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Introduction: Promoting green building practices is essential in addressing
climate change and achieving sustainable development goals. Green building
evaluation plays a critical role in assessing building performance across multiple
criteria, including electricity efficiency, environmental protection, and occupant
wellbeing. However, existing evaluation methods are often manual, subjective,
and heavily reliant on expert judgment.

Methods: This study proposes an intelligent and automated approach to
green building evaluation by integrating knowledge extraction and ontology
development. Using advanced natural language processing (NLP) and machine
learning techniques, relevant knowledge is extracted from diverse sources,
including regulatory documents, building standards, and academic literature.
The structured knowledge is then formalized into an ontology using Protégé,
enabling the application of Semantic Web Rule Language (SWRL) rules for
comprehensive evaluation.

Results: The proposed method enables the systematic and automated
assessment of green building performance with a focus on electricity efficiency.
It significantly improves the objectivity, accuracy, and scalability of the evaluation
process compared to traditional expert-driven methods.

Discussion: This research demonstrates the potential of combining semantic
technologies and machine learning for sustainable building assessment. The
framework supports more consistent and efficient evaluations, providing a
scalable tool for policymakers, developers, and sustainability assessors. Future
work may extend the ontology to include dynamic sensor data and real-time
monitoring.

KEYWORDS

green building evaluation, knowledge extraction, ontology, natural language
processing, electricity efficiency

1 Introduction

Due to the pressing threats posed by climate change, global warming, and resource
depletion, as well as the increasing demand for electricity, the concept of sustainable
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development has gained widespread attention. Buildings,
encompassing both residential and commercial sectors, are
significant contributors to global energy demand and, consequently,
to environmental impacts (Zhang et al., 2019). Statistics show
that energy consumption from buildings can account for up
to 40% of total energy use, primarily for heating, cooling, and
lighting, contributing significantly to carbon emissions (Pérez-
Lombard et al., 2008). In this context, green buildings have emerged
as a vital solution, offering the potential to drastically reduce energy
consumption and emissions, while also providing healthier and
more comfortable environments for occupants (Darko and Chan,
2016). Promoting green building practices is, therefore, essential in
the broader effort to combat climate change and achieve sustainable
development.

According to the core principles of sustainable
development in China, a green building is one that conserves
resources such as energy, land, water, and materials to
the greatest extent possible (Ministry of Housing and Urban-
Rural Development of the People’s Republic of China, 2006). It aims
to minimize environmental impact and pollution throughout its
entire lifecycle, providing occupants with healthy, comfortable,
and efficient spaces that coexist harmoniously with nature. Given
this definition of green building, it becomes crucial to have
reliable methods for evaluating whether buildings truly meet these
sustainability standards. Hence, green building evaluation plays
a vital role in assessing a structure’s performance across various
criteria, ensuring that it aligns with the principles of resource
conservation, environmental protection, and occupant wellbeing
(Tang et al., 2019; Ding et al., 2018). To this end, many countries
have implemented policies and developed green building evaluation
or rating systems to evaluate the performance of buildings. The
Building Research Establishment’s Environmental Assessment
Method, commonly known as BREEAM, was first introduced in
1990 by the Building Research Establishment (BRE) in the United
Kingdom, making it one of the earliest evaluation methods for
green buildings (Mitchell, 2010; Lee, 2013; Alyami and Rezgui,
2012). Other notable examples include the Leadership in Energy
and Environmental Design (LEED) created by the United States
(The U.S. Green Building Council, 2008) and Evaluation Standard
for Green Building established by China (Ministry of Housing
and Urban-Rural Development of the People’s Republic of China,
2006). It should be noted that the evaluation process for green
buildings varies depending on the specific rating systems used. For
instance, in BREEAM, there is an initial pre-assessment stage where
a pre-assessment estimator is utilized to predict a potential score.
Although this score is neither certified nor final, it serves as a helpful
guide to understanding the achievable outcomes for the building’s
sustainability performance (Ding et al., 2018).

Based on the development of national green building evaluation
systems, an increasing number of scholars have begun to focus
on green building evaluation in their research (Doan et al., 2017;
Hong et al., 2019; Shen et al., 2017; He et al., 2024). This growing
body of work aims to refine and expand the methods used to assess
the performance of green buildings, providing valuable insights
and advancements in the field. For instance, Wu and Chang (Wu
and Chang, 2013) developed a visual Req calculation tool based
on the 3D environment to evaluate whether a building is energy-
efficient, which can reduce computation time and errors compared

to manual methods. The Building Information Model (BIM), which
integrates multidisciplinary data across the entire building lifecycle,
offers significant convenience by providing easy access to the
information needed for green building evaluation, so many research
efforts have also been allocated to BIM-enabled green building
evaluation. Azhar et al. (2011) integrated BIM-based sustainability
analyses with the LEED certification process, which have been
proved to streamline the certification process. Motawa and Carter,
(2013) integrated BIM-based models with sensor technologies to
enhance the assessment of buildings’ energy performance and
carbon emissions. Though BIM can provide multidisciplinary
information of the whole life cycle, lack of analytical solutions for
green building evaluation further limits the use of BIM in evaluating
green building (Lu et al., 2017).

Actually, the evaluation of green buildings is a typical
knowledge-intensive task. This has been verified by the study
conducted by Ali and Al Nsairat, (2009), which used the
questionnaire with domain experts of sustainable development to
gain perspectives for green building evaluation. Green building
evaluation requires integrating information from various sources,
including design specifications, operational data, and regulatory
standards. An ontology provides a structured framework for
representing and organizing complex domains of knowledge
(Pauwels et al., 2017). Hence, increasingly, research in green
building evaluation is adopting knowledge-based and ontology-
enabled approaches to enhance the evaluation process. In this
regard, Zhang et al. (2019) developed an ontology manually and
integrated ontology with BIM to conduct green building evaluation
from a semantic and social approach. Similarly, Baumgärtel and
Scherer, (2016) used ontology-based workflow to achieve automatic
check of green building design, where the knowledge in ontology
is transferred from BIM model and several rules are established in
ontology for automatic check. Jiang et al. (2018) also integrated BIM
with ontology to facilitate the process of green building evaluation,
where the ontology was established manually and knowledge in
the ontology was mainly from the standards. It can be seen that
in the context of green building evaluation, ontology helps to
define relationships between different concepts, enabling a more
coherent and systematic analysis and leading to more accurate
and comprehensive evaluations. However, current approaches to
building ontologies for green building evaluation are largelymanual,
relying heavily on expert input. This process introduces a significant
degree of subjectivity, which can affect the consistency and reliability
of the evaluations.There is an urgent need for automated knowledge
extraction methods to construct ontologies more objectively. To the
best of our knowledge, limited research has addressed this gap
by integrating deep learning-based information extraction with
ontology-driven reasoning, which forms the key novelty of our
proposed approach.

Hence, motivated by such need, this paper proposes the use of
automated knowledge extraction techniques to construct ontologies
for green building evaluation. Specifically, we leverage a BiLSTM-
CRF model for entity recognition and relation extraction from
green building texts, which are then structured into a domain
ontology for semantic reasoning. This automation significantly
differentiates our approach from previous manually constructed
ontology-based systems. By automating the ontology-building
process, this paper aims to reduce subjectivity and enhance the
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FIGURE 1
The overall methodology of integrated approach of knowledge extraction and ontology-based reasoning for green building evaluation.

consistency of the evaluation, enabling a more comprehensive and
data-driven approach to sustainability evaluation. The following of
this paper is structured as follows. Section 2 elucidates the overall
methodology of this study. Section 3 provides the implementation of
the methodology. Section 4 demonstrates the automated knowledge
extraction results and the development of ontology for green
building evaluation, as well as the evaluation results. Section 5
discusses the limitations of this study. Section 6 provides findings
and concluding remarks.

2 Methodology

The overall methodology of this study, which uses integrated
approach of knowledge extraction and ontology-based reasoning
for green building evaluation, is shown in Figure 1. Firstly, machine
learning and NLP techniques are employed to automatically extract
relevant knowledge from textual sources such as standards and
regulations. This automated knowledge extraction process enables
the identification and organization of key concepts, relationships,
and criteria that are essential for green building evaluation. In the
second part, the extracted knowledge is utilized to construct a
detailed ontology, which serves as a structured representation of
the domain. Building on this ontology, specific evaluation rules are
then developed which can be applied to evaluate green buildings
more comprehensively and accurately. This integrated approach not
only streamlines the evaluation process but also ensures that it is
grounded in a robust, objective knowledge base, ultimately leading
to more reliable and effective green building evaluation. Finally,
the green building evaluation is expected to improve the electricity
efficiency, thus contributing to a more low-carbon building.

2.1 Automated knowledge extraction

In this study, the primary data sources for knowledge extraction
are textual documents, including standards, regulations, and
relevant academic literature. Given the nature of these sources,
NLP is employed as the main technique for extracting knowledge.
NLP is particularly well-suited for this task due to its ability to
analyze and interpret human language, allowing for the automated

identification of key concepts, relationships, and patterns within
large volumes of text (Saka et al., 2023). One of the key advantages
of NLP is its efficiency in processing and extracting meaningful
information from unstructured data, which significantly reduces
the time and effort required for manual analysis. This capability
is crucial for ensuring that the extracted knowledge is both
comprehensive and relevant for building an ontology that supports
green building evaluation. Figure 2 presents the workflow of the
automated knowledge extraction, including data collection, data
pre-processing, NLP model setup and finally, automated knowledge
extraction.

2.1.1 Data collection
In the data collection phase, the primary focus is on

gathering relevant textual materials, which are predominantly
in Chinese. These texts are sourced from various platforms
to ensure a comprehensive coverage of the domain. Key
sources include official government websites that publish
standards and regulations related to green building (such as
Evaluation Standard for Green Building (Ministry of Housing and
Urban-Rural Development of the People’s Republic of China, 2006)),
authoritative academic databases such as China National Knowledge
Infrastructure (CNKI), and publicly available reports from reputable
sourceson the internet.Thesediverse sourcesprovide the foundational
data required for the knowledge extraction process, ensuring that the
extracted information is both accurate and aligned with the latest
standards and academic research in the field.

2.1.2 Data pre-processing
The second step involves data preprocessing to prepare the

collected documents for knowledge extraction. Since the data comes
in various formats (such as.pdf and.caj), the first task is to convert all
files into a uniform.txt format. After conversion, natural language
processing techniques are applied, starting with tokenization, which
breaks the text into meaningful units or words (Shen et al., 2017).

Following this, stop words (commonly used words that do not
contribute significant meaning in Chinese) are removed to focus
on more relevant terms. Finally, the texts are annotated using the
BIO tagging method, where “B” represents the beginning of an
entity, “I” indicates that the entity is continuing, and “O” signifies
tokens outside of any entity. BIO tagging method is a widely used
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FIGURE 2
The workflow of the automated knowledge extraction.

FIGURE 3
The structure of BiLSTM-CRF model.

annotation scheme in NLP for sequence labeling tasks, particularly
in knowledge extraction (Ling et al., 2024). The use of the BIO
taggingmethod is essential for the subsequent automated knowledge
extraction process. By clearly marking the boundaries and structure
of entities within the text, it enables machine learning models to
more accurately identify and extract relevant knowledge.

2.1.3 BiLSTM-CRF model
The BiLSTM (bidirectional Long Short-Term Memory) – CRF

(Conditional Random Field) model is a combination of two
powerful techniques commonly used in knowledge extraction
(Shao et al., 2024; Meng et al., 2022; Feng and Chen, 2021; Li et al.,
2018; Wu et al., 2023). This model integrates a (BiLSTM) network
with a (CRF) layer, combining the strengths of both approaches
to achieve more accurate and robust predictions. BiLSTM captures
contextual dependencies from both directions, while the CRF
layer ensures optimal label sequence prediction by considering
tag dependencies. Compared to more complex models like BERT,
BiLSTM-CRF offers a good balance between performance and
computational efficiency, making it suitable for domain-specific
applications where training data is relatively constrained. The
structure of the BiLSTM-CRF model is given in Figure 3.

As shown in Figure 3, the input to the model consists of
individual characters, which are first transformed into vectors
through an embedding process. In this study, one-hot encoding
is used as the embedding method. One-hot encoding is a
simple yet effective technique where each character is represented
as a binary vector with a dimension equal to the size of
the character set. In this vector, only one element is set to
one (indicating the presence of a specific character), while
all other elements are set to 0. This approach allows the
model to process and distinguish between different characters
effectively.

Then, the BiLSTM improves on traditional LSTMs by processing
the input character in both forward and backward directions,
enabling the model to capture context from both the past and the
future.This is particularly useful in the task of knowledge extraction,
where the meaning of a word depends on the surrounding context.
At each time step t, an LSTM cell has three gates: the forget
gate, input gate, and output gate (Ma et al., 2022). Forget gate ft
determines howmuch of the previous cell state to retain, input gate it
decides howmuch of the new input should be added to the cell state,
and output gate ot determines the output of the cell. In BiLSTM,
there are two LSTMs (one forward and one backward), and their
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FIGURE 4
BIO annotation method for texts.

TABLE 1 Model parameters.

No. Hyper parameter Value

1 Hidden layer size 2∗128

2 Embedding size 100

3 Epochs 50

4 Batch size 32

5 Learning rate 0.01

6 Dropout 0.5

outputs are concatenated. The calculation of BiLSTM is given from
Equations 1–7.

ft = σ(W f · [ht−1,xt] + b f) (1)

it = σ(Wi · [ht−1,xt] + bi) (2)

C′t = tanh(WC · [ht−1,xt] + bc) (3)

Ct = ft ·Ct−1 + it ·C
′
t (4)

ot = σ(Wo · [ht−1,xt] + bo) (5)

ht = ot · tanh(Ct) (6)

hBiLSTMt = [h forward
t ,hbackwardt ] (7)

Where xt is the input vector at time step t, ht−1 is the hidden
state vector from the previous time step t-1, σ is the sigmoid activation
function,ht is thehiddenstatevectorat timestep t, andW andb refer to
the weight matrices and bias vectors, respectively, allowing the model
to learn howmuch information to keep, forget, or output at each step.

The CRF layer is added on top of the BiLSTM to improve the
model’s ability to make coherent predictions at the sequence level.
While BiLSTM predicts each token independently, CRF ensures

that the predicted labels are globally optimized, taking into account
the dependencies between labels (Chen et al., 2017). Let x =
(x1,x2,…,xn) be the input sequence, and y = (y1,y2,…,yn) be the
predicted label sequence.The score of a label sequence y for an input
x in defined in Equation 8:

score(x,y) =
n

∑
t=1

Wyt · xt +
n−1

∑
t=1

Tyt,yt+1
(8)

WhereWyt is the score of assigning label yt to token xt, andTyt,yt+1
is the transition score from label yt to yt+1.

To obtain the best label sequence, themodel selects the sequence
y that maximized the score, which in calculated in Equation 9:

y∗ = argmax
y

score(x,y) (9)

2.1.4 Knowledge extraction
The final step in the process is knowledge extraction. For this,

the trained BiLSTM-CRF model is used to directly input the text
and predict the label for each character within the text. These
labels, which have been learned during training, indicate the roles of
characters in terms of the knowledge they represent—whether they
are the beginning, inside, or outside of an entity, and what kind of
knowledge they belong to in the context of green building context.

By applying the model to the input text, relevant knowledge
embedded within the document can be systematically identified
and extracted. The model’s ability to accurately label each character
allows for precise extraction of key concepts, relationships, and
entities from the text. This automated extraction process not only
streamlines the identification of critical information but also ensures
a higher level of accuracy and consistency compared to manual
extraction methods, making it an essential component of the overall
green building evaluation framework.

2.2 Ontology development

After extracting the knowledge from texts, this study adopts
Stanford’s well-known Seven-Step Methodology for ontology
development (Noy and McGuinness, 2001). This method provides
a structured approach to building comprehensive and flexible
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FIGURE 5
The variation of loss and accuracy of the model during the training process. (a) Loss. (b) Accuracy.

TABLE 2 Evaluation metrics for the model performance.

Class Accuracy Precision Recall

Safety and durability 0.92 0.85 0.82

Health and comfort 0.88 0.87 0.81

Resource savings 0.84 0.80 0.74

Environmental livability 0.75 0.65 0.67

Living convenience 0.67 0.66 0.60

ontologies that can capture domain knowledge efficiently. In this
study, the knowledge used in the ontology are derived from the
automatic knowledge extraction process based on NLP techniques.
The specific steps include.

2.2.1 Determine the domain and scope of the
ontology

The first step involves identifying the domain of interest and
the scope of the ontology. For this study, the ontology focuses on
green building evaluation, including relevant standards, guidelines,
building components, sustainability metrics, and environmental
factors. The scope is centered around automating the evaluation
process by linking these concepts and formalizing relationships
based on the extracted knowledge.

2.2.2 Consider reuse of existing ontologies
In the domain of green building evaluation, available ontologies

are relatively scarce, with many focusing on adjacent areas that
are not closely related to the evaluation process itself (e.g., green
building material ontology (Hong et al., 2019)). Some existing
ontologies, while relevant, are proprietary or not publicly accessible,
limiting their reuse. As a result, the potential for directly reusing
existing ontological frameworks is limited. Therefore, in turn, it
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TABLE 3 The extracted entities based on BiLSTM-CRF model.

Class Count Examples

Safety and durability 120 Fire resistance, earthquake protection, load-bearing capacity

Health and comfort 93 Indoor air quality, noise reduction, lighting comfort

Resource savings 265 Energy efficiency, water conservation, sustainable materials, renewable energy sources

Environmental livability 187 Green spaces, urban heat island mitigation, ecological footprint

Living convenience 68 Smart home technologies, public transportation access

proves the necessity of establishing a custom ontology tailored
specifically to the requirements of green building evaluation,
leveraging knowledge extracted from domain-specific standards,
guidelines, and literature.

2.2.3 Enumerate important terms in the ontology
Key terms for the ontology, such as “energy efficiency”, “thermal

insulation”, and “building lifecycle”, are primarily derived from the
knowledge extraction process. The automatic extraction identifies
terms that are critical for evaluating green buildings. These terms
are compiled into a comprehensive list, ensuring that the ontology
covers all relevant concepts required for accurate and detailed
assessments.

2.2.4 Define the classes and class hierarchy
Based on the extracted knowledge, the main classes are defined

in the ontology with their hierarchical relationships. The top-level
classes are further subdivided into subclasses such as materials (e.g.,
“concrete”, “wood”) and Emission Metrics (e.g., “CO2 emissions”).
The hierarchy is developed to organize these concepts in a logical
manner, supporting the efficient retrieval of information during the
evaluation process.

2.2.5 Define the properties of classes
For each class, properties are defined to capture their attributes

and relationships. These properties are also derived from the
knowledge extraction phase, where textual descriptions are analyzed
to identify key features and characteristics associated with different
green building concepts.

2.2.6 Define the facets of the properties
Once the properties are defined, facets of these properties—such

as data types, value constraints, and cardinality—are specified.
For instance, the property “CO2 emissions” might be defined to
accept numerical values within a specific range, reflecting realistic
emission data. These constraints help ensure that the ontology can
effectively model the domain and support accurate green building
evaluations.

2.2.7 Create instances of classes
Finally, instances of the defined classes are created. These

instances represent specific entities such as particular building
projects, materials, or energy performance data.

3 Implementation of the methodology

3.1 Data collection and pre-processing

Through manual screening, a total of ten relevant local and
national standards were collected, along with 145 related academic
papers. These documents serve as the core data for the knowledge
extraction process, providing a comprehensive set of sources that
reflect both regulatory frameworks and scholarly perspectives on
green building evaluation.

For the collected documents, after converting them into.txt
format, the next step involves annotating the text using the BIO
tagging method, as described in Section 2.1.2. This method is
effective for labeling sequences of words in the text based on
predefined categories. Drawing on relevant standards (Ministry of
Housing and Urban-Rural Development of the People’s Republic of
China, 2006; L. Shanghai Research Institute of Building Sciences
Co, 2019), the annotation focuses on five main themes: safety and
durability, health and comfort, resource savings, environmental
livability, and living convenience. These categories are commonly
referenced in national standards and prior research, forming the
foundation for green building assessment. Each category was
assigned two tags—B- (beginning of the entity) and I- (inside the
entity)—while tokens not belonging to any category were labeled as
O. This resulted in a total of 11 tags.

After this preprocessing step, the result is a fully annotated file
where each line contains a character from the text along with its
corresponding label, as shown in Figure 4. Each character is tagged
according to the BIO annotation scheme, linking it to one of the 11
predefined tags. This format allows for a clear, line-by-line mapping
of each character to its respective annotation, making it easy to
process the data for further BiLSTM-CRF model training. In total,
the annotated file contains 80,473 lines. The data were divided into
training set and testing set with a ratio of 7:3.

3.2 Model parameters setup

For the BiLSTM-CRF model used in this project, several
parameter settings were applied, as presented in Table.1. The
parameter settings for the BiLSTM model are consistent with
those used in similar research studies (Miwa and Bansal,
2016). Specifically, the hidden layer size of 128 units, the
embedding dimension of 100, and the use of 50 epochs align with
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FIGURE 6
The established ontology in Protégé.

commonly adopted practices in text processing tasks involving
sequence labeling.

3.3 Knowledge extraction results

The variation of the loss and accuracy during the training
process is shown in Figures 5a,b, respectively. The BiLSTM-CRF
model shows promising performance based on the training and
testing results. The loss steadily decreases from 4.3 to around
1.8 over the course of 50 epochs, demonstrating effective model
learning without overfitting. Similarly, the accuracy for both the
training and testing sets improves consistently and stabilizes after
about 30 epochs, reaching approximately 0.92 by the end of the
training period.

To further evaluate the performance of the BiLSTM-CRFmodel,
three key metrics will be used, namely, Accuracy, Precision, and
Recall. Accuracy reflects the overall correctness of the model by
measuring the proportion of correctly predicted labels out of all
predictions, Precision assesses the quality of the positive predictions
by calculating the proportion of true positives out of all positive
predictions made by the model, and Recall evaluates the model’s
ability to identify all relevant instances by measuring the proportion
of true positives out of the total actual positives. The overall
performance of the model is shown in Table 2, which indicate the

model can be used to extract knowledge from the large volume of
unannotated texts.

It can be seen from Table 2 that for certain categories, such
as living convenience, exhibited relatively lower recall compared
to others. This can be attributed to the fact that expressions
related to living convenience are less frequently and less explicitly
mentioned in standard documents and technical texts, leading to
fewer annotated examples in the training dataset. Moreover, the
linguistic patterns associated with this category are often more
diverse and context-dependent, making them harder for the model
to learn effectively. While this limitation exists, it does not affect the
core objective of this study, which is to demonstrate the feasibility of
automated entity extraction for green building evaluation. In future
work, this issue can be addressed by expanding the annotated corpus
for underrepresented categories and exploring more advanced
models to improve recognition performance where necessary.

The trained BiLSTM-CRF model can be utilized for knowledge
extraction, with the extracted knowledge categorized under five
main themes: safety and durability, health and comfort, resource
savings, environmental livability, and living convenience. After
manual check, a total of 733 entities were extracted. The extraction
results of entities are shown in Table 3. In addition, the relationships
linking the entities were also extracted and summarized. “Improve”,
“reduce”, “locate-in”, “require”, and “regulated-by” were extracted as
the main relationships between entities.
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FIGURE 7
Overall structure of the ontology (example of entity “Health and comfort”).

TABLE 4 Examples of SWRL rules for green building evaluation.

Rule Description

1 Building (?b) ^hasSystem (?b, VentilationSystem) ^VentilationSystem (?vs) ^improve (?vs, IndoorAirQuality) ^IndoorAirQuality (?iaq, ?level) ^lessThan (?level,
50) - > CompliantAirQuality (?b)

2 Building (?b) ^hasSystem (?b, WaterSavingSystem) ^WaterSavingSystem (?ws) ^reduce (?ws, WaterConsumption) ^WaterConsumption (?wc, ?amount)
^lessThan (?amount, 200) - > CompliantWaterSavings (?b)

3 Building (?b) ^hasSystem (?b, WasteManagementSystem) ^WasteManagementSystem (?wms) ^reduce (?wms, WasteProduction) ^WasteProduction (?wp,
?volume) ^lessThan (?volume, 100) - > CompliantWasteManagement (?b)

4 Building (?b) ^locate-in (?b, ProximityToPublicTransport) ^ProximityToPublicTransport (?pt, ?distance) ^lessThan (?distance, 500) - > CompliantConvenience
(?b)

5 Building (?b) ^hasScore (?b, SafetyDurability, ?sdScore) ^hasScore (?b, HealthComfort, ?hcScore) ^hasScore (?b, ResourceSavings, ?rsScore) ^hasScore (?b,
EnvironmentalLivability, ?elScore) ^hasScore (?b, LivingConvenience, ?lcScore) ^swrlb:add (?totalScore, ?sdScore, ?hcScore, ?rsScore, ?elScore, ?lcScore)
^swrlb:divide (?avgScore, ?totalScore, 5) - > hasAverageScore (?b, ?avgScore)

6 Building (?b) ^hasAverageScore (?b, ?avgScore) ^greaterThanOrEqual (?avgScore, 60) ^lessThan (?avgScore, 70) - > OneStarRating (?b)

7 Building (?b) ^hasAverageScore (?b, ?avgScore) ^greaterThanOrEqual (?avgScore, 70) ^lessThan (?avgScore, 85) - > TwoStarRating (?b)

8 Building (?b) ^hasAverageScore (?b, ?avgScore) ^greaterThanOrEqual (?avgScore, 85) - > ThreeStarRating (?b)

3.4 Ontology development

Based on the extracted entities and relationships, an ontology
was constructed to organize and represent the knowledge
systematically. The ontology was developed using the Protégé
software, which provides a flexible and powerful environment for

ontology modeling (Benomrane et al., 2016). Figure 6 illustrates the
ontology created in Protégé, where previously extracted entities are
represented as classes, and attributes are recorded as data properties
and object properties. Figure 7 displays the ontology interface
created with OntoGraf, using “Health and Comfort” as an example
to illustrate the relationships between entities.
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FIGURE 8
Example of green building evaluation based on SWRL.

4 Knowledge-driven green building
evaluation

Based on the knowledge extracted through the automated
knowledge extraction process and the ontology developed from this
knowledge, a rule-based approach will be applied to evaluate green
buildings. The ontology serves as a structured representation of the
critical concepts, entities, and relationships in the green building
domain, providing a foundation for defining evaluation criteria.
By leveraging Semantic Web Rule Language (SWRL) reasoning
mechanisms, it becomes possible to apply logical rules that capture
the relationships between different elements in the ontology and
assess compliance with green building standards.

In this study, to implement the rule-based evaluation for green
buildings, the JESS (Java Expert System Shell) inference engine
will be used in conjunction with the developed ontology within
Protégé. JESS is a rule-based inference engine that allows for the
execution of logical rules defined in SWRL, and by using JESS,
the system can infer new knowledge based on the predefined rules
and the relationships captured in the ontology. For instance, it can
automatically deducewhether a buildingmeets certain sustainability
criteria by checking its compliance with energy efficiency, resource
usage, or environmental impact regulations.

Table 4 presents some examples of SWRL rules for green
building evaluation. Rules 1-4 are used to evaluate whether
the design of an existing building meets the standards for
Health and Comfort, Resource Savings, Environmental Livability,
and Living Convenience, respectively. These rules help in
determining the compliance of building features with each
of these key green building criteria. Rule five is designed
to aggregate the scores from the five major categories,
including Safety and Durability, and calculate an overall score
for the building’s performance in terms of green building
standards (L. Shanghai Research Institute of Building Sciences Co,
2019). This process ensures a balanced assessment by considering
all critical aspects of sustainability. Rules 6-8 are used to evaluate
the overall score, assigning a green building rating based on the
established thresholds. Buildings that meet the required score
receive ratings that range from one star (basic compliance) to
three stars (high performance), providing a clear and standardized
measure of their environmental and sustainability performance.

Figure 8 illustrates how green building evaluation is conducted in
ProtégéusingSWRLrules.Aftercreatinganewindividualrepresenting

the building, relevant attributes are input, such as scores for health,
comfort, and resource savings. Once these attributes are defined,
the SWRL rules are executed using Protégé reasoning engine. The
rules automatically process the input data and generate the final
evaluation results, determining the building’s green building rating
based on the predefined criteria. Upon completion of the green
building evaluation, the system also assesses electricity efficiency.
As depicted in Figure 8, a higher green building rating is associated
with improved electricity efficiency, reflecting the building’s overall
sustainability and its effectiveness in reducing energy consumption.

5 Discussions

Compared with existing intelligent evaluation systems for
green building certification, our proposed approach offers distinct
advantages in knowledge acquisition and scalability. Traditional
systems often rely on expert-defined rules or BIM-based workflows,
which require manual encoding of sustainability criteria and are
difficult to update when new standards emerge. In contrast, our
method employs a BiLSTM-CRF model to automate the extraction
of evaluation-relevant knowledge from domain texts, reducing
subjectivity and enabling the construction of a dynamic, ontology-
based reasoning framework. This automation enhances adaptability
and provides amore robust foundation for continuous improvement
and extension of evaluation systems.

Similarly, while electricity efficiency assessment has been
extensively studied using data-driven methods such as simulation
models, real-time sensordata analysis, and statistical forecasting, these
approaches often focus solely on energymetrics and are limited to the
operational phase of a building. Our framework complements these
efforts by introducing a knowledge-driven evaluation perspective,
where electricity efficiency is assessed alongside other criteria—such
as health, comfort, and resource conservation—within a unified
ontology. This holistic integration ensures that the evaluation process
alignsmore closelywith themulti-dimensionalnatureof sustainability
in green building practices.

The proposed framework is designed with flexibility to support
different green building rating systems such as LEED, BREEAM,
and China’s GB/T 50,378. To accommodate variations in criteria
hierarchies across standards, the ontology structure can be
modularly extended or restructured, with each evaluation category
and sub-criterion represented as separate classes or properties. This
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allows for the integration of standard-specific requirements without
changing the core model. The SWRL rules are also designed to
be easily adjustable—regional thresholds can be modified directly
within the rules, requiring only minimal expert input. However, we
acknowledge that some fundamental differences in evaluation logic,
such as theweighting of certain criteria or context-specific priorities,
may not be fully harmonized within a single unified framework.
Addressing these deeper incompatibilities remains a direction for
future work, where we aim to explore systematic strategies formulti-
standard alignment and cross-regional comparability.

The proposed framework demonstrates strong potential for
generalization beyond electricity efficiency evaluation. Since the
ontology structure and knowledge extraction pipeline are not
limited to a single sustainability criterion, themethod can be adapted
to assess other key aspects of green building performance, such
as water efficiency, indoor environmental quality, and material
sustainability. By updating the training corpus and refining entity-
relation definitions, the BiLSTM-CRF model can extract relevant
domain knowledge from new textual sources, which can then
be structured into an extended ontology. This flexibility suggests
that the framework is not only scalable but also transferable to
broader sustainability assessment scenarios, supporting a more
comprehensive and modular green building evaluation system.

In addition, this study is primarily based on Chinese green
building standards and regulations, which may limit the global
applicability of the proposed framework. In future work, we
plan to extend the system to support multilingual knowledge
extraction and incorporate international standards such as LEED or
BREEAM. Additionally, the current ontology is constructed using
static textual data. To enable real-time and adaptive evaluation,
future developments will explore the integration of dynamic
IoT data, such as real-time energy consumption and indoor
environmental metrics.

6 Conclusions and limitations

In this study, a comprehensive approach to green building
evaluation has been proposed, utilizing automated knowledge
extraction and ontology development to streamline the
assessment process. Through the application of machine learning
techniques—specifically a BiLSTM-CRF model—for extracting
domain knowledge from standards and literature, and the use of
Protégéwith SWRL rules for structured evaluation, the study provides
a more objective, consistent, and scalable framework for assessing
building sustainability. The proposed method enables systematic
evaluation of key green building criteria, including health, comfort,
resource efficiency, environmental livability, and user convenience,
ultimately producing a standardized and explainable rating. By
reducing reliance on manual ontology construction, this approach
not only improves the accuracy and transparency of evaluations but

also addresses a critical gap in current research—namely, the lack of
automated, data-driven tools for ontology development in the context
of green building assessment.
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