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Development of a site and
motion proxy-based site
amplification model for shallow
bedrock profiles using machine
learning

Yong-Gook Lee1, Duhee Park1* and Oh-Sung Kwon2

1Department of Civil and Environmental Engineering, Hanyang University, Seoul, Republic of Korea,
2Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON, Canada

Accurate prediction of site amplification is crucial for seismic hazard assessment,
particularly at shallow bedrock sites where limited data can constrain modeling
efforts. Traditional regression-based models often fail to capture complex
nonlinear interactions inherent in seismic ground response. This study aims
to develop proxy-based linear and nonlinear site amplification models that
provide reliable predictions using machine learning (ML) techniques, enabling
practical applications in regional ground motion modeling. The outputs of a
series of one-dimensional site response analyses were used for training. Three
ML algorithms were used: random forest (RF), extreme gradient boosting (XGB),
and deep neural network (DNN). The models incorporated four site proxies
and two motion proxies to predict site amplification, and their performance
was evaluated against both a conventional regression-based model and a
rigorous ML model utilizing full shear-wave velocity profiles and input motion
spectra. When identical proxies were used, the differences between the
regression and ML-based models were not pronounced. However, when the
ML model was trained simultaneously with the site and motion proxies for both
linear and nonlinear components, the prediction performance was significantly
enhanced. This revealed that the traditional two-track approach of the site-
proxy-dependent linear component and motion-proxy-conditioned nonlinear
component is ineffective. A pairing scheme for site and motion proxies is
recommended to achieve the most accurate predictions. Among the three
ML methods, the RF algorithm exhibited the weakest performance. The XGB
and DNN algorithms’ prediction accuracies were superior to the RF algorithm.
The XGB and DNN outperformed each other when predicting the linear
and nonlinear components, respectively. The proposed ML models achieved
coefficient of determination (R2) values up to 0.97 with root mean square error
(RMSE) as low as 0.04 for linear components, and R2 up to 0.92 with RMSE as
low as 0.06 for nonlinear components, demonstrating significant improvements
over conventional regression-based models. Compared with a rigorous ML
model, the proxy-based models exhibited agreeable predictions with far less
information, illustrating the benefit of adopting the ML algorithms for improved
adaptability and predictive capability. The constraint imposed on the site type,
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considering only profiles with a bedrock depth of less than 30 m, may have
resulted in the strong performance of the proxy-based model.
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machine learning, site proxy, motion proxy, site amplification, site response analysis,
deep neural network

1 Introduction

Predicting earthquake hazards is essential to enhancing the
resilience of urban societies. Various forms of ground motion
models (GMMs) have been developed to estimate the ground
motion intensity. The site amplification term is an important
component of a GMM, developed from recorded data in regions
where available (Choi and Stewart, 2005; Chiou and Youngs,
2008; Walling et al., 2008). In areas where recordings are lacking,
site amplification is determined using one-dimensional (1D) site
response analysis (SRA) (Harmon et al., 2019; Hashash et al.,
2021). Various site proxies (SPs) are used in site amplification
models. The time-averaged shear wave velocity (VS) of the upper
30 m (VS30) is the most important and widely used SP in GMM.
Borcherdt (1994) introduced VS30 as a key parameter for seismic
site classification. Boore et al. (1997) quantified its influence on
predicting ground motion amplitudes. Choi and Stewart (2005)
highlighted regional variability in VS30 values and its impact on
GMMs. Walling et al. (2008) and Seyhan and Stewart (2014) further
refined site amplification models incorporating VS30. Sandıkkaya
and Dinsever (2018) investigated the combined use of VS30 with
the depth at VS reaches 1 km/s or greater (Z1.0) for better site
characterization. Harmon et al. (2019) emphasized the integration
of multiple site proxies, including VS30, site period (TG), and depth
to the bedrock (H) to enhance modeling accuracy. Aaqib et al.
(2021) focused specifically on developing models for shallow
bedrock conditions, confirming the central role of VS30 in site
amplification prediction. However, using only VS30 is insufficient
to capture site-specific amplification, as highlighted by several
studies. Mucciarelli and Gallipoli (2006) emphasized that VS30
alone may not adequately reflect the resonance characteristics of
soft soil sites. Assimaki et al. (2008) demonstrated that local soil
heterogeneities can significantly influence site response, which VS30
cannot fully represent. Castellaro et al. (2008) argued for including
additional proxies, such as TG, to improve the prediction of site
amplification. Kokusho and Sato (2008) reported discrepancies
between measured and predicted amplifications when relying solely
on VS30. Lee and Trifunac (2010) pointed out that VS30 does
not effectively capture nonlinear site effects under strong ground
motions. The H (Harmon et al., 2019), Z1.0, (Chiou and Youngs,
2014; Sandıkkaya and Dinsever, 2018), and TG (Harmon et al.,
2019; Aaqib et al., 2021) have been utilized with VS30 for
improved predictions. The fundamental resonance frequency ( f0)
and corresponding amplitude (A0) of the horizontal-to-vertical
spectral ratio (HVSR) have also been employed to predict site
amplification (Héloïse et al., 2012).

Regression analyses were conducted to develop site amplification
models using both SPs andmotion proxies (MPs).While SPs andMPs
have been widely used to characterize site amplification, regression-
based models possess inherent limitations. These models are easy to

implement but can only provide averaged or representative values,
lacking the ability to capture complex site-specific variability. To
overcome these limitations, researchers have increasingly adopted
conventional machine learning (ML) algorithms as data-driven
alternatives to improve predictive performance. Although such ML
models have addressed some shortcomings of regression approaches,
their predictive accuracy remains limited, particularly in modeling
the complex, nonlinear interactions present in seismic data (Cheng
and Ziotopoulou, 2023). These models, such as random forest (RF)
and gradient boosting rely on hand-crafted features and often struggle
to capture the complex, high-dimensional relationships inherent in
seismic data. Wang et al. (2023) have successfully employed RF and
XGB models to predict site amplification based on SPs and MPs.
Similarly, Kim et al. (2020) applied ML algorithms including RF
and XGB to develop ground motion amplification models for Japan,
highlighting their applicability and limitations in capturing regional
site effects. In contrast, advancedMLmodels, especially deep learning,
have demonstrated a remarkable ability to automatically extract
hierarchical features fromrecordedseismic signals,making themwell-
suited for modeling complex ground motion phenomena (Mousavi
and Beroza, 2023). Several recent studies have successfully applied
these methods to real-world scenarios. For example, Mousavi et al.
(2020) proposed the Earthquake Transformer, a deep learning model
capable of simultaneous event detection and phase picking, while
Ma et al. (2024) demonstrated high-resolution seismic imaging
using convolutional and transformer-based neural networks (NNs).
Similarly,ZhangandZhang(2024)developedauniversaldeeplearning
model for real-time earthquake early warning, trained on data from
diverse tectonic environments. Agata et al. (2025) integrated physical
constraints into NNs to quantify uncertainty in seismic velocity
structureandhypocenterestimation.Buildingontheseadvancements,
hybrid frameworks that combine conventional ML models with
deep learning architectures have also emerged, aiming to leverage
the strengths of both model types (Mousavi et al., 2024). These
developments underscore the growing need to incorporate advanced
ML models into site amplification prediction, where the inherent
complexity and variability of seismic site conditions demand more
flexible and powerful predictive tools.

Many studies have used ML models to predict site amplification
using SPs and MPs. Derras et al. (2017) investigated the effect
of SPs on the estimation of nonlinear site amplification using
the Kiban–Kyoshin Network (KiK-net) database. An artificial
neural network (ANN) structure was used to predict the peak
motion intensities. The SPs used were VS30, topographical slope,
fundamental resonance frequency f0, and the depth beyond which
VS exceeded 800 m/s (H800). The results showed that the VS30 and
H800 pairs were the most effective over short periods, whereas the
f0 and H800 pairs performed most favorably over long periods.
Stambouli et al. (2017) assessed the influence of SPs on the Fourier
amplification factor (FAF) using outputs from 1D linear SRAs. A
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generalized regression NN was used to train and predict the FAFs.
A case in which all SPs were used exhibited the lowest standard
deviation, but theVS30 and f0 pairs were recommended for practical
applications. Ilhan et al. (2019) predicted both linear and nonlinear
site amplifications in Central and Eastern North America. The
ANN model was trained using proxies identical to those used
in a regression-based site amplification model (Harmon et al.,
2019): VS30, TG, depth to weathered rock (ZSoil), and peak ground
acceleration (PGA). Derras et al. (2020) estimated the effects of
soil nonlinearity on site responses using five SPs and seven MPs.
They trained an ANN using 2,927 sets of recordings from the KiK-
net database. Sensitivity analyses were performed using various
combinations of SPs and MPs. The combination of the peak
ground velocity (PGV)/VS30, VS30, and f0 determined from the
HVSR of surface earthquake recordings ( f0HV) provided the most
favorable predictions. Only a single MP was used in each pairing,
and the effect of training with multiple MPs was not considered.
Furthermore, only the nonlinear component of site amplification
was developed. Bergamo et al. (2021) used univariate regression
and a NN to predict Fourier amplitudes based on Swiss and Japan
databases. Sensitivity analyses were performed using different SP
combinations. The application of quarter-wavelength velocity and
impedance contrast pairing outperformed other combinations at all
frequencies, whereas the use of VS30 showed an acceptable match in
the medium-frequency range.

Thus, the use of ML is gaining wide popularity for the
development of site amplification models. Although one of the
primary strengths of ML lies in its ability to operate with multiple
proxies with different characteristics, previous studies followed
the classical framework of using only SPs for linear amplification
predictions. Improvement in performance using additional SPs
relative to regression-based approaches has been a focus of interest.
The effect of utilizing SPs and MPs for the prediction of both the
linear and nonlinear components of site amplification has not been
fully explored.

Additionally, research on the application of ML, specifically for
the prediction of site amplification for shallow bedrock profiles, is
still limited. Lee et al. (2023) used deep neural network (DNN) and
RF algorithms to predict site amplification. Because the objective
of the study was to evaluate whether the ML-based model could
achieve sufficient accuracy to eventually replace a numerical model,
inputs similar to those required in a 1D SRA were used for training.
The inputs included the entire VS profile and response spectrum
of the input motion. Both the DNN and RF models produced
an exceptional fit to the calculated responses. However, using this
model in a GMM is difficult because theVS profile must be specified
as an input.

In this study, ML-based models were developed to predict
shallow bedrock site amplification using only SPs and MPs. Because
the objective was to develop a proxy-based model for application in
a regional GMM, easily obtainable proxies were used as input data.
Various pairings of SPs and MPs were tried to select the optimum
combinations for both the linear and nonlinear site amplification
components. We used several ML algorithms to evaluate which
method yielded the most accurate predictions. The performances
of the ML models were extensively compared with that of the
regression-based model of Aaqib et al. (2021) The proxy-based ML
models were also compared against the DNN model of Lee et al.

(2023) trained with a full VS profile and response
spectrum.

2 Site response analysis database and
regression-based site amplification
model

2.1 Presentation of data

The outputs of linear and nonlinear SRAs reported by
Aaqib et al. (2021) were used in this study. Aaqib et al. (2021)
selected 40 measured Vs profiles as baseline soil columns. Because
the objective of this study was to develop a site amplification
model that can potentially be used in practice, conservative
estimates of amplification were intended. Therefore, only profiles
without stiffness reversal were selected because they could produce
deamplification. Owing to the insufficient number of measured
profiles, the baseline Vs profiles were randomized using the
procedure proposed in Toro (1995), resulting in 840 VS profiles.
In performing the site response analyses, we used 51 recorded
ground motions. The motions included recordings from regional
earthquakes (2016 Gyeongju and 2017 Pohang events) as well as
rock outcrop ground motions from the NGA-West2 database and
the Nuclear Regulatory Guide (NUREG-6729). PGAs of the motion
ranged from 0.01g to 0.5g.

Site response analyses were performed using the 1D SRA
program DEEPSOIL v7 (DEEPSOIL, 2024). The shear modulus
reduction and damping curves proposed by Darendeli (2001)
were used as the reference nonlinear curves. The General
Quadratic/Hyperbolic constitutive model of Groholski et al. (2016)
and modulus reduction and damping curve-fitting procedures
were applied. The target shear strength was calculated following
the Mohr–Coulomb failure criterion. A total of 42,840 linear and
nonlinear analyses were conducted with full combinations of 840
VS profiles and 51 motions.

2.2 Reference regression-based site
amplification model

A regression-based site amplification model was proposed by
Aaqib et al. (2021) based on the outputs of SRAs. The amplification
outputs comprise two components, defined as Equation 1:

Amp(T) = FLIN(T) + FNL(T) (1)

where T is the spectral period, Amp(T) is the total amplification,
FLIN(T) is the linear component, and FNL(T) is the nonlinear
component. In the following, the symbol T is omitted for simplicity.
FLIN was calculated by dividing the spectral acceleration (SA) at
the surface by SA at the rock outcrop using the 1D linear SRA
results. Amp was calculated by dividing SA at the surface by SA at
the bedrock using the 1D nonlinear SRA results, whereas FNL was
calculated by subtracting FLIN from Amp. Based on the outputs,
predictive equations for FLIN and FNL were developed. For FLIN , a
predictive equation dependent on VS30 was developed, denoted as
(FLIN)Vs30. It can be used with an additive term conditioned on TG
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to account for the effect of site resonance. This linear component is
denoted as (FLIN)VS30+TG.

The FNL equation is dependent on the motion proxy, PGArock,
defined as Equation 2:

FNL = f2 ln(
PGArock + f1

f1
) (2)

where f1 = 0.1 g and f2 is a coefficient of the model. f2 is conditioned
on both T and VS30 bins to account for the effect of site profile.
This indirect procedure was used for FNL due to difficulties in
incorporating both site and motion proxies in a regression. These
site amplification functional forms are hereafter referred to as the
AEA21 model.

2.3 Reference ML-based site amplification
model

DNN and RF-based site amplification models were
developed by Lee et al. (2023) based on the identical outputs of
SRAs, which is hereafter referred to as the LEA23model.The LEA23
model used extensive set of information for training including
113 spectral accelerations of the input ground motion and the
entire VS profile (up to 29 layers) for training. The purpose for
the development of the LEA23 model was to evaluate the possibility
of reproducing the results of a 1D SRA, and hence similar resolution
of input information was used. It can thus be considered as the
rigorous model.

3 Machine learning models

Two tree-based algorithms, RF and extreme gradient boosting
(XGB), and aDNNalgorithmwere used to predict site amplification.
The basic principles of these algorithms are presented in the
following, which is followed by details on the train procedure for
each ML model.

3.1 Preprocessing for training and test set

To train the 3 ML models, we used six proxies for the input
features. Because the input features have different scales and units,
some features may dominate others in determining the split,
potentially resulting in a bias in the model. Standardizing the
input features ensures that all the features are on the same scale
and have an equal influence on the final prediction. Additionally,
standardization can accelerate the training process by ensuring
that the algorithm converges faster. MinMaxScaler, provided by
the Scikit-learn package (Pedregosa et al., 2011), was used for
preprocessing of the dataset.

3.2 Random forest (RF)

RF is an ML algorithm widely used in regression tasks. It is
an ensemble of decision trees in which each tree is built using a
randomly sampled subset of the training data and features. During

TABLE 1 Optimized hyperparameters for the ML models.

ML model Optimized hyperparameters

Random forest
(RF)

number of estimators = 100
minimum number of samples for split = 10,
minimum number of samples for leaf = 5

maximum number of features = 18, maximum
depth = 11

Extreme gradient boosting
(XGB)

subsample ratio = 1
balance of positive and negative weights = 8.5

alpha = 0.001, lambda = 4, number of
estimators = 230

Deep neural network
(DNN)

batch size = 256
learning rate = 0.005

maximum number of epochs = 2000

training, each tree in the forest is grown independently by selecting
the best split at each node based on a random subset of available
features. Bootstrap aggregation (bagging) is a technique used in RF
to reduce the variance of a model by averaging the predictions of
multiple decision trees. During bagging, multiple subsets of training
data are randomly sampled with replacement, and a decision tree is
grown on each subset. These trees are then combined by averaging
their predictions. By using subsets of data and features, the decision
trees in the RF become less correlatedwith each other, which reduces
the variance and overfitting of the model. The loss function used is
the mean squared error (MSE), which measures the average squared
difference between the predicted and actual values of the training
data. To minimize the MSE, decision trees are grown iteratively on
randomly selected subsets of the training data and features.

To build the RF model, we used GridSearchCV from
the Scikit-learn package (Pedregosa et al., 2011) to tune the
hyperparameters. Although the optimal hyperparameters differed
for each period, we selected the most frequently used set as
the representative value and applied it uniformly to all periods.
We employed MultiOutputRegressor to build the model, with
RandomForestRegressor as the estimator for simultaneous training
in all periods. Details of the optimized hyperparameters are
summarized in Table 1.

3.3 Extreme gradient boosting (XGB)

XGB is an advanced implementation of a gradient-boosting
algorithm that aims to improve the performance and speed of
traditionalmethods. It was designed to handle large datasets and has
become popular in data science competitions. The XGB algorithm
operates by building a series of decision trees and iteratively
improving them by adjusting their weights based on errors made in
the previous iteration. It uses regularization techniques to prevent
overfitting and handles missing values in the data. XGB has many
hyperparameters that can be tuned to achieve the best performance.

We used a gradient-boosted regression tree that calculates the
gradient of the loss function and updates the model parameters
in a step-by-step manner. Bagging was also used in XGB to
improve the stability and accuracy of the model. In bagging,
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multiple models are trained on different subsets of training data,
and their predictions are combined to obtain a final prediction.
This reduces the impact of outliers and overfitting. XGB uses a
variant of bagging called stochastic gradient boosting, in which
each tree is trained on random subsets of data and features.
This further reduces the correlation between trees and improves
the generalization performance of the model. GridSearchCV and
MultiOutputRegressor were used to tune the hyperparameters
and build the model with XGBRegressor. The root mean squared
error (RMSE) was used as the loss function. The optimized
hyperparameters for the XGB model are listed in Table 1.

3.4 Deep neural network (DNN)

DNN is a neural network composed of several layers of fully
connected nodes that perform complex computations. DNNs are
trained using a process called backpropagation, in which the
model learns to adjust the weights of the connections between
nodes in response to the input data. The layers of a DNN
typically include the input, hidden, and output layers, with each
layer performing a specific data transformation. The depth and
complexity of a DNN can be customized to the specific task
at hand, with deeper networks typically able to learn more
abstract features from the data. However, DNN training can be
computationally expensive and requires a large amount of data to
prevent overfitting.

Figure 1 show the architecture of the proposed DNN model.
In the first group, four fully connected (FC) hidden layers were
created to extract features from the input parameters. Increasing
the number of units enabled the model to capture low-level
features. Subsequently, the second group, consisting of three
FC hidden layers, was created to encode high-level features by
reducing the number of units. In all the hidden layers without
an output layer, a rectified linear unit (ReLU) (Nair and Hinton,
2010) was applied as the activation function. After all activation
functions, batch normalization (BN) was used to reduce the internal
covariate shift and achieve a stable distribution during training
(Ioffe and Szegedy, 2015). The weights were initialized using a
Glorot uniform initializer (Glorot and Bengio, 2010) and the biases
were set to zero before training. The Adam optimizer (Kingma
and Ba, 2015) was used to adjust the weights of the FC hidden
layers. The output layer was connected to the last hidden layer
by applying a linear activation function. The loss of the DNN
model was calculated using the MSE and mean absolute error
(MAE). The optimized hyperparameters for the DNN model are
summarized in Table 1.

4 ML model training

In this section, we present the input proxies and pairings used
for training. We considered four SPs: H, TG, VS30, and VS,soil (time-
averagedVS of the soil profile). As discussed in the previous section,
VS30 is the most widely used SP in site amplification models. Its
adoption was first popularized through foundational studies linking
site classification to amplification (Borcherdt, 1994, Boore et al.,
1997). Subsequent empirical GMMs (Choi and Stewart, 2005,

Walling et al., 2008) further confirmed its utility, while more recent
studies have refined its predictive capability and limitations (Seyhan
and Stewart, 2014, Sandıkkaya and Dinsever, 2018, Harmon et al.,
2019; Aaqib et al., 2021). Studies suggest that the amplification
prediction can be improved by using TG in addition to VS30
(Harmon et al., 2019; Aaqib et al., 2021). H and VS,Soil are the
parameters used for site classification in the seismic design code of
Korea (MOLIT, 2016). We used two MPs to represent the intensity
and frequency characteristics of the input groundmotions: PGA and
SS. SS is defined as the averaged SA from 0.1 to 0.5 s, which is the
range used to determine the short-period site amplification factor
(Fa) in Korea (MOLIT, 2016). We used SS because the short-period
SA is estimated to have a significant influence on the amplification
characteristics of shallow bedrock sites.

Table 2 summarizes the combinations used for the training. For
Cases 1–4, only single SPs were used, whereas two pairs of SPs
were used in Cases 5 and 6. Cases 1–6 were used to evaluate the
performance of the SPs in predicting only linear amplification. For
Case 7, one SP and one MP were used, respectively, which were
VS30 and PGA. Note that VS30 and PGA were the inputs for the FNL
of the AEA21 model. Case 7 was only used to train the nonlinear
amplification component for comparison with the AEA21 model’s
FNL. In Cases 8–11, two SPs and one MP were paired. Two SPs and
two MPs were paired in Cases 12 and 13, respectively. Cases 8–13
were trained to predict both linear and nonlinear components.

To train the ML models, we randomly selected 80% of the linear
and nonlinear SRA outputs as the training set and evaluated their
performance using the remaining 20% as the test set. Additionally,
we performed 5-fold cross-validation to check whether the trained
models were overfitted. We compared the results between each fold
and used the fold with the smallest loss because no significant
differences were observed. The ML models were trained on a
Windows-based operating system with a 64 GB NVIDIA RTX
A6000 GPU and 32 GB of RAM.

5 Prediction of amplification using
machine learning models

Linear and nonlinear amplifications were predicted using
the proposed RF, XGB, and DNN models. The coefficient of
determination (R2) and standard deviation (SD) were calculated to
compare the results of theMLmodels.We show the sensitivity of the
proxy pairing to the predictions, the results of which are presented
in detail in the following section.

5.1 Effect of proxy pairing

In this section, the effect of the pairs of input proxies used to train
the linear and nonlinear components of the amplification model on
the performance of the ML model is presented. Only the results of
the DNN model are presented to focus solely on the influence of the
input proxies.

Figures 2, 3 compare the calculated and predicted linear
amplification components of SA at T = 0.01 and 0.2 s, respectively,
for all combinations of input proxies. ForT = 0.01 s (Figure 2), Cases
1–3 had similar R2 values to (FLIN)Vs30, but Case 4 had a lower R2
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FIGURE 1
Architecture of DNN model.

TABLE 2 Selected combinations using SPs and MPs.

Case No. Type SP MP

1

S1M0

VS30

None

2 VS,soil

3 TG

4 H

5
S2M0

VS30 + TG

6 VS,soil + H

7 S1M1 VS30 PGA

8

S2M1

VS30 + TG PGA

9 VS30 + TG SS

10 VS,soil + H PGA

11 VS,soil + H SS

12
S2M2

VS30 + TG PGA + SS

13 VS,soil + H PGA + SS

value. ForT =0.2 s (Figure 3), Cases 1 and 3 produced slightly higher
or similar R2 values compared with (FLIN)Vs30, whereas Cases 2 and
4 had significantly lower R2 values than (FLIN)Vs30.The comparisons
confirmed that the two SPs used in the AEA21 model, VS30 and TG,
are critical proxies that strongly correlate with linear amplification.
This finding is supported by previous studies as well as the results of

this study, where the combination of VS30 and TG led to improved
prediction accuracy. The DNN model cannot significantly improve
the prediction accuracy relative to the regression-based model for
single-proxy cases. For direct comparisons of the performances of
AEA21 and DNN models, predictions using the same inputs should
be analyzed. Cases 1 and 5 produced 9.9% and 19.2% increases in
R2 compared with (FLIN)Vs30 and (FLIN)Vs30+TG, respectively. Thus,
increments in prediction accuracy using the ML algorithm were not
pronounced when applying identical inputs, although the degree of
outperformance was higher for the two proxy cases.

The accuracy significantly improved relative to that of
(FLIN)Vs30+TG when an MP was added (Cases 8–11). This
improvement in accuracy completely contrasted the case in which
an SP was added, which produced a marginal performance
enhancement. SS was observed to result in a higher prediction
accuracy compared with PGA, most likely because it contained
both intensity and frequency content information across a short
period range, which is particularly relevant for the amplification
of shallow bedrock sites. The use of two MPs along with two SPs
resulted in a significantly higher accuracy. Although the differences
between Cases 12 and 13 were marginal, the combination of VS30 +
TG and the two MPs produced the most favorable predictions.

To further evaluate the influence of input proxy pairs on model
performance, the R2 values were visualized, as shown in Figure 4.
The R2 values for the AEA21 and LEA23 models alongside Cases
1 through 13 of the DNN-based models for FLIN and FNL. A clear
improvement in model performance is observed as the number of
proxies increase, particularly in Cases 8–13, where the addition of
MPs led to consistently higher R2 values. Notably, Case 12, which
used VS30 + TG and two MPs, produced the highest R2 values
for both linear and nonlinear components. These results further
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FIGURE 2
Comparison of calculated and predicted linear amplifications using AEA21 (gray) and DNN-based models at T = 0.01 s for selected pairings: S1M0 (red),
S2M0 (orange), S2M1 (green), and S2M2 (blue). R2 values of both (FLIN)VS30 and (FLIN)VS30+TG are 0.24.

support the conclusion that the DNN model benefits from well-
paired proxy inputs.

Figure 5 shows the SDs of the residuals between the predicted
and calculated amplifications plotted againstVS30. Among the single
SP models, VS30-based Case 1 produced the smallest SD for the
entire VS30 range, closely followed by TG-based Case 3. H- and
VS,Soil-based models yielded significantly higher SDs. This was not
surprising as they are designed to be used as pairs. Note that Cases
1 and 3 produced similar SDs compared to (FLIN)Vs30, indicating
that ML is not much better than regression when using a single
parameter.

For Cases 5 and 6, the use of the two SPs noticeably decreased
the SDs. An important characteristic of using the two SPs is
their differences from the AEA21 model. The DNN model clearly
improved the prediction compared with the regression-based
model, indicating that the ML model becomes more effective when
using multiple proxies. Similar to the R2 comparisons, the use of
MPs significantly improved the performance, yielding significant
reductions in SDs. Overall, SS was demonstrated to bemore effective
than PGA. The SD increased sharply near 300 m/s for Cases 8–11,
which employed a single MP, except for Case 9, which used VS30 +

TG as well as SS. The large scatter near the resonance period of the
stiff profiles was significantly reduced when trained with SS.

Cases 12 and 13 revealed that the use of multiple MPs reduced
the SDs in all periods. An abrupt spike in the SD near 300 m/s was
again visible in both cases. Although using double MPs was not as
effective for sites with VS30 of approximately 300 m/s, the SDs were
nevertheless lower compared with the single MP predictions. Case
12 exhibited the smallest SD among all the cases, highlighting that
VS30 + TG paired with two MPs was the best combination among all
the cases simulated in this study.

Figure 6 compares the predicted FNL for T = 0.2 s calculated
using the AEA21 and DNN models with the calculated
amplifications. Case 7, which used identical inputs to FNL, produced
a 65% increase in R2 compared with the AEA21 model. This was
because FNL only accounted for VS30 indirectly. Using multiple SPs
produced an excellent fit, particularlywhenpairedwith SS, achieving
an R2 = 0.94. This demonstrated that SS is a better proxy than PGA
for estimating the nonlinear component, as was also demonstrated
for the linear component. When both MPs were used for training,
the predictions improved marginally. Comparisons of the nonlinear
component predictions revealed that it is important to pair SPs with
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FIGURE 3
Comparison of calculated and predicted linear amplifications using AEA21 (gray) and DNN-based models at T = 0.2 s for selected pairings: S1M0 (red),
S2M0 (orange), S2M1 (green), and S2M2 (blue). R2 values of both (FLIN)VS30 and (FLIN)VS30+TG are 0.71 and 0.73, respectively.

MPs. Note that the nonlinear component of the AEA21 model had
a lower accuracy than the linear component. However, the accuracy
of the nonlinear DNN model was similar to that of the linear model.
Therefore, we strongly recommend that both SPs be included in the
training of nonlinear components.

Figure 7 plots the SDs of the residuals for comparison purposes.
As expected, the SD decreased as the number of input parameters
increased.Cases 9, 12, and13produced similar performances in terms
of SD. The difference in the calculated SD between the DNN and
regression models was significant, indicating that ML is considerably
effective in reducing the scatter across the entire VS30 range.

5.2 Performance of ML algorithm

In this section, the performance of the 3 ML algorithms is
evaluated. Only Cases 9 and 12, which produced more accurate
predictions than other methods, were compared. Figure 8 compares
the R2 of 3 ML models for the two cases. The performance of the
ML model was observed to depend on the parameters used for
training. In Case 9 shown in Figure 8, the XGB model produced

the best fit for the calculated outputs, followed by the DNN and
RF models. The predictions of the XGB and DNN models were
similar at periods shorter than 0.1 s, but the DNN model produced
pronounced misfits from 1.0 to 2.0 s. For Case 12, the DNN model
yielded the most agreeable predictions at all periods. Noticeable
increases in the prediction accuracy at low periods were observed
in the DNN model. Additionally, the bump from 1.0 to 2.0 s
was removed.

The SDs of the residuals for FLIN and FNL using the 3 MLmodels
at four selected spectral periods (0.01, 0.1, 0.2, and 0.5 s) are plotted
against VS30 in Figures 9, 10, respectively. The performance of the
ML models was revealed to depend on T. For T = 0.01 s, the DNN
model produced the smallest SD for the wide range ofVS30 followed
by the XGB and RF models. The differences between the models
were clearly visible. For the DNN model, the SD of the residuals was
not significantly affected by VS30 except for a pronounced increase
in the SD at the lowest VS30 below 180 m/s. Both the XGB and RF
models exhibited higher fluctuationswith respect toVS30. For longer
periods, the XGB model displayed a performance similar to that of
the DNN model. However, the RF model exhibited the highest SD,
demonstrating the poorest performance.
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FIGURE 4
Comparison of R2 for DNN-based models with AEA21 and LEA23 models across all proxy combinations at T = 0.01 and 0.2 s: (a) FLIN, (b) FNL.

FIGURE 5
Comparison of SDs of residuals of FLIN of simulated spectral accelerations at T = 0.2 s and predictions by DNN-based models for all pairings: (a) S1M0,
(b) S2M0, (c) S2M1, (d) S2M2.

5.3 Effect of proxies in predicting site
amplification

To enhance the interpretability of ML models, we analyzed
feature importance using Shapley Additive Explanations (SHAP)
and Partial Dependence (PD) methods. These methods are widely

employed to explain how input features influence the predictions of
complex, “black-box” models (Nandi and Das, 2025).

SHAP values quantify the contribution of each feature to the
model’s prediction by considering the averagemarginal contribution
of that feature across all possible combinations of features.
Mathematically, the contribution of the ith proxy in terms of SHAP
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FIGURE 6
Comparison of calculated and predicted nonlinear amplifications using AEA21 (gray) and DNN-based models at T = 0.2 s for selected pairings: S1M1
(brown), S2M1 (green), and S2M2 (blue). R2 of FNL is 0.46.

FIGURE 7
Comparison of SDs of residuals of FNL of simulated spectral accelerations and predictions using DNN-based models for all combinations at T = 0.2 s:
(a) S1M1 and S2M1, (b) S2M2.

values is defined by Equation 3:

SHAPi(x) = ∑
S⊆P{ i}

|S|!(|P|‐|S|‐1)!
|P|!

[yS∪{i}(xS∪{i})‐yS(xS)] (3)

where P is the set of all proxies, S is a subset of proxies not containing
ith proxy, and |P| and |S| are the number of proxies in P and S,
respectively. fx denotes the model prediction when only proxies in
S are included. yS∪{i} and yS are model outputs with and without the
ith proxy, respectively. This ensures that SHAP fairly distributes the
prediction among features based on their cooperative contributions.

Partial dependence (PD) illustrates how the model’s prediction
changes as a single proxy varies, while marginalizing over the other

proxies. The PD function for jth proxy is given by Equation 4:

PDj(xj) =
1
n

n

∑
i=1

f(xj,xi,−j) (4)

where xi,−j represents all features except j, and n is the number of
proxies. PD thus reflects the global trend of how a feature influences
the predicted output, averaged across the data distribution.

Figure 11 shows the mean absolute SHAP values summed
across 14 selected periods, reflecting the overall importance of
each proxy. For FLIN , VS30 emerges as the most influential proxy,
followed by TG, PGA, and SS. For FNL, VS30 remains dominant,
though the contributions of TG and SS increase relative to FLIN .
Notably, TG shows the largest proportional increase in influence,
rising by a factor of approximately 1.7, followed by PGA and
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FIGURE 8
Comparison of R2 of linear amplification component predicted using RF-based, XGB-based, and DNN-based models: (a) FLIN of Case 9, (b) FLIN of Case
12, (c) FNL of Case 9, (d) FNL of Case 12.

FIGURE 9
Comparison of SDs of residuals of FLIN predicted by AEA21, DNN-based, RF-based, and XGB-based models against VS30 for Case 12: (a) T = 0.01 s,
(b) T = 0.1 s, (c) T = 0.2 s, (d) T = 0.5 s.

VS30, which increase by factors of 1.5 and 1.3, respectively. These
trends indicate that as nonlinearity becomes more pronounced,
the predictive contributions of individual proxies also increase.
Moreover, the heightened contribution of TG may be attributed to
period lengthening caused by modulus degradation effects, while
the increased importance of PGA aligns with its established role as a
key parameter in conventional nonlinear amplification models. This
suggests that site stiffness, represented by VS30, is consistently the

most critical factor in site amplification, with TG and SS assuming
more significant roles under nonlinear conditions. While motion
intensity proxies are theoretically central to nonlinear response,
our data-driven models capture the coupled nature of site and
motion effects, leading to an observable importance of site proxies
in predicting FNL.

Figures 12, 13 present SHAP and PD analyses for Case 12 at
T = 0.2 s, using the XGB-based model to predict FLIN and FNL,

Frontiers in Built Environment 11 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1597715
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Lee et al. 10.3389/fbuil.2025.1597715

FIGURE 10
Comparison of SDs of residuals of FNL predicted by AEA21, DNN-based, RF-based and XGB-based models against VS30 for Case 12: (a) T = 0.01 s,
(b) T = 0.1 s, (c) T = 0.2 s, (d) T = 0.5 s.

FIGURE 11
Proxy importance by SHAP values for Case 12 using XGB-based model: (a) FLIN and (b) FNL.

respectively. For FLIN , the SHAP scatter plots show considerable
variability, with VS30 contributing strongly and positively up to
approximately 400 m/s, beyond which its influence reverses.The PD
curves reflect this trend, exhibiting patterns similar to upper-bound
behavior for VS30 and TG. TG demonstrates moderate positive
influence, while PGA and SS show relatively smaller contributions,
suggesting limited sensitivity for FLIN at this period. In the case
of FNL, VS30 displays a clear transition from negative to positive
contributions between approximately 200 and 500 m/s, indicating
changes in nonlinear site behavior depending on soil stiffness. TG
again shows moderate positive influence, particularly at periods
between 0.3 and 0.5 s, and exhibits patterns similar to lower-bound

of the SHAP values. PGA and SS contribute less significantly, with
subtle effects captured in the PD curves. Notably, the magnitude
of SHAP values for FNL is overall higher than for FLIN , indicating
stronger nonlinear interactions. The flat or abrupt PD patterns for
PGA and SS were found to coincide with sparsely populated regions
in the dataset, particularly above 0.5 g and near 1.0 g, respectively.
This sparsity affects the stability of the average marginal predictions
in those regions. Although the PD curves may appear unexpectedly
flat, this is consistent with model behavior trained on imbalanced
feature distributions.

SHAP and PD analyses confirm that VS30 is the dominant
predictor for both FLIN and FNL, while TG provides meaningful
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FIGURE 12
Feature attribution for predicting linear amplifications at T = 0.2 s for Case 12 using XGB-based model, for proxies: (a) VS30, (b) TG, (c) PGA, and (d) SS.

additional predictive power. PGA and SS contribute less
prominently. These findings may also reflect limitations inherent in
this study. Only a relatively small number of high-intensity ground
motions were used, and the analysis focused solely on the perfectly
correlated VS profiles that increase with confining pressure. As
a result, pronounced nonlinear soil behavior may not have fully
manifested in the data. This limitation likely contributed to the
relatively lower importance observed for PGA and SS, compared
to the SPs.

5.4 Comparison with the rigorous ML
model

In this section, we compare the developed model with the
rigorous LEA23 model. Figure 14 shows the R2 and MSE of both
FLIN and FNL as functions of the period. As expected, the array-
input-based LEA23model producedmore accurate predictions than
the proxy-based DNN model. For FLIN , the LEA23 model produced
an excellent fit with the simulation outputs, resulting in an R2 higher
than 0.96 in all periods. Case 12 model also produced excellent
predictions, with an R2 ranging from 0.93 to 0.99. Case nine model
using only a singleMP resulted in a relativelymuch lowerR2, but still
yielded R2 higher than 0.9 except at a low period range shorter than
0.1 s and around 1.0 s. Similar trends were observed when plotting
the MSE of FLIN .

For FNL, the LEA23 model again produced excellent predictions
at T < 0.1 s, but rapidly decayed in R2 at longer periods. This
demonstrated that even the rigorous model is not as successful in
predicting the nonlinear components over long periods and that
additional training is required. Again, Case 12 produced a slightly
lower R2 but performed similarly over all periods. Case 9 performed
poorly at all periods, falling below 0.8 at T > 1.0 s.

Figure 15 plots the SDs of residuals for FLIN and FNL using the
LEA23 and DNN models at two selected spectral periods (0.01 and
0.2 s) against VS30. The differences between the models were clearly
visible. The rigorous model exhibited the lowest SD for all VS30
compared with the DNN models. However, the DNN model using
four proxies (Case 12) again produced stable SDs across all VS30
except for a few scattered bumps when predicting both the linear
and nonlinear components.

Surprisingly, despite the discrepancy in the training data, the
differences in the performances of the four proxy and rigorous
DNN models were not significant. The limited variability in the
soil profiles of the shallow bedrock sites considered in this study
probably resulted in the exceptional performance of the proxy-based
ML model. Further studies are required to evaluate whether this
trend is valid only for shallow bedrock sites with strongVS reversals
or applies to other types of sites.

To provide a comprehensive comparison, Table 3 summarizes
the performance of the models developed in this study alongside
existing models (AEA21 and the rigorous LEA23 model. Widely
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FIGURE 13
Feature attribution for predicting nonlinear amplifications at T = 0.2 s for Case 12 using XGB-based model, for proxies (a) VS30, (b) TG, (c) PGA, and
(d) SS.

used performance metrics (R2, MSE, RMSE, and MAE) as well
as correlation coefficient (CC) were selected for this comparison.
Among allmodels, the regression-basedAEA21model exhibited the
lowest predictive performance across both FLIN and FNL, whereas
the LEA23 model achieved the highest accuracy due to its detailed
input features. Notably, our proxy-basedmodel (Case 12), relying on
only four proxies, demonstrated performance metrics comparable
to the LEA23 model, underscoring the practicality and efficiency of
the proposed approach.These findings confirm that proxy-basedML
models can achieve predictive capabilities similar to more complex
models, highlighting their potential for practical application in
regional GMM and seismic hazard analysis.

6 Summary and conclusion

Theobjective of this studywas to develop proxy-based linear and
nonlinear site amplification models for shallow bedrock sites using
ML for possible applications in a regional GMM. Four SPs were
tested: H, TG, VS30, and VS,Soil. We used two MPs to represent the
intensity and frequency characteristics of the input ground motions:
PGA and SS. The outputs of the 1D linear and nonlinear SRAs
performed for shallow bedrock sites with H < 30 m were used for
the training. We explored the effects of SP and MP pairings on

the performance of the ML models. We used 3 ML algorithms to
evaluate the method that produced the most favorable predictions:
RF, XGB, and DNN.

We compared the predictions of the ML models with those
of the reference regression-based model proposed by Aaqib et al.
(2021), referred to as the AEA21 model. Two linear models were
proposed by Aaqib et al. (2021) One was conditioned only on
VS30, whereas the other was dependent on the two SPs (VS30 and
TG). The nonlinear component depends on PGA and is indirectly
conditioned on VS30. For the linear component, the performance
of the ML models did not improve significantly when using SPs.
However, the prediction accuracy significantly improved when
using MPs in addition to SPs for training the linear model. Using SS
yielded a greater improvement in the predictions because it contains
information on both the intensity and frequency. The use of two
SPs (VS30 and TG) and two MPs (PGA and SS) produced excellent
predictions of linear amplification.

Similar trends were observed for the nonlinear components.
A case that used VS30 and PGA, identical to the AEA21 model,
produced a significant increase in prediction accuracy. This was
because AEA21 accounts for VS30 only indirectly. Using multiple
SPs produced even better fits when paired with either SS or MPs.
Comparisons of the nonlinear component predictions revealed
that both SPs should be considered in addition to MP. Note that
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FIGURE 14
Comparison of R2 and MSE of DNN-based and LEA23 models: (a) R2 of FLIN, (b) R

2 of FNL, (c) MSE of FLIN, (d) MSE of FNL.

FIGURE 15
Comparison of SDs of residuals of both linear and nonlinear amplification components predicted using DNN-based and LEA23 models against VS30

(Cases 9 and 12): (a) FLIN at T = 0.01 s, (b) FLIN at T = 0.2 s, (c) FNL at T = 0.01 s, (d) FNL at T = 0.2 s. Comparison of SD of the residuals of linear
amplification component predicted using the AEA21, DNN-based, RF-based, and XGB-based models against VS30 at T = 0.01, 0.1, 0.2, and
0.5 s (Case 12).
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TABLE 3 Performance metrics of Case 12 compared to existing site amplification models.

References Model FLIN FNL

R2 MSE RMSE MAE CC R2 MSE RMSE MAE CC

AEA21 Regression-based model 0.383 0.038 0.187 0.138 0.594 0.205 0.09 0.291 0.216 0.652

LEA23
RF 0.981 0.001 0.032 0.019 0.99 0.945 0.003 0.048 0.028 0.972

DNN 0.987 0.001 0.025 0.018 0.994 0.95 0.001 0.041 0.022 0.975

This study (Case 12)

RF 0.874 0.009 0.083 0.059 0.934 0.815 0.014 0.103 0.07 0.903

XGB 0.948 0.004 0.053 0.036 0.973 0.886 0.007 0.074 0.05 0.941

DNN 0.969 0.002 0.041 0.027 0.985 0.919 0.004 0.059 0.04 0.959

the nonlinear component of the AEA21 model exhibited a lower
accuracy than the linear component. However, the accuracy of the
nonlinear DNN model was similar to that of the linear model.
Therefore, we strongly recommend including SPs directly in the
training of the nonlinear components.

The performance of the 3 ML algorithms considered in this
study was tested by applying the recommended combination of
SP and MP. The RF algorithm exhibited the poorest performance,
displaying lower prediction accuracies across the entire range of
analyses. The XGB model produced the best predictions for the
linear component, whereas the DNN model outperformed the
nonlinear component.

The proxy-based DNN model was also compared with the
rigorousMLmodel of Lee et al. (2023), whichwas trainedwith larger
input data, including the full VS profile and input motion response
spectrum. Although the proxy-based model was trained using only
four parameters, it surprisingly produced agreeable predictions.This
may have been because the constraint enforced on the site type,
utilizing only profiles with bedrock less than 30 m without stiffness
reversal, resulted in good prediction accuracy. Generalization of this
feature should be applied with caution to other types of sites. Future
studies should be conducted on various types of sites to investigate
the capability of the proxy-based site amplification ML model.

To enhance interpretability and transparency of the ML models,
this study employed SHAP and PD methods. These analyses
confirmed that VS30 remains the dominant predictor for both
linear and nonlinear amplification components, highlighting the
critical role of site stiffness in seismic response. TG demonstrated
meaningful contributions, especially under nonlinear conditions,
likely related to period lengthening effects from modulus
degradation. Although PGA and SS had less influence overall, their
importance increased under stronger nonlinear conditions, aligning
with their roles in conventional amplificationmodels.These analyses
revealed the coupled behavior of SP and MP, providing essential
insights into the model’s internal decision-making processes. While
our findings are robust, they may be influenced by the limited
number of high-intensity ground motions used and the specific
VS profiles examined, which may have reduced the manifestation of
pronounced nonlinear soil behavior.

The findings of this study demonstrate that advanced ML
models offer significant potential for improving the accuracy

and adaptability of site amplification predictions at shallow
bedrock sites. These improvements can play a critical role in
seismic risk mapping, performance-based design, and urban
land-use planning in earthquake-prone regions. By enabling
more precise, site-specific hazard estimations, AI-integrated
models support safer zoning decisions, targeted retrofitting of
vulnerable structures, and the prioritization of critical infrastructure
investments.

Looking forward, the application of emerging AI techniques,
including transformers, physics-informed neural networks,
and generative models, holds great promise for capturing the
complex, nonlinear behaviors of seismic ground response and
for integrating multi-source urban data into hazard assessments.
We advocate for close interdisciplinary collaboration between
geotechnical engineers, AI researchers, and urban planners to
develop predictive models that are both technically robust and
practically transformative, ultimately contributing to safer andmore
resilient urban environments.

Although this study does not explicitly address land subsidence,
previous research indicates that subsidence can alter shear-
wave velocity profiles and affect site amplification characteristics
(Mayoral et al., 2017; Mayoral et al., 2019). These changes may
shift the predominant period and modify the amplitude of
seismic waves. Future studies should consider the influence of
subsidence, particularly in regions experiencing significant ground
deformation.
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