
and Cavalieri, 2015; Sun et al., 2015). The EPPS includes
components such as electrical substations, large power transformers,
transmission poles/lines. Sun et al. (2015) developed a framework
for the probabilistic assessment of the seismic resilience of
an EPSS and the community it serves. Research such as this
requires accurate data obtained from seismic tests on the
LHPOST6 investigating system and component performance.
Other researchers (Bosworth et al., 2017) are investigating using
computational dynamic analysis methods for the time histories
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of electromagnetic reaction forces during short-circuit faults in
High-Voltage substation structures.

Solar energy is a safe, clean, renewable energy resource
which can replace current fossil fuels for generation of electricity.
Many companies have developed solar power systems with
structural frames. Testing of solar arrays subjected to wind and
seismic forces is necessary to improve product development of
solar array support structures and improve industry guidelines
for appropriate structural design procedures and requirements
for solar energy systems, considering gravity, wind, and
seismic effects (Maffei et al., 2014).

TheLHPOST6will also provide a unique facility for the testing of
nuclear structures, systems, and components (SSCs). Experimental
seismic tests of nuclear SSCs have been performed for decades but
often facing limitations on payload and/or multi-directional seismic
input. These limitations result in the need for scaled models, or
disregarding the vertical earthquake ground motion component,
which are significant for rigid-short-period systems such as those in
nuclear facilities. Furthermore, the seismic design and qualification
of advanced reactors rely heavily on verified and validated numerical
models that can capture the interaction between the reactor vessel,
the contained fluid and the internal components (Yu et al., 2021).
However, very few numerical models have been validated with
experimental data. The LHPOST6 will provide critically needed
experimental data for the seismic evaluation of next-generation
nuclear SSCs and small modular reactors (SMRs), as well as systems
and components used for nuclear waste storage and transportation;
these data will assist in validating numerical models of these
components and systems (Eidelpes et al., 2020; Zargar et al., 2017).

Another energy area requiring seismic testing and validation is
hydroelectric dams. Research includes the selection of reasonable
safety evaluation earthquakes for design, and the evaluation of
structural adequacy of dams and foundations under earthquake
loading (Léger, 2007; Hariri-Ardebili and Saouma, 2015). Needed
areas of research are in SSI, design and analysis of foundations and
abutments, material testing, and strengthening to assure foundation
and abutment integrity. Furthermore, research is needed in the
development of cost-effective geometry and structural detailing
with minimum geometric irregularities and gradual variations in
structural stiffness, and the validation of state-of-the-art numerical
models of dams based on data obtained from large-scale dynamic
testing. The LHPOST6 could be used to conduct scaled-up versions
of the shake table experiments conducted on small scale models
of concrete gravity dams at Polytechnique Montreal (Tinawi et al.,
2000). Fluid-dam interaction could be accommodated on the
LHPOST6 using the large soil box as a reservoir.

Bridges

The 1971 San Fernando and 1989 Loma Prieta Earthquakes
were a turning point in the seismic design practice of bridges
not only for California but for all seismic-prone regions in
the United States. The Caltrans seismic retrofit program made
large gains in designing retrofit strategies for existing bridge
components with known vulnerabilities as well as developing new
design strategies (Chai et al., 1991; Xiao et al., 1996; Haroun
and Elsanadedy, 2005; Seible et al., 1997). In the 1990s, the

feasibility of using advanced composite materials or fiber-reinforced
polymers (FRPs) was investigated not only for the rehabilitation
of existing structures in the form of seismic retrofit, service load
strengthening, and damage repair measures but for new structural
systems (Van Den Einde et al., 2003). The use of smart materials
such as nitinol shape memory alloy devices for retrofitting bridges
continues to be a hot topic (Johnson et al., 2008).

A great challenge in the seismic design of columns that are
part of highway interchange systems which may involve complex
geometries including curved bridge decks, skewness, etc., is to
properly evaluate its response under the combined effects of
vertical and bi-directional horizontal excitations. The capabilities
of the LHPOST6 will open a new paradigm shift in properly
evaluating the seismic response of slender columns and many other
complex structures and validating the high-fidelity modeling of
nonlinearly responding bridges (Babazadeh et al., 2016), including
soil-structure-interaction and liquefaction effects in the case of soils
vulnerable to liquefaction (Zhang et al., 2008; Elgamal et al., 2008).

Precast segmental construction methods can ease bridge
construction costs by reducing construction time while maintaining
quality control. Recent advances in new accelerated bridge
construction (ABC) methodologies use precast methods for new
bridges or replacing and rehabilitating existing bridges. ABC reduces
traffic effects that are often impacted by onsite construction-related
activities. While some applications of ABC construction exist in
the U.S., regions with moderate to high seismicity require in-depth
development, detailing, experimental investigation, and guidelines
for suitable connections between the precast members (Mashal
and Palermo, 2017; 2019). Shake table testing of prestressed and
segmental bridge components and systems have been conducted
(Vosooghi and Buckle, 2013; Saiidi and Kavianipour, 2018).

A variety of other bridge-related topics that will benefit from
the LHPOST6 are: (1) 3D behavior of precast segmental bridge
superstructures for accelerated bridge construction (Nikoukalam
and Sideris, 2016), (2) bridges with hybrid sliding-rocking columns
(Torres Matos and Rodríguez, 2014; Madhusudhanan and Sideris,
2018), (3) analytical models to predict the static and dynamic
nonlinear response of such bridges (Li et al., 2017; Xie et al.,
2019), (4) the use of smart materials in bridges (Johnson et al.,
2008), (5) high-performance steel highway bridge systems, a
field that is steadily growing and offers high strength, excellent
fracture toughness, good weldability, and resistance to corrosion,
which makes it well-suited for highway bridge applications
(Abbas et al., 2015; Ma et al., 2019), and (6) multi-directional
dynamic experimental evaluation of bridge superstructure-
abutment-substructure interactions for configurations commonly
employed in the Central United States.

Structural health monitoring

Condition assessment of structures plays a key role in supporting
the decision-making process following natural or artificial hazard
or aging events. These events, such as earthquakes, can potentially
induce critical damage to civil structures, and subsequent decision-
making related to emergency response, inspection, evacuation, and
retrofit of structures is of vital importance. Damage initiation and
progression cannot always be detected through visual screening
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and, therefore, time-consuming, costly, and invasive post-event
inspection and evaluation methods are required to detect certain
types of damage. Potential impacts of earthquakes as well as
other natural and man-made hazards on communities can be
reduced through accurate and timely risk mitigation decisions
after catastrophic events, which can be supported and facilitated
using structural healthmonitoring (SHM), diagnosis, and prognosis
methods to help assess the damage in, and residual strength of, civil
structures. Several approaches for SHM of civil structures, and in
particular for system identification (SID) and damage identification
(DID), have been proposed and studied in the literature for post-
earthquake assessment of structural safety. A number of model-free
and linear/nonlinear model-based approaches have been proposed
in the literature for system and damage identification of civil
structures (Catbas and Kijewski-Correa, 2013). Finite element (FE)
model updating has emerged as a powerful methodology for
structural health monitoring and damage identification of civil
structures (Friswell and Mottershead, 1995). Recent years have seen
significant developments in the area of nonlinear FEmodel updating
of civil structures by using advanced Bayesian (probabilistic)
estimation methods to update a high-fidelity mechanics-based
nonlinear FE model of the structure of interest, which can then be
interrogated to detect, localize, classify, and assess the damage in
the structure at different scales (global and local) (Song et al., 2013;
Astroza et al., 2017; Astroza et al., 2019; Roohi et al., 2019).

The high-quality datasets collected from future landmark
experiments performed on the LHPOST6 will be invaluable
for evaluating vibration-based condition/damage assessment
methodologies and resolving the remaining obstacles preventing
reliable real-world implementation of such methodologies.
Typically, each large- or full-scale specimen tested on the
LHPOST6 is subjected to a series of earthquake ground motions
of increasing intensity until the brink of collapse. The SHM
field will benefit from such high-quality datasets and associated
metadata. An algorithm of the wave method for structural
health monitoring (SHM) was tested and calibrated using shake
table test data of a full-scale, seven-story, reinforced-concrete
building slice tested on the LHPOST (Panagiotou et al., 2011).
The method is based on monitoring changes in the velocity of
waves propagating vertically through the structure, identified
by least-squares fit of beam models (Ebrahimian et al., 2017).
Data measured on test structures can be used to develop
automated system identification and post-earthquake assessment
methodologies for instrumented structures subject to complex
ground motion effects as structures in the real-world do not have
sufficient instrumentation to fully characterize the 6-DOF ground
motion effects.

Additive manufacturing (3D printing)

In several other engineering fields, automation has been
steadily replacing traditional production methods, dramatically
increasing speed, quality of construction, and innovation of design
while concurrently reducing cost and waste in a transformative
way. Rapid prototyping of 3-dimensional parts (i.e., 3D printing)
with cementitious or metallic materials allows geometrically
intricate but efficient designs which are today unfeasible to

construct using traditional methods (Ma et al., 2018). Recently,
this technology has proven its utility at large-scale supporting
the construction of elements such as connection nodes in space
frame metal structures or even entire buildings and bridges.
This research area is still emerging, with most efforts focused
on developing the methodologies for rapid and cost-effective
3D prototyping of concrete and metal buildings and bridges at
larger scales (Buswell et al., 2007; Le et al., 2012; Lim et al.,
2012; Gosselin et al., 2016; Zareiyan and Khoshnevis, 2017;
Camacho et al., 2018). However, the mechanical properties of 3D
printed materials and the performance of 3D printed structures
have not been studied in detail under seismic loading. The use
of the LHPOST6 becomes crucial to support the development
of large-scale additive manufacturing technologies capable of
efficiently producing multifunctional structural elements with
enhanced performance (Keating et al., 2017) in both low and
high seismicity areas. This development includes the need for
standardized testing and quality control, investigating ways to print
using multiple materials, and combining additive manufacturing
with other processes which rely upon traditional materials or
construction techniques.

Liquid storage tanks

Liquid storage tanks (LSTs) are critical structural system
elements in the industry.These tanks are used in chemical processes,
water, fuel, oil and gas storage and for fermentation of alcoholic
beverages, among many uses. Poor seismic performance of LSTs
was observed in recent earthquakes in Chile, New Zealand,
Italy, and the 2014 South Napa earthquakes (Zareian et al.,
2012; Fischer, 2014; Fischer et al., 2016; Brunesi et al., 2015;
Yazdanian et al., 2020; Frezzati et al., 2023) and accounted for
losses of the order of $7B. The LHPOTS6 is a unique facility
where much needed research can be conducted to evaluate, develop
high-fidelity models that include the fluid-structure and soil-
fluid-structure interaction, and improve the seismic response of
storage tanks, with smaller tanks tested at full-scale and large
tanks tested at reduced scales, for example, in the range of
1:10 to 1:20.

Other structures

A multitude of topics that do not fit directly into the research
areas described above or perhaps span across multiple areas are
classified here as “other structures”.These includewharves, ports and
A-cranes (Roeder et al., 2005; Lemnitzer et al., 2010; Smith-Pardo
and Ospina, 2013), water intake towers, airport control towers,
deep foundations, and unique military applications such as testing
the tailhook gear that fighter jets use to land on aircraft carriers,
large-aircraft landing gear, embedded dynamometers and real-time
hybrid testing of military hardware. The LPHOST6 will support
research on the seismic behavior and design of waterfront structures
under multi-directional loading which include earthen, landfill,
and wharf structures including material ageing and corrosion

Frontiers in Built Environment 17 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1573390
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


McCartney et al. 10.3389/fbuil.2025.1573390

(Andisheh et al., 2016). Research on the LHPOST6 used in
combination with a large soil box can complement centrifuge
experiments to investigate the seismic performance of levees
on different soil conditions (Cappa et al., 2014) to validate
computational models. Sideris et al. (2008) conducted shake table
tests of steel pallet type tall storage rack structures equipped
with advanced base isolation and rocking seismic protection
systems. Shake table tests must be performed on much larger
rack structures subjected to 3D ground motions which can
only be accommodated at the LHPOST6 facility. The tests will
require extensive measurements, including horizontal and vertical
displacement and acceleration responses atmultiple locations, strain
measurements at critical locations in beam, column, and bracing
members, and relative rotations at the beam to column joints.

Conclusions

The LHPOST6 supports the advancement of innovative
materials, manufacturing methods, detailing, earthquake protective
systems, seismic retrofit methods, and construction methods, and
is a driver towards improving the design codes and standards and
developing transformative seismic-resistant concepts. This paper
provides an overview of the role of shake table testing with six-
degree-of-freedom input motions using the LHPOST6 to provide
data and fragility information on structural and geotechnical
systems, supporting the advancement of performance-based and
resilient-based seismic design.
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