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Effects of active vibration control
of simply supported plates on
sound radiation

Natasha Hirschfeldt, Thomas Furtmüller and Christoph Adam*

Unit of Applied Mechanics, Universität Innsbruck, Innsbruck, Austria

This paper deals with the effects of different active vibration control strategies
applied to a vibrating structure on its sound radiation, taking into account the
effect of the position of the excitation force. This is done by means of numerical
analyses of a simply supported plate, where both the sound pressure field and
the radiated sound power are computed for both uncontrolled and controlled
systems. Reflections of the sound waves from walls placed around the vibrating
plate are considered using the image source method. Although the vibration
mitigation of the plate is achieved by active control measures, it does not imply
a reduction of the sound propagation. This means that if the vibration of the
plate is attenuated, the sound radiated by the plate can be amplified, an effect
that is usually undesirable in practice. By simulating different strategies of active
control, the study shows that, among the analyzed approaches, direct velocity
feedback control provides the best overall reduction in terms of structural
vibration and acoustic radiation.
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active vibration control, feedback control, reflections, simply supported plate, sound
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1 Introduction

Vibration control is a wide field of study that aims to modify the dynamic response of a
system as desired Preumont (2018), Meirovitch (1990), Ogata (2010). This can be achieved
by passive approaches, active approaches or a combination of both Pérez-Aracil et al. (2021),
Zenz et al. (2013). Passive control can be accomplished by adding a mechanical element to
the target structure and is a common topic in structural controlMasnata and Pirrotta (2024),
Schoeftner and Krommer (2012). However, its efficiency highly depends on the proper
tuning of the passive devices (such as frequency and damping for tuned mass dampers
Baader and Fontana (2017); Preumont (2018)). In addition, these devices can be quite
large and heavy, which may not be feasible in practical implementations. In these cases,
the adoption of active control strategies provides an alternative.

Unlike passive control, active approaches require an external power supply and
consist of a set of actuators and sensors. An actuator interferes with the structure to be
controlled and its input signal is generated based on measurement data from a sensor
attached to the structure. Various approaches have been proposed for active vibration
control (AVC), such as optimal control approaches Preumont (2018), acceleration feedback
Díaz and Reynolds (2010), proportional-integral-derivative controllers Genari et al.
(2017), Guo et al. (2022), Gattringer et al. (2003) and direct velocity feedback Hanagan
and Murray (1997), Shahabpoor et al. (2011). Due to their simplicity in terms of
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hardware implementation, direct velocity feedback Alujević et al.
(2019) and compensated velocity feedback Hirschfeldt et al. (2024)
are widely discussed approaches in AVC.

The vibrating structure induces the propagation of waves in
the medium in which the system is immersed, such as air or
liquids Fahy and Gardonio (2007). In air, a common case for
real-world scenarios, this variation of pressure is perceived as
sound. Therefore, this structural sound source can result in large
noise, which is mostly undesirable in everyday applications, making
the study of acoustic control of great interest. Comparisons of
different AVC approaches, such as direct velocity feedback, direct
acceleration feedback, and compensated acceleration feedback in
the literature Shin et al. (2013) usually focus only on the control
effect on the structure, while the concomitant effect on the sound
propagation is not considered. It should be emphasized that the
reduction of structural vibrations by active measures does not imply
a reduction of the sound radiated by the vibrating structure. That is,
it is possible that active structural vibration control may amplify the
radiated sound even though the vibration is attenuated. However,
this has not yet been sufficiently investigated and therefore detailed
studies are needed to assess the concomitant effect of AVC on
sound propagation.

Active structural acoustic control (ASAC) deals with active
control of the acoustic response of structures and is an active field
of research. For example, Fuller (1991) shows by experimental
comparisons that for noise radiated by vibrating structures, control
through the vibrating structure reduces more efficiently the sound
than control by acoustic sources. Meirovitch and Thangjitham
(1990) apply active measures to control the structural modes that
govern the sound propagation of a simply supported rectangular
elastic plate. From their study, they conclude that as the number
of actuators increases, the influence of actuator position on sound
control performance becomes less important. However, only the
suppression of farfield pressure radiation is examined, and the
effects of the active sound pressure control on the response of the
vibrating plate are not addressed. In Baumann et al. (1992) a farfield
approach is proposed to estimate the sound power radiated by a
vibrating system by measurements of the structural response. Using
a vibrating clamped-clamped beam as an example, this study shows
that an optimal control approach to minimize the radiated sound
power can, in some cases, increase structural vibrations. On the
other hand, Johnson and Elliott (1995) exploits volume velocity
cancellation to perform acoustic control through a piezoelectric
control actuator. In some cases, an increase in structural vibrations
due to acoustic controlwas observed.However, it was shown that in a
farfield approach this increase in structural vibration can be avoided
by using a uniform force actuator with a volume velocity sensor.

In many studies of ASAC, only the farfield is considered to
simplify the analysis. For instance, in Fuller (1990), point control
forces applied directly to a circular plate and optimized control
gains reduce the sound radiation globally, but limited to the
farfield. Focusing on farfield effects allows for simplifications in
sound propagation calculations and provides a suitable approach
for several real-world applications. However, the present study also
takes into account room acoustics by considering the vibrating plate
as being in a closed room Kuttruff (2009), Savioja and Svensson
(2015), where nearfield conditions must be accounted for Williams
(1999).The influences of the different AVC approaches are therefore

also relevant for these cases where sound wave reflections have to be
taken into account.

The aim of this paper is to examine and compare the effects
of different AVC approaches on the sound radiated by a vibrating
structure through numerical analyses. In particular, a simply
supported rectangular force excited plate equipped with a controller
tuned to ensure vibration reduction and stability of the control
system is considered. It is examined which of the selected control
approaches provides the best effect in terms of both vibration and
sound reduction. Room acoustics are also discussed, where wave
reflections must be considered and a nearfield rather than a farfield
approach is adopted.

In addition, the application point of the excitation force on
the vibrating structure has a significant influence on structural
vibration and sound propagation. Wrona et al. (2020) provides a
passive optimization process for shaping the acoustic radiation of
vibrating plates that can be combined with optimization of actuator
and sensor positions for a passive-active control approach. In the
present paper, the position of the force excitation on the plate is
varied instead of the control point. The effects on the plate behavior
and sound propagation can then be compared for uncontrolled and
controlled systems.

The paper is organized as follows. Section 2 presents the
vibroacoustic model considered in the study. Specifically, this
is a simply supported plate immersed in air, where reflections
of the sound waves from walls around the vibrating plate are
also discussed, thus taking into account the impact of room
acoustics. The same section also introduces the AVC approaches
of interest, in particular proportional-integral-derivative controllers
and direct velocity feedback control. Section 3 discusses the
effects of these different AVC approaches on acoustic radiation,
where they are also compared for cases with and without
reflections. Finally, Section 4 provides the conclusions of this
comparative study.

2 Methods

2.1 Modeling of the vibroacoustic system

This section presents the vibroacoustic model of a system
consisting of a simply supported plate with surrounding air. While
real structural elements such as floors and slabs typically have
more complex boundary constraints (such as clamping or partial
clamping), the simply supported plate model provides a good
approximation in many cases. It is capable of accurately describing
the dynamic behavior while still allowing for analytical comparisons
with classical plate theory. This approach is therefore of interest
for room acoustic applications, one of the objectives of this study.
Acoustic radiation from the vibrating plate is discussed using the
Rayleigh integral to obtain the propagating sound pressure and
sound power. Reflections from walls around the vibrating plate are
also introduced by the image source method.

2.1.1 Simply supported plate model
Kirchhoff ’s theory of thin plates is used to derive the

forced vibration of an undamped, isotropic, rectangular
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FIGURE 1
Simply supported rectangular plate immersed in air with the input force at point (x1,y1) and the control force at point (x2,y2).

TABLE 1 Vibroacoustic system parameters.

Parameter Symbol Value

Length of the plate [m] lx 1

Width of the plate [m] ly 0.4

Thickness of the plate [m] h 0.01

Young’s modulus of the plate [GPa] E 69

Poisson’s ratio of the plate [-] ν 0.33

Mass density of the plate [kg/m3] ρp 2700

Modal damping ratio [-] ξ 0.03

Air density [kg/m3] ρa 1.225

Speed of sound in air [m/s] c 343

Reference sound pressure [μPa] p0 20

Reference sound power [pW] W0 1

plate, which is governed by the differential equation 
Williams (1999).

ρh∂
2w
∂t2
+B(∂

4w
∂x4
+ 2 ∂4w

∂x2∂y2
+ ∂

4w
∂y4
) = u (1)

In this equation, w(x,y, t) is the displacement of the plate from
the reference state in the z-direction and u(x,y, t) is the lateral
load.The variable B = Eh3/(12(1− ν2)) denotes the bending stiffness
of the plate, where E is the Young’s modulus of the plate, h is
its thickness, and ν is Poisson’s ratio. Figure 1 shows the plate
with length lx, width ly and the origin of the coordinate system
in the lower left corner of the plate. An arbitrary time-varying
single force f(t) applied at coordinates (x1,y1) excites the plate to
vibrations, i.e., u(x,y, t) = δ(x− x1)δ(y− y1) f(t) with δ as the Dirac
delta function.

The equation of motion Equation 1 is solved by modal analysis,
which is based on the modal expansion of the deflection w,

w (x,y, t) =
∞

∑
n,m=1

ϕnm (x,y)qnm (t) (2)

Here, ϕnm(x,y) denotes the nm-th mode shape satisfying the simply
supported boundary conditions Leissat (1973),

ϕnm (x,y) = √
4
lxly

sin(nπx
lx
) sin(m

πy
ly
), n = 1,2,3…, m = 1,2,3…

(3)

This procedure yields the modal oscillator equations in terms of the
modal coordinates qnm(t)Wrona et al. (2020),

̈qnm + 2ξnmωnmq̇nm +ω
2
nmqnm =

1
ρph

ϕnm (x1,y1) f (t) , n, m = 1,2,3…

(4)

where damping has been added in the form of modal damping
with modal damping ratio ξnm to account for independent
energy dissipation of each mode (a reasonable approximation for
lightly damped systems). For each mode (n,m) the corresponding
natural circular frequency is ωnm = √B/ρh[(nπ/lx)

2 + (mπ/ly)
2].

The modal oscillator equations Equation 4 are solved by standard
procedures of structural dynamics. Inserting the resulting modal
coordinates into Equation 2 and deriving the deflection with respect
to the time t yields the surface velocity distribution v of the plate,
which governs the emitted sound radiation.

In particular, an aluminum plate with the properties given in
Table 1 is considered in this study. For this plate, Figure 2 shows the
first six mode shapes according to Equation 3 up to a frequency of
750 Hz. The corresponding natural frequencies fnm = ωnm/(2π) are
176.1 Hz, 248.9 Hz, 370.3 Hz, 540.3 Hz, 631.4 Hz, and 704.2 Hz.

2.1.2 Acoustic radiation analysis using a nearfield
approach

It is assumed that the vibrating plate is the only sound source
and that the soundwaves propagate in the positive direction of the z-
axis (see Figure 1). Furthermore, the viscous interaction between the
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FIGURE 2
Mode shapes of the simply supported plate and corresponding natural frequencies in the frequency range of interest.

FIGURE 3
Image source method representation for a vibrating simply supported
plate in a room.

FIGURE 4
Block diagram of the closed loop control system.

vibrating structure and the surrounding air is neglected. Since the
viscous boundary layer is thin compared to the acoustic wavelength
at common acoustic frequencies, the viscous shear stresses and
energy dissipation are negligible when compared to the forces due
to pressure and inertia. The air medium is therefore treated as an
inviscid fluid.

Once the surface vibration velocity distribution of the plate has
been computed according to Section 2.1.1, the sound pressure p at a

given point in space r = (x,y,z) in the frequency domain (ω in rad/s)
can be determined by the Rayleigh integral Williams (1999), Fahy
and Gardonio (2007).

p (x,y,z,ω) =
iωρa
2π
∫
S
v(x′,y′,0,ω)g (R,ω) dS (5)

with

g (R,ω) = e
−ikR

R
(6)

Here, rS = (x′,y′,0) is the position vector of the elemental surface dS,
v(x′,y′,0,ω) is the normal velocity at this element, and R = |r− rs|.
Moreover, ρa is the density of air, k = ω/c is the wave number (where
c is the speed of sound), and i is the imaginary unit. The parameters
used for the analysis of the acoustic radiation are given in Table 1.

For the computation of the sound pressure field, the vibrating
structure is discretized into elemental vibration sources Fahy (1989),
Elliott and Johnson (1993). Here, elemental radiators based on a
linearly spaced grid with an area Ae = 0.02× 0.02 m are chosen,
which yields reliable results for frequencies up to 1 kHz. Let N be
the number of elemental radiators and v = [v1 v2…vN]T a column
vector of complex amplitudes of the velocities at the surface of the
vibrating plate. Then, the column vector of the sound pressure p =
[p1 p2…pN]

T at a plane parallel to the plate is composed by elements
of the form

pq (xq,yq,zq,ω) =
iωρaAee

−ikRqj

2πRqj
vj (x′,y′,0,ω) (7)

where Rqj is the distance between the centers of the qth and
jth elements. Since each elemental source contributes to the
sound pressure at a single point in space, this procedure can be
computationally expensive.The literature typically considers farfield
conditions Baumann et al. (1992), where this equation is valid
and can be further simplified. Since this study is aimed at room
acoustics where typical nearfield conditions prevailWilliams (1999),
no simplification of Equation 5 can be used.

Since sound pressure is a field that varies with the observed point
in space, it is common in acoustic studies tomake use of the radiated
sound power Fahy and Gardonio (2007) as position independent
quantity. The time-averaged sound power W is obtained by
integrating the product of the surface velocity v(x′,y′,0,ω) and
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FIGURE 5
Bode plot of the uncontrolled (unctrl) and controlled systems, where
the control point and the point of application of the force excitation
are the same: (x1,y1) = (x2,y2) = (0.59,0.11), see Figure 1. (a) Control
systems with DVF control. (b) Control systems with PID and I control.

the surface sound pressure p(x,y,0,ω) over the panel, providing an
approximation for the computation of sound power in nearfield
conditions. This is given by

W (ω) = 1
2
∫
S
Re{v(x′,y′,0,ω)∗ p (x,y,0,ω)} dS (8)

where the superscript
∗
stands for the complex conjugate.

FIGURE 6
Bode plot of the uncontrolled (unctrl) and controlled systems, where
the control point and the point of application of the force excitation
are slightly different: (x1,y1) = (0.63,0.15) and (x2,y2) =
(0.59,0.11), see Figure 1. (a) Control systems with DVF control. (b)
Control systems with PID and I control.

For the elemental radiators, W in Equation 8 is taken to be the
sum of the radiated sound power of each element such that

W (ω) =
lxly
2N

Re{vHp} (9)
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FIGURE 7
Bode plot of the uncontrolled (unctrl) and controlled systems, where
the control point and the point of application of the force excitation
are different: (x1,y1) = (0.3,0.24) and (x2,y2) = (0.59,0.11), see Figure 1.
(a) Control systems with DVF control. (b) Control systems with PID
and I control.

for a grid with element dimensions smaller than both the structural
and acoustic wavelength, whereH indicates theHermitian transpose
(transpose and conjugate).

The radiated sound power can alternatively be computed by
a set of radiation modes, a concept that is widely used in ASAC

FIGURE 8
Bode plot of P2/F2 for uncontrolled (unctrl) and controlled systems for
a perpendicular distance of z = 0.5 m from the plate for (x1,y1) =
(x2,y2) = (0.59,0.11) as in Figure 1. (a) Control systems with DVF
control. (b) Control systems with PID and I control.

approaches Johnson and Elliott (1995), Elliott and Johnson (1993).
These radiation modes are frequency-dependent, but independent
from each other. Through them, radiation efficiencies can be
computed, measures of how well the vibrating system produces
sound for each of these modes. This approach is not followed here
and is left for future studies.
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FIGURE 9
Bode plot of P2/F1 for uncontrolled (unctrl) and controlled systems for
a perpendicular distance of z = 0.5 m from the plate for (x1,y1) =
(0.63,0.15) and (x2,y2) = (0.59,0.11) as in Figure 1. (a) Control systems
with DVF control. (b) Control systems with PID and I control.

2.1.3 Effects of reflections
To account for the effects of reflections from walls around the

plate, the image source method is used Nagy et al. (2006). For each
elemental radiator, the reflection is taken as an image source, where
its distance is taken by mirroring this vibrating element with respect
to the reflecting wall. Here, first order image sources are taken into

FIGURE 10
Bode plot of P2/F1 for uncontrolled (unctrl) and controlled systems for
a perpendicular distance of z = 0.5 m from the plate for (x1,y1) =
(0.3,0.24) and (x2,y2) = (0.59,0.11) as in Figure 1. (a) Control systems
with DVF control. (b) Control systems with PID and I control.

account. Equation 6 must therefore be modified according to

g(R0,R,ω) =
e−ikR0

R0
+ γ1 (ω)

e−ikR1

R1
+⋯+ γj (ω)

e−ikRj

Rj
(10)

where Rj = |r− rj| (rj denotes the position of the jth image source)
and γj(ω) represents absorption effects. Figure 3 shows an example
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FIGURE 11
Magnitude |Pi/F1| (for each ith element) in the x-y plane at a perpendicular distance from the plate of z = 0.5 m for (x1,y1) = (0.3,0.24) and (x2,y2) =
(0.59,0.11) as in Figure 1.

of this method for the present system, where reflections in a room
are taken into account. A generic point “× ” ismarked on the surface
of the plate to illustrate this method.

2.2 Active control approaches

This section compares the effects resulting from AVC of the
system shown in Figure 1. Different cases of proportional-integral-
derivative (PID) controllers are implemented and their influence
on the radiated sound pressure and sound power is discussed for
a frequency range from 90 Hz to 750 Hz. Referring to Figure 1, at
point (x1,y1) the external force is applied. Meanwhile, point (x2,y2)
refers to the measurement point that provides the signal fed back to
the controller as well as where the actuator force is applied.

Proportional-integral-derivative controller is a feedback
control-loop technique composed of three contributions Ogata
(2010), Srivastava and Pandit (2016). The control effect of
the proportional (P) element is directly proportional to the
instantaneous error of the control system, allowing for immediate
response correction. In this control setup, the control force
generated by this element is proportional to the surface velocity.
Meanwhile, the integral (I) element accumulates error over time,
providing long-term stability by correcting even small persistent
errors. It generates a restoring effect, which in this control system
means the return of the structure to the target average position.
The derivative (D) element reacts to the rate of change, which
here corresponds to the rate of change of the velocity error, i.e.,
the acceleration. This is a predictive component that can prevent

overshoot and improve the stability of the control system. A PID
controller thus has the form

Hctrl (s) = (gP +
gI
s
+ gDs) (11)

where gP,gI,gD are real values of gain that can be tuned to the
target system such that the balance of each one of these elements
generates a desired behavior. PID controllers are advantageous due
to their flexible tuning. Nevertheless, choosing a satisfying set of
parameters for Equation 11 can be challenging for complex systems
Wang (2012), Srivastava and Pandit (2016).

WithHij denoting the mobility transfer function with respect to
the velocity at the ith degree of freedom (DoF) due to force at the jth
DoF and the numbering mentioned above, the closed-loop transfer
function is given by

Hcl
21 (s) =

H21 (s)
1+Hctrl (s)H22 (s)

(12)

The block diagram of the control system described by Equation
12 is given in Figure 4, where V2(s),F1(s),F2(s) are the Laplace
transforms of the velocity at point (x2,y2), the disturbance force, and
control force, respectively.

The proportional element in Equation 11, i.e., Hctrl = gP, is
of particular interest because it corresponds to direct velocity
feedback (DVF) in the present control setup. It introduces active
damping effects into the control system. Because of its extensive
use in real-world problems, DVF is used as the nomenclature to
emphasize its relevance. DVF guarantees stability of the control
system for a collocated configuration where the target point of
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FIGURE 12
Magnitude plots of W/F22 for uncontrolled (unctrl) and controlled
systems for (x1,y1) = (x2,y2) = (0.59,0.11) as in Figure 1. (a) Control
systems with DVF control. (b) Control systems with PID and I control.

vibration mitigation is located at the same position as the actuator
applying control Preumont (2018). This is the case of the present
control system. DVF is a popular approach because of its clear
physical meaning and ease of tuning, but it usually needs to be
combined with other control elements for complete system control.

3 Results

In this section, different cases of PID and DVF control are
considered.The aim is to evaluate which type of AVCprovides better
performance in terms of sound propagation (here meaning sound
reduction or at least lower levels of amplification) when structural
vibration reduction is guaranteed.

3.1 Active vibration control of a simply
supported plate

As shown in Figure 1, three scenarios are simulated with respect
to the application point of the dynamic excitation: (x1,y1) = (x2,y2) =
(0.59,0.11), i.e., the application point of the excitation force and
the control point on the plate are the same; (x1,y1) = (0.63,0.15)

FIGURE 13
Magnitude plots of W/F21 for uncontrolled (unctrl) and controlled
systems for (x1,y1) = (0.63,0.15) and (x2,y2) = (0.59,0.11) as in Figure 1.
(a) Control systems with DVF control. (b) Control systems with PID
and I controls.

and (x2,y2) = (0.59,0.11), i.e., the application point of the excitation
force is slightly away from the control point; (x1,y1) = (0.3,0.24) and
(x2,y2) = (0.59,0.11), to account for application point of excitation
force and control point far away from each other. The influence of
the position of the excitation force can thus be discussed in terms of
structural vibration control and sound propagation.

The gains for each control case were chosen to result in a
smaller magnitude of vibration amplitude throughout the frequency
range of interest in all cases analyzed. They also were chosen to
provide stable responses for the control system and the same order of
magnitude for the forces required to apply control. Figures 5–7 show
the Bode plots of the mobility frequency response functions for the
uncontrolled and controlled systems for different combinations of
the PID controller and DVF control.

For DVF, three different gains are considered: gP = 3.5e+ 02,
gP = 7.0e+ 02 and gP = 2.1e+ 03. As expected, Figures 5A, 6A are
very similar since they involve frequency response functions from
very close points on the plate. As the gain increases, a significant
reduction in vibration amplitude is achieved by DVF. For example,
for gP = 7.0e+ 02 in Figure 7A (for application point of excitation
force and control point far away from each other) the damping
ratios of the closed-loop system modes are 9.6%, 4.6%, 4.3%, 5%,
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FIGURE 14
Magnitude plots of W/F21 for uncontrolled (unctrl) and controlled
systems for (x1,y1) = (0.3,0.24) and (x2,y2) = (0.59,0.11) as in Figure 1.
(a) Control systems with DVF control. (b) Control systems with PID
and I controls.

TABLE 2 Overall sound pressure level (SPL) at the observed point and
overall sound power level (SWL) for uncontrolled and
controlled systems.

Without reflections With reflections

SPL [dB] SWL [dB] SPL [dB] SWL [dB]

Uncontrolled 67.97 72.72 68.82 73.45

DVF gp =
3.5e+ 02

65.96 69.59 66.72 69.59

DVF gp =
7.0e+ 02

65.31 68.59 65.88 68.39

DVF gp =
2.1e+ 03

64.97 68.08 64.91 67.87

PID 68.16 74.14 66.42 74.15

I 68.48 74.34 66.44 74.39

5.7% and 3.7% (compared to 3% damping in the uncontrolled
system, see Table 1).

For the complete PID case, the gains used are gP = 2.1e+ 03,gI =
2.5e+ 08,gD = 1 and for the integral (I) case the gain is taken

FIGURE 15
Bode plot of P2/F2 for the uncontrolled (unctrl) and controlled systems
with reflections as in Figure 3 for a perpendicular distance of z = 0.5 m
for (x1,y1) = (x2,y2) = (0.59,0.11) as in Figure 1. (a) Control systems with
DVF control. (b) Control systems with PID and I controls.

as gI = 5.0e+ 07. Both approaches provide a large reduction in
magnitude and stable responses. However, the chosen gains are
high enough to drastically change the damped natural frequencies
and mode shapes of the system, as for the DVF controllers
with gP = 2.1e+ 03.
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FIGURE 16
Bode plot of P2/F1 for the uncontrolled (unctrl) and controlled systems
with reflections as in Figure 3 for a perpendicular distance of z = 0.5 m
for (x1,y1) = (0.63,0.15) and (x2,y2) = (0.59,0.11) as in Figure 1. (a)
Control systems with DVF control. (b) Control systems with PID and
I controls.

3.2 Effects of active vibration control in
acoustic radiation

In the following, the effects of these control approaches on
acoustic radiation are examined. As mentioned previously, to
compute the sound pressure by Equation 7, the influence of the

FIGURE 17
Bode plot of P2/F1 for the uncontrolled (unctrl) and controlled systems
with reflections as in Figure 3 for a perpendicular distance of z = 0.5 m
for (x1,y1) = (0.3,0.24) and (x2,y2) = (0.59,0.11) as in Figure 1. (a)
Control systems with DVF control. (b) Control systems with PID and
I controls.

velocities at all elemental sources must be taken into account.
By doing this for both uncontrolled and controlled systems, it
is possible to compare the influence of each AVC approach of
Section 3.1 on the acoustic propagation. Furthermore, the sound
power as given in Equation 9 is also computed and the reflections
as described in Section 2.1.3 are discussed for uncontrolled system
and different controlled approaches. Here, the mobility frequency
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FIGURE 18
Magnitude |Pi/F1| (for each ith element) in the x-y plane at a perpendicular distance from the plate of z = 0.5 m with reflections as in Figure 3 for
(x1,y1) = (0.3,0.24) and (x2,y2) = (0.59,0.11) as in Figure 1.

response functions Hij(ω) at the ith DoF due to force at the jth DoF
are used to compute both sound pressure and sound power.

3.2.1 System without reflections
Figures 8–10 show the Bode plots of the frequency response

function Pi/Fj with respect to the target point of control and
the disturbance for uncontrolled and controlled systems at a
perpendicular distance z = 0.5 m from the plate. They illustrate the
three excitation force location scenarios described above.

A comparison of Figure 5 with Figure 8 shows that for all the
control approaches there is a significant reduction in the magnitude
of the sound pressure in the considered frequency range for this
case of disturbance and control point at the same position on the
plate. However, for a small deviation between these two points
(Figures 6, 9) it is already noticeable that vibration reduction does
not necessarily imply in sound pressure reduction for all the
control approaches, as seen in Figure 9B in the frequency range
between 240 Hz and 380 Hz. As the distance between the excitation
force and control point increases, this is also true for DVF, as
demonstrated in Figure 10. Also, the PID and I control approaches,
which have a better performance in terms of structural vibration
mitigation (see Figure 7), have a worse performance in terms of
sound pressure propagation for frequencies between the natural
frequencies of the uncontrolled plate.

To evaluate if this reduction/amplification of the sound pressure
occurs for the whole x− y plane at z = 0.5 m and not only
for a specific point Figure 11 shows the magnitude |Pi/F1| (for
each ith element) in this plane for two frequencies. Only the
uncontrolled, PID and DVF (gP = 7.0e+ 02) cases are shown for
the case of (x1,y1) = (0.3,0.24) and (x2,y2) = (0.59,0.11) (remote
excitation force and control point, respectively). On the left column,
the first natural frequency of the plate is considered, where a
reduction in magnitude with respect to the uncontrolled system can
be seen for all points in the two control approaches. Meanwhile, the
right column refers to the frequency at which the PID results in the
first peak in Figure 10B (226.5 Hz). For the DVF control, there is a
decrease in magnitude for almost all points, while for the PID case,
there is an increase in magnitude for all points in the plane.

Using sound pressure directly as a measurement quantity in a
feedback control setup is challenging due to its position dependency
and the inherent time delay of the vibroacoustic system. The
phase plots in Figures 8–10 show this delay due to the propagation
of the sound wave in air. Compensation of time delay systems
is an ongoing field of study and more details can be found in
Wang (2012), Srivastava and Pandit (2016). In the current study,
(direct) acoustic control is not considered.

Figures 12–14 show themagnitude |W/F2j | of the radiated sound
power for the uncontrolled system and the considered controlled
systems for the three positions of excitation force. The change of
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FIGURE 19
Magnitude plots of W/F22 for uncontrolled (unctrl) and controlled
systems with reflections as in Figure 3 for (x1,y1) = (x2,y2) =
(0.59,0.11) as in Figure 1. (a) Control systems with DVF control. (b)
Control systems with PID and I controls.

the damped natural frequency peaks in Figures 8–10 is not only
related to the sound pressure but also to the sound power. Similar
to Figures 9, 10, although there is a reduction in magnitude around
the peaks of the uncontrolled system, this is not necessarily true
for all frequencies. This effect is clearly seen in the cases where the
structural mode shapes of the controlled system differ too much
from the uncontrolled one.

The overall sound pressure level (SPL) at the observation
point and the overall sound power level (SWL) for uncontrolled
and controlled systems without considering reflections are also of
interest. For the cases where excitation point and the control point
are the same or very close, it can be seen in Figures 8, 9, 12, 13 that
these overall levels decrease for all control approaches. However, this
is not clear at first glancewhen these twopoints are far apart. SPL and
SWL for this scenario are given in Table 2, where it is evident that the
PID and I controllers result in a slight increase in both levels.

3.2.2 System with reflections
To account for reflections, a constant γj(ω) = 1 in Equation 10 is

used for all walls in Figure 3, i.e. complete reflections are assumed
for all excitation frequencies. The considered walls are at a distance
of 1 m from the plate. Figures 15–17 show the Bode plots of P2/Fj
for reflections in a closed room. Compared to Figures 8–10, there is

FIGURE 20
Magnitude plots of W/F21 for uncontrolled (unctrl) and controlled
systems with reflections as in Figure 3 for (x1,y1) = (0.63,0.15) and
(x2,y2) = (0.59,0.11) as in Figure 1. (a) Control systems with DVF
control. (b) Control systems with PID and I controls.

a change in phase.The peak sound pressure at the second resonance
frequency of the plate would be reduced by the reflections in
the uncontrolled system. Here, DVF control results in an increase
in sound pressure in the controlled systems in Figure 17 (remote
excitation and control points).

Figure 18 shows the same configurations as in Figure 11, now
with reflections considered. The magnitudes for all points in the
plane for a vibrating frequency as the first damped natural frequency
of the uncontrolled plate are reduced for both controlled approaches.
However, for a frequency of 226.5 Hz this is not true for all points in
the plane for the DVF approach, although the magnitude increases
at the observed point.

Figures 19–21 show magnitude plots of W/F2j for the
uncontrolled system and controlled systems with the different
control approaches. Compared to the case without reflections, there
is a slight decrease in magnitude at the second peak and a slight
increase at the third and fourth peaks for the uncontrolled plate.
At lower frequencies, a difference of about 7 dB can be observed
between the uncontrolled structure with and without reflections.

The SPL at the observed point and the SWL for the system
with reflections are also given in Table 2 for (x1,y1) = (0.3,0.24)
and (x2,y2) = (0.59,0.11) in Figure 1. Unlike the system without
reflections, the SPLs for PID and I controllers at this specific point
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FIGURE 21
Magnitude plots of W/F21 for uncontrolled (unctrl) and controlled
systems with reflections as in Figure 3 for (x1,y1) = (0.3,0.24) and
(x2,y2) = (0.59,0.11) as in Figure 1. (a) Control systems with DVF
control. (b) Control systems with PID and I controls.

are now lower than the uncontrolled system. However, the SWLs are
still slightly higher.

4 Conclusion

The present paper deals with the acoustic radiation of a simply
supported vibrating plate, where the aim was to compare different
AVC strategies in order to reduce the resultant sound field in
nearfield conditions. By analyzing these effects not only on the sound
pressure but also on the sound power, it can be concluded that if
the goal is to reduce the sound propagation at a specific excitation
frequency such as one of the natural frequencies of the plate, all
control options provide a good performance. On the other hand, if
the objective is to achieve an overall reduction in the frequency range
of interest, the DVF control approach can provide better results
for structural and sound reduction as a set. For gain values where
the shape of the magnitude plots remain close to the uncontrolled
cases, the responses of the control system are predictable and
provide reliable means to achieve sound reduction with and without
reflections.

The contributions of this study can be summarized as follows:

• A nearfield approach to sound propagation was used to show
thatDVF control can provide better performance for structural
and sound reduction as a set. A greater overall reduction in
sound power in the frequency range of interest is achieved
when compared to PID controllers, even though they provide
better performance in terms of vibration mitigation;
• Since the location of the external excitation is relevant to the
sound propagation, the effects of its location on the sound
pressure and sound power were also studied. It was shown
that significant amplification of the sound propagation can
occur for the excitation force far away from the control
point. When the application point of the force excitation and
the control point are at the same position on the plate, all
control approaches for vibration and sound control are feasible
and provide significant reductions for both. However, the
performance of DVF for structural and sound reduction is
superior as a set when these points are not the same;
• The effects of reflections were also considered. Reflections in a
room changed the sound pressure at certain points to a large
extent, but the sound power remained similar in all cases.
The same conclusions can be drawn as for the cases without
reflections.

The effects of different dimensions of the plate would also be of
interest. With larger width and/or length, the natural frequencies of
the system shift to lower values, while with larger thickness there is
a shift to higher frequencies. The process of applying AVC does not
change.Therefore, the effects of structural control should be similar,
but now different gain values must be used for both PID and DVF
control to achieve vibration mitigation. These new gain values must
to be chosen in the sameway to ensure stability of the control system,
reduction of vibration, and the same order ofmagnitude of the forces
required to apply control. In terms of sound propagation, the biggest
difference is in the caseswith reflections for the same roomdescribed
in the paper, now with a larger plate. Pressure and power levels
will increase with increasing width/length due to interference from
reflected soundwaves. However, the same conclusion should hold: if
the shape of the magnitude plots remains close to the uncontrolled
system, DVF provides predictable responses that can result in sound
reduction. Furthermore, the analysis of other types of boundary
conditions is suggested for future work to consider more realistic
setups than the simply supported plate.
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