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The present investigation introduces a robust soft computing model by
comparing twelve least square support vector machine (LSSVM), six long short-
term memory (LSTM), and thirty-six artificial neural network (ANN) models to
predict the unconfined compressive strength (UCS) of fine-grained soil. For that
purpose, a database of fine content, dry unit weight, porosity, void ratio, degree
of saturation, and specific gravity results of 85 soil specimens has been compiled
from the literature. 75 and 10 soil specimens were trained and tested for each
model. Six training databases have been prepared to analyze the effect of quality
and quantity of training database by selecting 50%, 60%, 70%, 80%, 90%, and
100% of 75 soil specimens. The performance comparison demonstrated that the
LSTMmodel (MD 113) requires fewer training datasets (50%of 75) than the LSSVM
(MD 102 and MD 108) and ANN (MD 120, MD 127, MD 136, MD139, MD 148, and
MD 150) models. Also, it was observed that the nonlinear LSSVMmodel (MD 108)
is unaffected by multicollinearity in training datasets and predicted UCS better
than the linear LSSVM model (MD 102). Furthermore, the Levenberg-Marquardt
neural network model (MD 120) has outperformed the other ANN models with
the root mean square error (RMSE) of 5.1214 N/cm2, the mean absolute error
(MAE) of 4.1379 N/cm2, and correlation (R) of 0.9836. The overall performance
comparison revealed that the LSTM model is more potent than the LSSVM and
ANN models. The LSTM model predicted the UCS of fine-grained soil with the
RMSE of 4.7539 N/cm2, the MAE of 4.2461 N/cm2, and R of 0.9880. Conversely,
cosine amplitude sensitivity analysis demonstrated that the fine content and dry
unit weight influence the prediction of virgin UCS of fine-grained soils.

KEYWORDS

artificial neural networks, long-short term memory, least-square support vector
machine, multicollinearity, quality and quantity of training datasets, unconfined
compressive strength

1 Introduction

Unconfined compressive strength is the strength parameter of cohesive soils and
is essential for any civil engineering project. The unconfined compressive strength of
undisturbed, compacted, or remoulded soils is determined as per BIS (1991) and Standard
(2017).The unconfined compressive strength test determines cohesion (C′) and the internal
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friction angle of cohesive soils. In the UCS test, the soil sample
is subjected to major principal stress (σ1) and minor principal
stress (σ3 = 0), where the internal friction angle is ϕ = 0
(Gunaydin et al., 2010). Therefore, the Mohr circle reveals the
undrained shear Equation 1 strength su.

su = c =
qu
2

(1)

The experimental procedure for determining UCS of fine-
grained soil is lengthy because it requires the optimum moisture
content obtained from the standard or modified proctor test.
A proctor test requires five to six attempts to reveal the soil’s
OMC and MDD. Therefore, several researchers have developed
different methods and methodologies to predict the unconfined
compressive strength of the soil. Several researchers have established
relationships between soil properties (index and compaction) and
UCSof stabilized soil (Zumrawi andMohammed, 2016; Khalid et al.,
2015; Arumugam et al., 2013; Chan et al., 2012; Al-Kahdaar
and Al-Ameri, 2010; Masada, 2009; Edil et al., 2009; Obasi
and Anyaegbunam, 2005; Yılmaz, 2000). The nonlinear analysis
demonstrates a better relationship between index properties and
UCS of soil than the linear analysis. The physical properties and
normalized shear strength can predict the unconfined compressive
strength (Senoon and Hussein, 2019). In addition, Arumugam et al.
(2013) have also mapped the relationship between the liquidity
index and UCS and observed that the UCS decreases with the
liquidity index. Most of the published research works are concerned
with the application of artificial intelligence to predict the UCS
of stabilized soil using geopolymer, cement, fly ash, kiln dust,
reinforcing material, waste types, and micron fines (Tabarsa et al.,
2021; Yildirim et al., 2021; Ngo et al., 2021; Salahudeen et al.,
2020; Priyadarshee et al., 2020; Saputra and Putra, 2020; Bazazorde,
2018; Ghorbani and Hasanzadehshooiili, 2018; Javdanian and
Lee, 2019; Sharma and Singh, 2018; Mahamaya et al., 2015;
Mozumder and Laskar, 2015; Udo et al., 2014; Motamedi et al.,
2015; Arumugam et al., 2013; Kalkan et al., 2009). On the other
hand, the authors have compared the performance of artificial
neural networks with different AI approaches and found that
the prediction of geotechnical properties is very encouraging and
acceptable using ANN. Gunaydin et al. (2010) have also applied
ANN and regression approaches to predict UCS of soil using
soil properties such as water content, natural unit weight, dry
unit weight, void ratio, porosity, saturated unit weight, saturated
degree, specific gravity, and permeability. The authors have derived
a regression Equation 2, which predicted the UCS of soil with a
COD of 0.88.

UCS (kPa) = −7287634∗K + 12291.38∗ SG − 39.20∗P

+ 172.28∗ SUW − 31130.39 (2)

In addition, the authors have mapped a coefficient of
determination (0.71-0.92) between the different percentages of
clay content and water content. Gunaydin et al. (2010) have
reported that the ANN predicts UCS better than the regression
model. On the other hand, numerous researchers have predicted
the UCS of soil using field test parameters. The dynamic cone
penetration index strongly correlates with unconfined compressive
strength (Dirriba, 2017; Oljira et al., 2021). Adroja et al. (2017)

have also confirmed that the DCPI, LL, PI, and OMC influence
the UCS of soil. Saputra and Putra (2020) have mapped a strong
correlation (>0.9) between index properties and UCS of Laterite
soil. A brief description of the published models is given in
Table 1.

The literature presented that the researchers mapped the
relationship between the UCS and different soil properties/DCPI.
Conversely, the applied artificial neural networks, gene expression
programming, fuzzy, gradient boosting, support vector machine,
and regression analysis approaches employed and predicted the
UCS of stabilized soil. Still, least square support vector machine
(LSSVM), long short-term memory (LSTM), and artificial neural
network (ANN) approaches have not been utilized to predict
the UCS of virgin fine-grained soil. Researchers have also been
observed using compaction, consistency, CBR, and admixture
content (RHA,C, PA, LC, etc.) to predict theUCSof virgin/stabilized
fine-grained soils. Still, the FC, DUW, P, VR, DS, and SG
parameters have not been selected to predict the UCS of virgin
fine-grained soil. The soft computing approaches are black-box
and data-driven models, affected by the quality and quantity of
the database. Still, the impact of the quality and quantity of
training databases has not been analyzed on the performance and
overfitting of soft computing models. Based on the literature study,
the following novelty statements have been drawn for the present
research:

• This investigation analyzes the prediction capabilities of LSSVM
(linear and polynomial kernel-based), LSTM, and ANN
(configured by six backpropagation algorithms) models in
predicting the UCS of fine-grained soil.

• This research demonstrates the impact of the quality and
quantity of training databases on the performance and
overfitting of the LSVVM, LSTM, and ANN models in
estimating UCS of fine-grained soil.

• This work compares 54 soft computing models to introduce a
robust soft computingmodel to predict the UCS of fine-grained
soil to help geotechnical engineers and designers predict the
UCS of fine-grained soil.

2 Research methodology

The present investigation introduces a robust soft computing
model to predict the unconfined compressive strength of fine-
grained soil. For that purpose, a database of fine-grained soil
has been compiled from the literature. The database consists
of fine content (FC in %), dry unit weight (DUW in g/cm3),
porosity (P in %), void ratio (VR), degree of saturation (DS in
%), specific gravity (SG), and unconfined compressive strength
of (UCS in N/cm2) results of 85 soil specimens. The complete
database has been preprocessed to remove the outliers and missing
data points. Finally, the database has been normalized by the
min-max function. The LSSVM, LSTM-RNN, and ANN models
have been developed, trained, tested, and analyzed to introduce
the robust soft computing model. Still, the effect of quality and
quantity of training database on performance and overfitting of
LSSVM, LSTM, and ANN models have not been analyzed and
determined in predicting the UCS of fine-grained soil. Therefore,
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TABLE 1 Description of published models in the literature study.

Author(s) Input parameters Data Test R Model Treated

Tabarsa et al. (2021) ST, CT, DUW, C, RHALC 137 0.9979 ANN Yes

Yildirim et al. (2021) w/c, IJP 427 0.9332 SFG Yes

Oljira et al. (2021) MDD, OMC, LL, PL, ISD, NMC, DCPI NA 0.9273 RAM No

Ngo et al. (2021) ST, MC, γw, D, C
C, ɸ, L, A, MDD, Ccc, CT, CT 216 0.9250 ANN Yes

Salahudeen et al. (2020) SG, LS, CU, CC, LL, PL, OMC, MDD 72 0.9942 ANN Yes

Priyadarshee et al. (2020) Clay, PA, RHA, CCT 129 0.9800 ANN Yes

Saputra and Putra (2020) CBR NA 0.9193 RAM No

Ghorbani and Hasanzadehshooiili (2018) CBR10, CBR30, CBR65,M
S, LC, CcCT 90 0.9900 ANN Yes

Javdanian and Lee (2019) PI, LL, BFS, FA, A/B,MO, Si/Al, Na/Al 283 0.9726 NF-GMDH-PSO Yes

Sharma and Singh (2018) LC, CT, PL, LL, PI, pH, Vp, OMC, MDD 54 0.9798 MLR Yes

Mahamaya et al. (2015) Shale, Topsoil, FA, C NA 0.9890 ANN Yes

Mozumder and Laskar (2015) LL, PI, GGBS, FA, M, A/B, Na/Al, Si/Al 283 0.9960 ANN Yes

ST is the soil type, CT is the curing time in days, DUW is the dry unit weight in g/cm3, C is the cement content in %, RHA is the rice husk ash in %, LC is the lime content in %, w/c is the
water-to-cement ratio, IJP is the injection pressure in kPa, MDD is the maximum dry density in g/cm3, OMC is the optimummoisture content in %, LL is the liquid limit in %, ISD is the in-situ
density in kN/m3, NMC is the natural moisture content in %, DCPI is the dynamic cone penetration index in mm/blow, MC is the moisture content in %, γw is the wet density in g/cm3, D is the
specimen diameter in meter, CC is the curing condition, ɸ is the diameter in meter, L is the length of specimen in meter, A is the area of specimen in m2, CT is the cement type, SG is the specific
gravity, LS is the linear shrinkage in %, PL is the plastic limit of soil, CU is the coefficient of uniformity, CC is the coefficient of curvature, PA is the pond ash, CBR is the California bearing ratio,
CBR10 is the California bearing ratio of samples compacted with 10 blow counts, CBR30 is the California bearing ratio of samples compacted with 30 blow counts, CBR65 is the California
bearing ratio of samples compacted with 65 blow counts, MS is the micro silica percentage, PI is the plasticity index, BFS is the blast furnace slag, A/B is the alkali to binder ratio, Si/Al is the
atomic proportion of Si to Al, Na/Al is the atomic proportion of Na to Al, Vp is the primary ultrasonic wave velocity, FA is the fly ash content, GGBS is the ground granulated blast furnace slag,
M is the silt content, ANN is the artificial neural network, SFL is the Sugeno Fuzzy Logic, RAM is the regression analysis model, MLR is the multiple linear regression, NF-GMDH-PSO is the
particle swarm optimized neuro-fuzzy coupled group method of data handling model.

75 and 10 soil specimens have been selected to create training and
testing databases. To assess the effect of quality and quantity of
training databases on the performance and overfitting of LSSVM,
LSTM, and ANN models, the data proportionality method has
created six training databases, selecting 50%, 60%, 70%, 80%,
90%, and 100% of 75 soil specimens. Thus, 54 models (6 linear
LSSVM +6 polynomial LSSVM, 6 LSTM, and 36 ANN) have been
developed, analyzed, and compared to determine the robust soft
computing model to predict the UCS of fine-grained soil. The
root mean square error (RMSE), mean absolute error (MAE),
and performance (R) metrics have measured the training and
testing performances of each model. Based on the performance
comparison of 6 linear LSSVM, 6 polynomial LSSVM, 6 LSTM, 6
Levenberg-Marquardt-based neural network (LMNN), 6 Broyden-
Fletcher-Goldfarb-Shanno-based neural network (BFGsNN), 6
Scaled Conjugate Gradient-based neural network (SCGNN),
6 Gradient Descent with Momentum-based neural network
(GDMNN), 6 Gradient Descent-based neural network (GDNN),
and 6 Gradient Descent with Adaptive Learning Rate-based neural
network (GDANN), nine better performing models have been
identified. These nine models have been analyzed by performing
reliability and generalizability analyses. Finally, laboratory-
tested soil specimens have validated a robust soft computing
model.

3 Data compilation and analysis

The present research has been carried out by collecting the
unconfined compressive strength datasets of fine-grained soil
collected from the published articles of Gunaydin et al. (2010) to
train and test the AI models. The soil specimens were collected
from Mersin (İçel), Turkey. The investigators found that the soil
specimens are a mixture of clay and silt particles, i.e., bentonite
and quartz. Gunaydin et al. (2010) determined the liquid limit,
plastic limit, shrinkage limit, plasticity index, specific gravity,
permeability, silt content, and clay content of soil specimens as
65.63%, 25.27%, 17.33%, 40.36%, 2.76, 2.45 × 10−8, 55%, and
45%, respectively. The soil was classified as high plasticity clayey
silt (CH) based on the consistency parameters. The database
consists of fine content (FC in %), dry unit weight (DUW in
g/cm3), porosity (P in %), void ratio (VR), degree of saturation
(DS in %), specific gravity (SG), and unconfined compressive
strength of (UCS in N/cm2) of 85 fine-grained soil specimens.
The complete database has been preprocessed by removing outliers
and missing values. The z-score method has been utilized to
remove the outliers. In addition, the min-max function has
normalized the complete database. Figure 1 illustrates the frequency
distribution of geotechnical parameters of 85 fine-grained soil
specimens.
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FIGURE 1
Illustration of the frequency distribution of (a) fine content, (b) dry unit weight, (c) porosity, (d) void ratio, (e) degree of saturation, (f) specific gravity,
and (g) unconfined compressive strength.
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To develop, employ, and analyze the soft computing models,
75 and 10 data points have been randomly selected from 85 data
points to create the training and testing datasets. Furthermore, to
analyze the effect of quality and quantity of training database on
the performance, accuracy, and overfitting of the soft computing
model, the 50%, 60%, 70%, 80%, 90%, and 100% data points have
been selected from 75 data points. Thus, six training databases have
been created and statistically analyzed, as shown in Table 2.

Furthermore, the relationship between UCS and input
parameters (FC, DUW, P, VR, DS, SG) was determined using
Pearson’s product-moment correlation coefficient method. The
range of correlation coefficients ±0.81 to ±1.00, ±0.61 to ±0.80, ±0.41
to ±0.60, ±0.21 to ±0.40, and ±0.00 to ±0.20 show a very strong,
strong,moderate, weak and no relationship between pair of datasets,
respectively (Hair et al., 2010).The relationship between parameters
given in UCS datasets has been drawn, as shown in Figures 2a–f for
each different percentage of training datasets.

Figures 2a–f illustrates that the fine content has a very strong
relationship with porosity, void ratio, and the specific gravity of
fine-grained soils. Also, the porosity and void ratio have a very
strong relationship with the specific gravity of soil. Figure 2 also
depicts that dry unit weight strongly correlates with void ratio and
specific gravity in every training dataset. In addition, the porosity
and dry unit weight strongly relate to the degree of saturation.
Furthermore, the fine content has a moderate relationship with
the degree of saturation and UCS of fine-grained soil. Figure 2
shows that the dry unit weight, porosity, and void ratio have no
relationship with the UCS of fine-grained soil. Multicollinearity was
also determined for the UCS training dataset. The UCS training
datasets contain the multicollinearity between specific gravity and
porosity and void ratio. Also, the UCS has multicollinearity with
porosity and void ratio in 70%, 80%, and 90% of 75 training datasets.
The relationship between UCS and fine content and specific gravity
shows moderate multicollinearity. On the other hand, the porosity
and the void ratio have weak multicollinearity with the UCS of
fine-grained soil. In addition, twelve fine-grained soil samples have
been collected from and around Kota, Rajasthan, to validate the
best architectural model of the unconfined compressive strength of
the soil. The laboratory results of twelve fine-grained soil specimens
are given in Table 3. The results of twelve soil specimens have been
utilized to validate the prediction capabilities and accuracy of the
robust soft computing model.

4 Applied soft computing approaches

Thepresent research has adopted the least-square support vector
machine, long short-term memory-recurrent neural network, and
artificial neural network AI approaches to predict the strength
parameters of fine-grained soil. The least-square support vector
machine is a hybrid learning approach and the rest of the deep
learning approaches.

4.1 Least-square support vector machine

The support vector machine is a supervised machine learning
model associated with learning algorithms that analyze data

for regression analysis and classification (Vapnik, 1999). LSSVM
is a standard regression approach of the least-squares support
vector machine. Several authors have used LSSVM to solve
the complex problems of geotechnical engineering. Cai et al.
(2021) have successfully applied the LSSVM approach optimized
by GWO, DE, and GA optimization techniques to predict the
liquefaction potential. Also, Hoang and Bui (2018) have predicted
the earthquake-induced liquefaction potential of soil using the
LSSVM approach optimized by KFDA. On the other hand,
Tien Bui et al. (2019) have also predicted shear strength parameters
for road construction using the LSSVM (optimized by CSO)
approach. Alkroosh et al. (2015) have reported in the published
research that the LSSVM approach predicts the bearing capacity of
bored piles using pile geometry and cone penetration test results.
Therefore, the LSSVMapproach has been applied to predict theUCS
of fine-grained soil in the present study.The LSSVM approach/code
has been adopted by Wolter (2016). Furthermore, the linear and
polynomial kernels have developed the LSSVMmodels inMATLAB
R2020a.The published research by Khatti and Grover (2024), Khatti
and Grover (2023) demonstrated that the LSSVMmodel achieved a
performance of over 0.95 in predicting the compaction parameters
and California bearing ratio of fine-grained soil. Therefore, the
LSSVM models have been configured with gamma and sigma of
3 and 10, respectively, in this investigation. The hyperparameters
mentioned in Table 4 have developed six LSSVM models for each
linear and polynomial LSSVM approach. The model designation of
the linear and polynomial LSSVMapproach ismentioned in Table 4.

4.2 Long short-term memory neural
network

The long-short-term memory recurrent neural network is a
supervised learning approach. The LSTM solves the vanishing
gradient problems, consisting of cells, elements, and label gates
(Hochreiter and Schmidhuber, 1996; 1997). Based on the advantage
of LSTM, many researchers have used the LSTM approach to
predict the geotechnical parameters of soil. Filipović et al. (2022)
have applied the LSTM approach to predict the moisture content
of regional soil. In addition, Wang et al. (2021) have successfully
employed the LSTM approach in predicting slurry pressure.
Tang et al. (2021) have introduced the application of LSTM topredict
slope displacement. Also, Jain (2020) has employed LSTM to predict
the flow problems in unsaturated soil. Moreover, Yang et al. (2019)
have developed LSTM models to predict landslide displacement
using rainfall, reservoir level, and displacement datasets. The
published work demonstrates the capabilities of the LSTM approach
in solving geotechnical problems. Therefore, it has been decided
to adopt the LSTM approach/code from Toan (2018) and develop
models to predict the unconfined compressive strength of fine-
grained soil. The LSTM models optimized by the Adam optimizer
have been constructed inMATLABR2020a in the present study.The
mathematical formulation Equation 3 of the Adam optimizer is –

mt = β1mt−1 + (1− β1)[
δL
δwt
]vt = β2vt−1 + (1− β2)[

δL
δwt
]
2

(3)

where

vt = βvt−1 + (1− β) ∗ [
δL
δwt
]
2
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FIGURE 2
Illustration of the relationship between variables for (a) 50%, (b) 60%, (c) 70%, (d) 80%, (e) 90%, and (f) 100% training databases.

mt the aggregate of the gradient at time t (initial equal to 0),
mt−1 the aggregate of the gradient at time t-1 (previous),
βmoving average parameter,
δwt derivative of weights at time t,
δL derivative of the loss function
Each LSTM model has been configured with the

sequenceinputlayer, lstmlayer, Adam optimizer, 500 epochs,
64 min batch size, 0.01 gradient threshold, 0.0001 initial learning
rate, piecewise learning rate schedule, 125 learning rate drop
period, 0.2 learning rate drop factor, and zero verbose. Table 5
presents the designation of LSTM models employed using
50%, 60%, 70%, 80%, 90%, and 100% of 75 training
datasets.

4.3 Artificial neural networks

The artificial neural network is the most popular approach
among geotechnical researchers. The artificial neural network is the
machine learning approach based on supervised, unsupervised, and
reinforced learning. The artificial neural network is a network of
input, hidden, and output layers interconnected by neurons. Many
researchers have applied the ANN to predict soil’s physical and
mechanical properties (Taffese and Abegaz, 2021; Puri et al., 2018;
Taleb Bahmed et al., 2019; Ranasinghe et al., 2017). The present
research uses multilayer perceptron artificial neural networks to
predict the UCS of fine-grained soil. The hyperparameters of the
developed artificial neural network models are given in Table 6.
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TABLE 3 Laboratory test results of twelve fine-grained soil.

Samples FC P VR DS SG UCS

S1 93.64 20.11 3.57 103.16 2.53 33.85

S2 87.00 13.74 3.17 94.09 2.41 42.11

S3 85.33 18.99 3.43 103.31 2.55 36.77

S4 76.00 17.62 3.83 108.99 2.44 40.55

S5 80.64 14.76 3.43 101.26 2.37 30.97

S6 78.94 13.30 3.27 93.65 2.33 37.20

S7 73.20 14.08 3.18 96.69 2.41 32.32

S8 80.23 13.30 3.11 97.93 2.40 17.97

S9 81.41 16.29 2.96 83.30 2.51 40.93

S10 75.08 7.41 2.86 100.21 2.28 20.03

S11 80.08 23.68 3.57 98.50 2.70 36.43

S12 86.87 23.17 4.01 103.43 2.59 27.46

Each backpropagation algorithm, Levenberg-Marquardt (LM),
Broyden-Fletcher-Goldfarb-Shanno (BFGs), Scaled Conjugate
Gradient (SCG), Gradient Descent with Momentum (GDM),
Gradient Descent (GD), and Gradient Descent with Adaptive
Learning Rate (GDA), has developed six ANN models using
50%, 605, 70%, 80%, 90%, and 100% of 75 training datasets. The
designation of the developed artificial neural network models is
mentioned in Table 7.

Albaradeyia et al. (2011), Erzin et al. (2010), Chen et al. (2009),
Chang (2007), and Binaghi et al. (2004) derived the different
formulas to determine the number of hidden layers using the
number of databases. Khatti andGrover (2022) derived the formulas
for determining the hidden layers and neurons for LM, BFG, SCG,
GDA, GD, and GDM-configured ANN models for the first time.
However, the present investigation demonstrates the effect of the
quality and quantity of training databases on the performance of
soft computing models. Therefore, the formulas derived by Khatti
and Grover (2022) have determined the number of hidden layers
and neurons for each ANN model. The formulas for calculating the
number of neurons and hidden layers are as follows:

For LM, BFG, and SCG algorithms

N′ = 5+√I +O (4)

HL =
3√I −N′ + 1

4
(5)

For GDM, GD, and GDA algorithms
N′ = √I +O− 5 (6)

HL =
3√I −N′ + 1

2
(7)

where N′ is the number of neurons; HL is hidden layers; I is the
number of input dataset(s); O is the output(s). The present research
has divided 75 training datasets into 50%, 60%, 70%, 80%, 90%, and
100%.Thus, the number of input datasets (I) is 38, 45, 53, 60, 68, and
75, and the output is O = 1 (UCS) for Equations 4–7. The required
number of neurons and hidden layer is given in Table 8.

Table 8 illustrates that the ANN model developed with
the LM backpropagation algorithm requires one hidden layer
interconnected with 15 neurons for 50% of 75 training datasets.
Similarly, the GDA-NN model requires two hidden layers
interconnected with five neurons to predict the UCS of fine-grained
soil with better performance.

5 Results and discussion

In this investigation, the statistical quality parameters such as
Root mean square error (RMSE), mean absolute error (MAE),
and correlation coefficient (R) have computed the performance of
developed fifty-four AI models in predicting UCS of fine-grained
soils. The mathematical expression Equations 8–10 of RMSE,
MAE, and R is –

RMSE = √ 1
N

N

∑
i=1
(T i −Pi)

2 (8)

MAE = 1
N
(

N

∑
i=1

abs(T i −Pi)) (9)

R =
∑N

i=1
(T i −T)(Pi −P)

√∑N
i=1
(T i −T)

2∑N
i=1
(Pi −P)

2
(10)

where N is the number of data points, T is the actual UCS, P is the
predicted UCS, T is the mean of actual UCS, and P is the mean
of predicted UCS. A soft computing model is the best architectural
model if the RMSE = 0, MAE = 0, and R = 1.

5.1 LSSVM models

Figure 3 demonstrates the training (mentioned by TR) and
testing (mentioned by T) performance comparison of LSSVM
models. Figures 3a,b illustrate that model MD 102 (Linear LSSVM)
has predicted UCS with the RMSE of 7.4724 N/cm2, MAE of
6.4261 N/cm2, and R of 0.9584. Thus, Figures 3c,d demonstrate that
model MD 108 (Polynomial LSSVM) has predicted UCS with the
RMSE of 5.5464 N/cm2, MAE of 5.0261 N/cm2, and R of 0.9766.
The performance comparison of models MD 102 and MD 108
shows that the nonlinear LSSVM model (MD 108) predicts UCS
of fine-grained soil with better performance (Senoon and Hussein,
2019; Arumugam et al. (2013). The polynomial LSSVM model
outperformed the linear LSSVM model in this work because it has
the capability to capture complex, nonlinear relationships between
input variables and the target output. While the linear LSSVM
is limited to fitting straight-line relationships, the polynomial
LSSVM uses a kernel function to project the data into a higher-
dimensional feature space, enabling it to model curved patterns
and interactions among variables (Suykens and Vandewalle, 1999).
This flexibility allows the polynomial model to fit better data
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TABLE 4 Model designation of LSSVMModels.

Kernel function Training datasets

50% 60% 70% 80% 90% 100%

Linear MD 101 MD 102 MD 103 MD 104 MD 105 MD 106

Polynomial MD 107 MD 108 MD 109 MD 110 MD 111 MD 112

TABLE 5 Model designation of LSTM Models.

Model Training datasets

50% 60% 70% 80% 90% 100%

LSTM MD 113 MD 114 MD 115 MD 116 MD 117 MD 118

TABLE 6 Hyperparameters of ANN models.

Hyperparameters Values

Backpropagation Algorithms LM, BFGs, SCG, GDM, GD, GDA

Input Normalizing Function Min – Max Function

Output Normalizing Function Log Function

Output Layer Activation Function Linear Function

Hidden Layer Activation Function Sigmoid Function

Train: Validation Ratio 70: 30

Epochs Default (1000)

Network type Feed-Forward Backpropagation

Network class Multilayer Perceptron Class

Mu, Max Fail, Min Gradient 0.001, 6, 10e-7

where the underlying structure is not strictly linear, improving
predictive accuracy (Schölkopf and Smola, 2002). As a result, it has
been observed that the polynomial LSSVM typically yielded lower
error and better generalization compared to its linear counterpart.

In addition, the overfitting of linear and polynomial LSSVM
models has been calculated, as shown in Figure 4. Figures 4a,b show
that models MD 102 and 108 have predicted UCS with overfitting
of 6.5345 and 10.4821, respectively. However, models MD 102 and
MD 108 are trained by 60% of 75 training datasets. The correlation
coefficient study of 60% of 75 training datasets indicates that FC,
DUW, P, and VR very strongly correlate with each other and specific
gravity. On the other hand, DUW, P, and VR have no relationship
with the unconfined compressive strength of fine-grained soils. Still,
fine content has amoderate correlationwith theUCS of fine-grained
soil. Also, 60% of the 75-training dataset shows multicollinearity
between specific gravity and porosity and void ratio.

5.2 LSTM-RNN models

The LSTM-RNN models have predicted UCS of fine-grained
soil, and Figures 5a,b show the performance comparison of
LSTM-RNN models. Figures 5a,b demonstrate the performance
comparison of LSTM-RNN models in predicting UCS of fine-
grained soil. Figures 5a,b show that model MD 113 has predicted
UCS with the RMSE of 4.7539 N/cm2, MAE of 4.2461 N/cm2, and
R of 0.9880. Model MD 113 has been trained by 50% of 75 data
points. The correlation between features and labels demonstrated
that the features have a relationship from weak to moderate
levels with the label. Still, the LSTM-RNN model achieved higher
performance because it captures and learns temporal dependencies
and hidden patterns in the data. Unlike linear models that rely
heavily on strong direct correlations between input features and
target outputs, LSTM-RNNs leverage their memory cells and gating
mechanisms to retain and process information over time, enabling
them to model nonlinear and sequential relationships effectively
(Al-Selwi et al., 2024; Safonova et al., 2023). This capability is
particularly beneficial when the feature-target correlation is less
strong, as themodel can still uncover indirect or lagged associations.
Also, because LSTMs are good at handling noise and can learn
complex patterns in data, they often perform well even with small
datasets and features that are not strongly correlated with the
target. This makes them a strong choice for regression problems
where the relationships in the data are not immediately obvious or
straightforward.

Furthermore, the overfitting of LSTM-RNN models in
predicting the UCS of soil has been calculated, as shown in Figure 6.
It depicts the comparison of overfitting of LSTM-RNN models in
predicting UCS of fine-grained soil. Figure 6 illustrates that model
MD 113 has predicted UCS with an overfitting of 2.3235, which
is comparatively less than other LSTM-RNN models. However,
model MD 113 has achieved a performance of 0.9880 after training
by 50% of 75 training datasets. Model MD 113 has achieved
high performance because the training dataset has a very strong
relationship between input parameters.The fine content moderately
correlates with the UCS of fine-grained soil. The input parameters
FC,DUW,P,VR,DS, and SGhave significantly lessmulticollinearity.
Therefore, model MD 113 has outperformed other LSTM models
with a performance (R) of 0.9880.

5.3 ANN models

Thirty-six artificial neural network models have also been
developed using different backpropagation algorithms, i.e., LM,
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TABLE 7 Model designation of LSTM Models.

Algorithm Training datasets

50% 60% 70% 80% 90% 100%

LM MD 119 MD 120 MD 121 MD 122 MD 123 MD 124

BFG MD 125 MD 126 MD 127 MD 128 MD 129 MD 130

SCG MD 131 MD 132 MD 133 MD 134 MD 135 MD 136

GDM MD 137 MD 138 MD 139 MD 140 MD 141 MD 142

GD MD 143 MD 144 MD 145 MD 146 MD 147 MD 148

GDA MD 149 MD 150 MD 151 MD 152 MD 153 MD 154

TABLE 8 Required number of neurons and hidden layers.

Training datasets Required number of neurons Required number of hidden layers

LM BFG SCG GDM GD GDA LM BFG SCG GDM GD GDA

50% 10 10 10 5 5 5 1 1 1 2 2 2

60% 10 10 10 5 5 5 1 1 1 2 2 2

70% 10 10 10 5 5 5 1 1 1 2 2 2

80% 15 15 15 5 5 5 1 1 1 2 2 2

90% 15 15 15 5 5 5 1 1 1 2 2 2

100% 15 15 15 5 5 5 1 1 1 2 2 2

BFG, SCG, GDM, GD, and GDA, to predict the UCS of fine-
grained soil. Figures 7a to (1) shows the performance comparison
of artificial neural networks in predicting UCS of soil. Figures 7a–f
depicts that models MD 120 (LM_NN), MD 127 (BFG_NN), MD
136 (SCG_NN), MD 139 (GDM_NN), MD 148 (GD_NN), and
MD 150 (GDA_NN) have predicted UCS of fine-grained soil with
a correlation coefficient of 0.9836, 0.9321, 0.9684, 0.9746, 0.9722,
and 0.9665, respectively. Models MD 120, MD 127, MD 136, MD
139, MD 148, and MD 150 have been trained by 60%, 70%, 100%,
70%, 100%, and 60% of 75 training datasets, respectively. The
performance results of the artificial neural network show that the
SCG and GD neural network models require a large training dataset
(100% of 75) to predict UCS with a performance of more than
0.96. Still, the GDA_NN and LM_NN model predict UCS of fine-
grained soil with a performance of more than 0.96 if the 60%
training dataset has trained the GDA and LM neural network. On
the other hand, BFG and GDM neural network models predict
UCS with a performance of more than 0.93 if 70% of training
datasets have trained BFG and GDM neural networks. The study
demonstrates that the BFG_NN model (MD 127) has achieved
the least testing performance, i.e., 0.9321, in predicting the UCS
of soil. The present research demonstrates that the LM neural
network model is better for predicting the UCS of fine-grained
soil.

The differences in performance among the neural network
models mainly come down to the optimization algorithms they
use during training. The Levenberg–Marquardt (LM) model (MD
120) achieved the best results (R = 0.9836) even though it was
trained with just 60% of the data. This shows how effective LM
is at quickly finding accurate solutions, thanks to its combination
of Gauss-Newton and gradient descent methods (Ceryan et al.,
2013). In contrast, the BFGS-based model (MD 127) had the
lowest performance (R = 0.9321) despite having more training
data (70%), likely because it's more sensitive to local minima and
does not generalize as well with complex data like soil properties.
The other models, like SCG_NN and GD_NN, needed all the
training data (100%) to perform above R = 0.96, indicating that
they rely heavily on larger datasets to learn effectively. However,
models using adaptive methods, e.g., GDA_NN and GDM_NN, still
performed well with 60%–70% of the data. Their strength lies in
features like adaptive learning rates (GDA) andmomentum (GDM),
which help them learn faster and more efficiently (Tabarsa et al.,
2021; Chopra et al., 2015). Overall, the LM algorithm is the most
reliable and data-efficient choice for predicting fine-grained soils’
unconfined compressive strength (UCS). Therefore, the overfitting
of neural network models has been calculated, as shown in Figure 8.

Figure 8 shows an overfitting comparison of ANN models
in predicting UCS of fine-grained soil. Models MD 120,
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FIGURE 3
Illustration of performance comparison of (a) linear and (b) polynomial kernel-based LSSVM model in terms of (1) RMSE and MAE and (2) R.

FIGURE 4
Illustration of overfitting of (a) linear and (b) polynomial-based LSSVM models.

MD 127, MD 136, MD 139, MD 148, and MD 150 have
predicted UCS with overfitting of 4.9159, 69.121, 57.853, 41.977,
47.059, and 45.773, respectively. The performance comparison
of ANN models has shown that the model MD 120 has
predicted UCS with the R of 0.9836, which is comparatively
better than other ANN models. However, model MD 120
has achieved maximum performance with an overfitting of

4.9159. The correlation coefficient study of the 60% training
dataset shows specific gravity has multicollinearity with P
and VR. In addition, the specific gravity has multicollinearity
with fine content. Instead of multicollinearity, the LM_NN
model has predicted UCS of fine-grained soil with R of
0.9836, RMSE of 5.1214 N/cm2, and MAE of 4.1379 N/cm2.
Thus, the nine artificial intelligence best performance models,
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FIGURE 5
Illustration of performance comparison of LSTM-RNN models in terms of (a) RMSE and MAE and (b) R.

FIGURE 6
Illustration of overfitting of LSTM-RNN models.

MD 102, MD 108, MD 113, MD 120, MD 127, MD 136,
MD 139, MD 148, and MD 150, have been identified by
comparing the RMSE, MAE, and R of AI models in predicting
UCS of fine-grained soil. These nine of the best-performance
AI models have been compared, as shown in Figure 9, in
predicting UCS.

Figure 9 illustrates that models MD 102, MD 108, MD 113,
MD 120, MD 127, MD 136, MD 139, MD 148, and MD 150
have achieved a testing performance (R) of 0.9584, 0.9766, 0.9880,
0.9836, 0.9321, 0.9684, 0.9746, 0.9722, and 0.9665, respectively. The
comparative study shows that model MD 113 has been identified as
the robust soft computing model in predicting UCS of fine-grained
soil.

5.4 Cross validation by computational cost

This investigation employs 54 soft computing models to
determine the robust soft computing model to predict the UCS of

fine-grained soil. The performance comparison demonstrated that
the MD 113 model has been recognized as a robust soft computing
model. Still, cross-validation of the prediction capabilities of these
nine models is required before mentioning the MD 113 model as
a robust soft computing model. However, all these models have
been prepared with a k-fold value of 5. These nine models were
re-configured for cross-validation with a 10k fold value, and the
computational cost was measured and analyzed. These models have
been developed using an HP pavilion G6 machine, configured
with Intel Core i3-2350M (second gen), 2.3Ghz processor, 4GB
RAM, 240SSD, Intel HD 3000GPU, AMD Radeon 7450M, and
Windows 10 64bit. Figure 10 compares the computational cost
of 5k and 10k fold configured nine models. Figure 10a presents
that the MD 113 model has predicted UCS of fine-grained soil
with the computational costs of 166.619s (configured with 5k-
fold) and 214.404s (configured with 10k-fold), followed by the
MD120 (137.814s for 5k, 198.120s for 10k), MD108 (123.094s
for 5k, 179.192s for 10k), MD139 (100.649s for 5k, 138.277s for
10k), MD148 (73.533s for 5k, 120.291s for 10k), MD136 (59.151s
for 5k, 106.588s for 10k), MD150 (46.493s for 5k, 99.767s for
10k), MD102 (39.217s for 5k, 93.091s for 10k), and MD127
models, in training phase. Conversely, Figure 10b demonstrates
that the MD113 model has achieved the highest computational
cost, i.e., 0.895 for 5k and 1.305 for 10k, in the testing phase.
Model MD127 has predicted the UCS of fine-grained soil with the
least computational cost, i.e., 0.180 for 5k and 0.205 for 10k and
higher residuals. Hence, the MD113 model has been recognized
as a robust soft computing model in predicting fine-grained
soil.

5.5 Reliability analysis

This study identifies the MD 102, MD 108, MD
113, MD 120, MD 127, MD 136, MD 139, MD 148,
and MD 150 models as better-performing models to
introduce a robust soft computing model to predict the
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FIGURE 7
(Continued).

UCS of fine-grained soil. The performance metrices have
demonstrated that the MD113 has been recognized as
a robust soft computing model. Still, it is required to

determine and analyze the reliability of these models by
implementing Equations 11–13 the index metrics, i.e.,
a20, scatter (IOS), and agreement (IOA), as mentioned
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FIGURE 7
(Continued). Illustration of performance comparison of (a) LM, (b) BFGs, (c) SCG, (d) GDM, (e) GD, and (f) GDA backpropagation-based ANN models in
terms of (1) RMSE and MAE and (2) R.

below:
a20 index = m20

H
(11)

IOA = 1−
∑n

i=1
(Pi −T i)

2∑n
i=1
(T i −T)

(12)

IOS = RMSE
Avg .of ActualValues

(13)

where m20 us the ratio of actual and predicted values varies
between 0.8 and 1.2, and H is the total number of data samples.
Figure 11 compares the a20 (Fig. a), IOA (Fig. b), and IOS (Fig.
c) results and presents the robustness of each model. Figure 11a
demonstrates that the MD113 model has predicted the UCS
of fine-grained soil with the a20 index of 100 and 90 in the
training and testing phase, respectively. Still, it is observed that
the MD108 model also obtained an a20 index of 100 and 90
in the training and testing phases. Therefore, it is required to
compare the IOA and IOS to achieve a robust soft computing
model. Figure 11b illustrated that the MD113 model grained
the IOA of 0.9738 and 0.9844 in the training and testing phase,
respectively, comparatively higher than the MD108 model (0.9678
and 0.9747 in training and testing, respectively). Also, it can
be observed that the MD113 model has predicted UCS of fine-
grained soil with the IOS of 0.0204 and 0.1031 in the training
and testing phase, respectively, as presented in Figure 11c.

Thus, the MD113 model has been recognized as a robust
soft computing model to predict the UCS of fine-grained
soil.

5.6 Generalizability analysis

A generalizability analysis is performed to validate
the robust soft computing model externally. The
generalizability test confirms the overfitting of the
model in the training phase and makes it reliable.
Golbraikh and Tropsha (2002) proposed the theory with
mathematical expression to investigate the accurate model,
as given in Table 9.

Where di denotes the experimental UCS and yi denotes the
predicted UCS, k, and k′ represent the slopes of the predicted
versus actual UCS and actual versus predicted UCS concerning
the origin. R2

o and R′2o denotes the coefficients of determination
of the predicted versus actual UCS and actual versus predicted
UCS. m and n represent the factors for estimating the predictive
power of the proposedmodels. Table 10 consists of a generalizability
test and reveals that the MD113 model presents superiority over
the MD 102, MD 108, MD 120, MD 127, MD 136, MD 139,
MD 148, and MD 150 models in predicting UCS of fine-grained
soil.
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FIGURE 8
Illustration of overfitting comparison of (a) LM, (b) BFGs, (c) SCG, (d) GDM, (e) GD, and (f) GDA backpropagation-based ANN models.

5.7 Laboratory validation

For the validation of the MD113 model, the UCS of
twelve soil specimens has been predicted, as shown in
Figure 12. Figure 12 illustrates that the no predicted UCS
using MD 113 falls outside the ±5% confidence interval. In
addition, model MD 113 has predicted UCS of twelve fine-
grained soils with a COD of 0.8764 (R = 0.9362), RMSE
of 3.0771 N/cm2, and MAE of 2.8721 N/cm2. Finally, model
MD 113 has been recognized as the best architecture model
for predicting the unconfined compressive strength of virgin
fine-grained soil.

6 Model implication

Cohesive soils’ fine content and dry unit weight influence
the unconfined compressive strength. However, model MD 113
has been trained by 50% of 75 training datasets and identified
as the best architecture model. Therefore, a multiple regression
equation, Equation 14, has been derived using 50% of 75
training datasets.

UCS (N/cm2) = 1.5192∗ FC + 155.13DUW − 243 (14)

Utilizing Equation 14, a nomogram has been drawn for fine
content of 55%, 65%, 75%, 85%, and 95% to estimate the UCS of
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FIGURE 9
Performance comparison of the best performance AI models in predicting UCS.

FIGURE 10
Illustration of comparison of the computational cost of nine models in (a) training and (b) testing phase.

fine-grained soil. A nomograph, or nomogram, is a visual tool that
helps to quickly assess the UCS to an equation by showing the
relationship between three or more variables. It does not require a
large computational process. It is just a straight edge to line up the
values, as shown in Figure 13. Finally, the unconfined compressive
strength of fine-grained soil can be estimated using these predicting
curves shown in Figure 13.

7 Sensitivity analysis

In the present study, the nonlinear AI models have performed
better than linear AI models in predicting UCS of virgin
fine-grained soil. Therefore, nonlinear sensitivity analysis has
been performed using the cosine amplitude method. The
sensitivity analysis is performed by Equation 15 (Ardakani and

Frontiers in Built Environment 16 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1594924
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Khatti et al. 10.3389/fbuil.2025.1594924

FIGURE 11
Illustration of comparison of reliability indices (a) a20, (b) IOA, and (c) IOS.

TABLE 9 Mathematical expression and condition of validation factors.

Validation parameters Mathematical expression Condition

k k = ∑
n
i=0(di×yi)
∑ni=0y

2
i

0.85 < k < 1.15

k′ k′ = ∑
n
i=0(di×yi)
∑ni=0d

2
i

0.85 < k′ < 1.15

R2
o R2

o = 1−
∑ni=1y

2
i (1−k)

2

∑ni=1(yi−y)
Close to 1

R′2o R′2o = 1−
∑ni=1d

2
i (1−k

′)2

∑ni=1(di−d)
Close to 1

Rm Rm = R
2 ×(1−√|R2 −R2

o|) Rm > 0.5

|m| m = R2−R2
o

R2 |m| < 0.1

|n| n = R2−R′2o
R2 |n| < 0.1

Kordnaeij, 2019)

SS =
∑n

c=1
(Xic ∗X jk)

√∑n
c=1

X2
ic∑

n
c=1

X2
jk

(15)

where Xic is input parameters FC, DUW, P, VR, DS
and SG, and Xjk is UCS of fine-grained soil. The input
parameter highly influences the output parameter if the SS
value is one or closer to 1. The present study used 50%,
60%, 70%, 80%, 90%, and 100% of 75 training datasets
to train the AI models. Therefore, the sensitivity analysis
was performed for 50%-100% of UCS training datasets,
as shown in Figure 14.

The present study, model MD 113, was identified as the
best-performing AI architecture for predicting fine-grained soil’s
unconfined compressive strength (UCS), trained with only 50% of
the dataset. The sensitivity analysis results, as shown in Figure 12,
reveal that the most influential input parameters on UCS prediction
are fine content (FC), dry unit weight (DUW), plasticity (P), void
ratio (VR), degree of saturation (DS), and specific gravity (SG),
with sensitivity values of 0.8797, 0.8773, 0.8843, 0.8409, 0.8912, and
0.8989, respectively. These parameters are statistically significant
and hold strong physical relevance in geotechnical engineering. For
instance, FC and P directly influence the soil’s consistency and shear

strength. At the same time, DUW, DS, and VR are key indicators
of compaction and pore structure, which are directly linked to
strength characteristics. SG reflects the mineralogical composition
of the soil, further contributing to strength variation. Importantly, all
these parameters are commonly measured or estimated in standard
soil testing procedures in geotechnical practice. Therefore, their
use in the proposed model enhances its feasibility and scalability
for practical engineering applications, ensuring the model can
be reliably implemented in real-world scenarios without needing
advanced or inaccessible testing methods.

8 Summary and conclusion

Determining the unconfined compressive strength of soil
is essential for any Civil Engineering Project. The laboratory
procedures for determining the UCS of fine-grained soil are lengthy
and costly in mega projects. Therefore, the present investigation
employs LSSVM, LSTM, and ANN models to predict the UCS of
fine-grained soil.The effect of the quality and quantity of the training
database has been determined and analyzed to help geotechnical
engineers and designers select the suitable database. Based on the
overall analysis, the following conclusions are mapped.
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TABLE 10 Results of the generalizability test in the prediction of UCS.

Models Phase k k′ R2
o R′2o Rm |m| |n|

MD102
Train 1.00 1.00 1.00 1.00 0.95 0.00 0.00

Test 1.03 0.94 1.00 0.99 0.66 −0.09 −0.08

MD108
Train 1.00 1.00 1.00 1.00 0.94 0.00 0.00

Test 1.04 0.95 1.00 0.99 0.84 −0.02 −0.02

MD113
Train 1.00 1.00 1.00 1.00 0.95 0.00 0.00

Test 1.01 0.99 1.00 1.00 0.98 0.00 0.00

MD120
Train 0.99 1.01 1.00 1.00 0.90 −0.01 −0.01

Test 1.05 0.94 0.99 0.99 0.81 −0.03 −0.02

MD127
Train 0.98 0.99 1.00 1.00 0.65 −0.09 −0.09

Test 0.99 0.95 1.00 0.99 0.55 −0.15 −0.14

MD136
Train 0.98 0.98 1.00 1.00 0.58 −0.13 −0.13

Test 0.99 0.97 1.00 1.00 0.70 −0.07 −0.06

MD139
Train 0.97 1.00 1.00 1.00 0.64 −0.10 −0.10

Test 1.02 0.96 1.00 1.00 0.74 −0.05 −0.05

MD148
Train 0.98 0.99 1.00 1.00 0.65 −0.09 −0.09

Test 1.00 0.98 1.00 1.00 0.72 −0.06 −0.06

MD150
Train 0.97 0.99 1.00 1.00 0.56 −0.15 −0.15

Test 1.05 0.93 0.99 0.99 0.71 −0.06 −0.06

∗Bold values correspond to a robust soft computing model.

FIGURE 12
Actual vs. predicted UCS plot by MD 113 using laboratory data.

• Prediction Capabilities–The performance comparison
demonstrates that the linear LSSVM (MD 102), polynomial
LSSVM (MD 108), LSTM-ANN (MD 113), LMNN (MD 120),
BFGNN (MD 127), SCGNN (MD 136), GDANN (MD 139),

FIGURE 13
Illustration of nomograph for estimating UCS of fine-grained soil.

GDNN (MD148), andGDMNN (MD150)models have gained
the testing performance of 0.9584, 0.9766, 0.9880, 0.9836,
0.9321, 0.9684, 0.9746, 0.9722, and 0.9665, respectively.
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FIGURE 14
Illustration of sensitivity of features in predicting UCS.

• Effect of Quality and Quantity of Training Database–models
MD 102, MD 108, MD 113, MD 120, MD 127, MD 136,
MD 139, MD 148, and MD 150 models have been trained
by 60%, 60%, 50%, 60%, 70%, 100%, 70%, 100% and 60% of
75 training datasets, respectively. The comparison of training
datasets demonstrates that LSTM-RNN (MD 113) performs
better using small (50% of 75) training datasets.The correlation
coefficient for 50% of 75 training datasets shows that fine
content and dry unit weight strongly correlate with void ratio
and specific gravity (0.81 > R < 1.0). Also, fine content and
dry unit weight moderately correlate with UCS. On the other
hand, the degree of saturation is multicollinear, with porosity
(0.9071) and void ratio (0.8916). The multicollinearity affects
the performance and prediction of regression AI models.
Instead of multicollinearity in training datasets, the model MD
113 has performed better than other adopted AI models with
50% of 75 training datasets.

• Robust Soft Computing Model–Based on the performance
metrics, computational cost, reliability index, and
generalizability analysis, the MD113 (LSTM) model has
outperformed the LSSVM and ANN models in predicting
the UCS of fine-grained soil in the present research. In the
validation phase, theMD113model predicted theUCSof twelve
fine-grained soil specimens with an RMSE of 3.0771 N/cm2,
MAE of 2.8721 N/cm2, and R of 0.9361. In addition, the
performance comparison of Gunaydin O. et al. (2010) model
and model MD 113 demonstrates that model MD 113 gives a
slightly better testing performance (R = 0.9880) than the model
(R = 0.9849) developed by Gunaydin O. et al. (2010).

To sum up, the present study introduces the long short-term
memory (LSTM) model as a robust soft computing model, which
predicts the UCS of fine-grained soil with ±5% confidence intervals.
This investigation uses only the UCS results of 85 soil specimens,
which is a limitation. This research may be extended by including

more databases to determine the impact of large databases on the
performance and overfitting of the soft computing model. This
investigation may also be extended by optimizing the LSTM model
to determine the impact of the optimization algorithm in predicting
the UCS of fine-grained soil.
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Nomenclature

C′ Cohesion (N/mm2)

CBR10 CBR of Soil Compacted with 10 Blows (%)

CBR30 CBR of Soil Compacted with 30 Blows (%)

CBR65 CBR of Soil Compacted with 65 Blows (%)

CC Cement Condition

CC Coefficient of Curvature

CT Curing Period (days)

CU Coefficient of Uniformity

Ccc Curing Condition

LC Lime Content (%)

LS Linear Shrinkage (%)

MO Molar Concentration of Alkali Solution

MS Micro Silica (%)

P Mean of the Values of the Y-Variable

Pi Estimated Values

T Mean of the Values of the X-Variable

T i Actual Observations

Vp Primary Ultrasonic Wave Velocity (m/s)

su Undrained Shear Strength (N/mm2)

γw Wet Density (gm/cc)

σ1 Major Principal Stress (N/mm2)

σ3 Minor Principal Stress (N/mm2)

A/B Amount of Alkali to Binder

abs Absolute Function

AI Artificial Intelligence

ANN Artificial Neural Networks

ASTM American Standard for Testing and Materials

BFS Blast Furnace Slag (%)

C Clay Content (%)

CBR California Bearing Ratio (%)

COD Coefficient of Determination

CSO Cuckoo Search Optimization

D Sampling Depth

DCPI Dynamic Cone Penetration Index

DE Differential Equation

DS Degree of Saturation (%)

DUW Dry Unit Weight (gm/cc)

EPR Evolutionary Polynomial Regression

FA Fly Ash (%)

FC Fine Content (%)

GA Genetic Algorithm

GB Gradient Boosting

GGBS Ground Granulated Blast-furnace Slag

GMDH Group Method of Data Handling

GWO Grey Wolves Optimization

IS Indian Standards

K Permeability (m/s)

KFDA Kernel Fisher Discriminant Analysis

LL Liquid Limit (%)

MC Moisture Content (%)

MDD Maximum Dry Density (gm/cc)

MRA Multiple Regression Analysis

MVR Multi Variable Regression

N Total Number of Datasets

Na/Al Atomic Proportion of Na to Al

NF Neuro Fuzzy

NMC Natural Moisture Content (%)

OMC OptimumMoisture Content (%)

ɸ Diameter (m)

P Porosity (%)

PA Pond Ash (%)

PL Plastic Limit (%)

PSO Particle Swarm Optimization

RA Regression Analysis

RBF Radial Bias Function

RHA Rice Husk Ask (%)

SG Specific Gravity

Si/Al Atomic Proportion of Si to Al

SLR Simple Linear Regression

SUW Saturated Unit Weight (gm/cc)

SVM Support Vector Machine

UCS Unconfined Compressive Strength (N/cm2)

VR Void Ratio

W/c ratio Water/cement ratio

γ Density (gm/cc)

ϕ Internal Friction Angle (degree)
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