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Data enrichment for semantic
segmentation of point clouds for
the generation of
geometric-semantic road models
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Civil Engineering Department, Geodetic Institute and Chair for Computing in Civil Engineering and
GIS, RWTH Aachen University, Aachen, Germany

Digitalizing highway infrastructure is gaining interest in Germany and other
countries due to the need for greater efficiency and sustainability. The
maintenance of the built infrastructure accounts for nearly 30% of greenhouse
gas emissions in Germany. To address this, Digital Twins are emerging as
tools to optimize road systems. A Digital Twin of a built asset relies on a
geometric-semantic as-is model of the area of interest, where an essential
step for automated model generation is the semantic segmentation of reality
capture data. While most approaches handle data without considering real-
world context, our approach leverages existing geospatial data to enrich the
data foundation through an adaptive feature extraction workflow. This workflow
is adaptable to various model architectures, from deep learning methods
like PointNet++ and PointNeXt to traditional machine learning models such
as Random Forest. Our four-step workflow significantly boosts performance,
improving overall accuracy by 20% and unweighted mean Intersection over
Union (mIoU) by up to 43.47%. The target application is the semantic
segmentation of point clouds in road environments. Additionally, the proposed
modular workflow can be easily customized to fit diverse data sources and
enhance semantic segmentation performance in a model-agnostic way.
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1 Introduction

The implementation of Digital Twins of roads has great potential in increasing the
efficiency in maintenance and management of dense road infrastructure networks. A
Digital Twin leverages multi-modal data to support and, in the future automize decision-
making (Federal Ministry for Digital and Transport, BMDV Germany, 2021). Digital twins
of roads can be extremely useful for many applications, such as predictive maintenance,
traffic control or autonomous driving. However, for establishing a Digital Twin use case
in the road environment, a digital geometric-semantic representation is required to act
as a foundation for georeferencing sensors and relevant components in the environment
and provide a container to store and interlink relevant data in the form of an as-
is model (Noroozinejad Farsangi et al., 2024). To create such a representation, reality-
capturing technologies are indispensable. The process from data acquisition to the final
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FIGURE 1
Overview scan-to-twin workflow.

digital as-is model is composed of several steps. Performing those
manually is very time-consuming and linked to major modeling
effort and costs. Therefore, automating this process has enormous
time- and cost-saving potential. In Building Information Modeling
(BIM), regardless whether automated or performed manually, the
Scan-to-BIM process targets the built environment without an
existing, up-to-date digital representation. While BIM aims at the
aggregation of all relevant information about the asset and acts as
an information container for all available data, this is not necessarily
desired for a Digital Twin use case (Crampen et al., 2024). Irrelevant
information is a burden for simulation and synchronization between
the physical world and the virtual world. Therefore, the digital
representation should only inherit the information necessary for the
use case conducted. In that way, a use case defines requirements for
the underlying digital representation. The resulting Scan-to-Twin
workflow is schematically illustrated in Figure 1.

The workflow consists of a sequential chain of data acquisition,
data processing, geometry extraction, and model generation, with
the data processing step being our primary focus. This step is
crucial as it introduces semantic information into the data collection,
directly impacting the quality and robustness of the derived model.
Since the accuracy of semantic object class segmentation greatly
influences the detail and reliability of the resulting model, we
leverage prior knowledge from geospatial data to enrich the data
foundation and enhance the performance of various data-driven
segmentation methods. Additionally, our workflow is designed with
modularity in mind, making it adaptable to different data sources
and supporting both georeferenced and unreferenced point cloud
data. There are various techniques employed in the data processing
step, which are introduced in Section 2.

The rest of this contribution is structured as follows: Section 2
reviews the state of research; Section 3 summarizes the identified
research gaps and goals of our contribution; and Section 4
describes our workflow, which includes a uniform pre-segmentation

step followed by an automatic feature extraction process that
automatically adapts to the dataset. Section 5 presents our results.
The impact of our preprocessing workflow is evaluated using
different approaches by comparing model performance at each
stage of the preprocessing scheme to highlight performance
enhancements achieved in each consecutive step. In Section 6, we
discuss our findings and possible future directions, particularly
in linking our workflow to model generation for Digital Twins
of roads, while we summarize our work in Section 7. The results
of an ablation study conducted in the course of our analyses
and visual examples of the final model predictions can be
reviewed in the Supplementary Material.

2 State-of-research and related work

One major challenge for automation of the Scan-to-Twin
process is its sequential nature, which leads to multiple interfaces
and error propagation. This can lead to large errors in the output
of the workflow, especially if inaccuracies occur in early steps
(Esfahani et al., 2021). Consequently, relying on uncertain semantic
objects may introduce intractable errors in the final geometric-
semantic model (GSM) (Vassilev et al., 2024). Although there
are several approaches to directly extract structures’ geometries
for indoor purposes, such as Martens and Blankenbach (2023),
such approaches are difficult to apply in outdoor environments
due to many natural objects and the large spatial extent, leading
to extremely sparse voxel grids. Extracting the relevant objects
through semantic segmentation in a first step, however, leads to
a better foundation for geometry reconstruction in an outdoor
environment (Grandio et al., 2022). Continuously, new deep
learning architectures introduce new ways of capturing significant
aspects of the point cloud data. Still, many works indicate, that
most deep learning models meet a trade-off between local and
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global context. This trade-off has been recognized since the first
architecture working directly on point cloud data was published in
Qi et al. (2017a). Since then, the complexity of new architectures
has largely increased. Qian et al. (2022) indicate, that using better
preprocessing techniques, the performance of less recent deep
learning architectures can potentially exceed the performance of the
latest and way more complex architectures. Introducing geospatial
data (often also referred to as geodata or GIS data) to perform pre-
segmentation as a preprocessing step for semantic segmentation
could prove beneficial for the integration of prior knowledge
and improve the perfomance of arbitrary models by increasing
the data informativeness instead of the complexity of the model.
While the available computational power has increased rapidly
over the last decade, making complex deep learning architectures
applicable, earlier methods did not rely on data, but on a model,
formulating rules as well as mathematical filters based on heuristics
and other methods to dissect data into characteristic segments.
Today, methods for point cloud segmentation can be categorized
into two groups: Point cloud segmentation (PCS) and point cloud
semantic segmentation (PCSS). While the categorization might
indicate that research is progressing from PCS to PCSS, there are
several aspects currently limiting the broad application of PCSS for
geometric-semanticmodel reconstruction, with amajor factor being
data availability. Therefore, significant work is conducted to develop
hybrid approaches, as in Schatz and Domer (2024), to mitigate the
respective issues arising in both sets of methods.

2.1 Point cloud segmentation (PCS)

In PCS, filters, rules, and static algorithms are commonly used
to segment point clouds. Early approaches, were edge detection
applied to range images (Bhanu et al., 1986) or region growing
for surface approximation (Besl and Jain, 1988). Today similar
methods are utilized for preprocessing, such as feature extraction,
as demonstrated in recent studies (Grilli et al., 2017). Justo et al.
(2021) used region growing with voxelized mobile laser scan (MLS)
data to extract the centerlines of road segments in order to derive
a digital model. Yan and Hajjar (2021) applied a region-growing
algorithm to extract bridge girders from point clouds.

Various techniques, such as Hough Transform and RANSAC
(Random Sample Consensus), are extensively used in fitting
techniques to fit diverse shapes into point cloud data, enabling
the extraction of objects with characteristic shapes. Safaie et al.
(2021) utilized Hough Transform to extract tree stems near roads
by vertically slicing the point cloud data and fitting circles to
the vertical cross-sections of the stems. Li and Vosselman (2018)
applied Hough Transform to extract pole-like objects, including
road signs, traffic lights, and road lamps, from Mobile Mapping
System (MMS) data. Wang et al. (2022) improved the Universal-
RANSAC algorithm to perform ground filtering on MMS point
clouds, simplifying the semantic segmentation of objects by robustly
removing ground points.

Edge features, widely used in image segmentation, play a
significant role in direct object extraction. The detection of changes
in local curvature extends beyond images and applies to point
clouds, as well as rough changes in normal orientation, gradients,
intensity, or principal curvature within point clouds to indicate

object transitions. In that way, Rato and Santos (2021) utilized
edge detection in MMS point clouds for vehicle positioning in
autonomous driving, while Wang et al. (2019) incorporated edge
features in their artificial neural network architecture to enhance
the ability of distinguishing different objects by constructing
local neighborhood graphs. For extracting pole-like objects from
MMS data, Li Y. et al. (2019) first applied elevation filtering and
combined region growing with multiple filtering techniques and
unsupervised learning to extract different object classes from an
urban road environment, while Lucas et al. (2019), Soilán et al.
(2017) and Ma et al. (2017) used reflectance-based features to
filter vegetation road markings, respectively, leveraging information
provided by most laser scanners.

2.2 Point cloud semantic segmentation
(PCSS)

PCSS uses machine learning methods to classify point cloud
segments into semantic classes, that involves supervised machine
learning, semi-supervised as well as unsupervised machine
learning approaches. Supervised machine learning can be further
differentiated into conventional machine learning, where manual
feature engineering has to be preliminary performed to fit a model
to the feature set, and deep learning, where artificial neural networks
learn abstract features themselves to allow a classification of different
semantic classes. A classical machine learning model used for PCSS
are Random Forests, which have been used for instance to segment
pole-like structures from MMS data (Wang et al., 2021). Biçici and
Zeybek (2021) applied random forest classifiers to airborne laser
scan (ALS) data to extract road surfaces.

The unstructured nature of point clouds is taken into account
by different deep learning approaches that attempt to structure
the data or were designed to deal with the point cloud directly
to form connections during training by passing groups of points
to the neural network at once. Although methods employing
spectral images and voxelization have been early approaches,
there are several recent works dealing with outdoor point cloud
segmentation, such as Xu et al. (2021). Another approach applied
to outdoor point clouds is presented in Roynard et al. (2018a),
where a voxel-based neural network was developed, achieving
state-of-the-art performance on a terrestrial laser scanning (TLS)
outdoor dataset. A popular approach leveraging spectral-images
is SnapNet (Boulch et al., 2017), which mitigates the structuring
issue by generating images from the meshed point cloud.

As opposed to the previously discussed methods, the deep
learning architectures working directly on unstructured point
clouds eliminate the problems introduced in the structuring process,
retaining the information inherent to the point cloud and requiring
less computational effort to form structures (Zhang et al., 2019).
The first method in this domain was PointNet (Qi et al., 2017a),
where a symmetric function is applied to order the point cloud and
enable the use ofmulti-layer perceptrons to learn point-wise features
that are aggregated to obtain global features for segmentation. For
road segmentation, PointNet++ (Qi et al., 2017b) is often used.
Ma et al. (2022) for example, used PointNet++ for road footprint
segmentation, whereas in Shin et al. (2022) it was used for building
extraction from ALS data. Recently, transformer-based networks
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have been adapted to point clouds, using an attention mechanism,
which was first introduced in the natural language processing
domain, to outperform most other architectures (Zhao et al., 2021).
There aremany approaches being published every year that regularly
set new measures in state-of-the-art performance on well-known
benchmarking datasets such as ModelNet (Wu et al., 2015), S3DIS
(Armeni et al., 2016) or Paris-Lille-3D (Roynard et al., 2018b) to
name a few. Interestingly, in Qian et al. (2022) it is shown with
their PointNext architecture that updating the training strategy
and adding rather small modifications to the model architecture
of PointNet++ can lead to a model outperforming most of the
recent approaches, indicating that at some point the leverage of
higher model complexity on actual performance becomes smaller
than that of an improved training approach and potentially data
preprocessing workflow.

2.3 Prior knowledge and feature extraction

Regarding preprocessing, especially encoding prior knowledge
into the data directly has large potential for performance
enhancement of arbitrarymodels. Li F. et al. (2019), for example, first
split their MMS data into blocks and then removed ground points
through local height variance as a first step of their workflow for road
furniture extraction. A standard method is separating ground and
above ground points to create two separate classification problems
(Baligh Jahromi et al., 2011; Chen et al., 2021; Shi et al., 2018; Sithole
and Vosselman, 2001; Yilmaz, 2021). In Murtiyoso et al. (2020),
roofs were extracted using available geospatial data of building
footprints. In Paden et al. (2022) ALS point clouds and geospatial
data of building footprints were used to directly create CityJSON
data by extruding the footprints by the height of the inlying point
cloud segments. In a previous study (Murtiyoso and Grussenmeyer,
2019) geospatial data has been used to extract point cloud segments
of heritage complexes and enrich the segments with the information
present in the geospatial data. Aljumaily et al. (2019) used Open
Street Map (OSM) data in the same way to provide segmented point
clouds with richer semantic data. Lastly, in Park and Guldmann
(2019) OSM data was used for building extraction using building
footprint data to cut point cloud segments out of the point cloud.

Typical features used to enrich point cloud data are eigenvalue-
based features (Bremer et al., 2013). Higher-order features can be
derived from various transformations or preprocessing techniques
that can be called descriptor-based features, like in Alexiou et al.
(2024). Others involve spin images, shape distributions (Osada et al.,
2002), or histograms (Rusu et al., 2009). In road environments,
height gradient features can indicate the height change when
reaching the road edge if it is bound by a curb, as done in
Yang et al. (2020). Using the timestamps on MMS data, the
road orientation can be retrieved. Voxel-based region-growing
approaches use seed points as features, like in Hirt et al. (2021).
The resulting segments can be used to extract other higher-order
features, as done by Zhang et al. (2022).

Another significant aspect of using extracted features is the
selection of the most meaningful ones. To do this heuristically,
there are different solutions, such as Recursive Feature Elimination
(RFE) Schlosser et al. (2020) or filter-basedmethods Atik andDuran
(2022). Tan et al. (2007) developed a Genetic algorithm (GA) that

heuristically finds the best set of features from a set of populations
of features and improves the set iteratively through mechanisms
of recombination, reproduction, and mutation. Compared to filter-
based methods, GA is a model-agnostic wrapper-based approach.
Therefore, it is applicable to arbitrary models using diverse fitness
functions. In comparison to RFE, which is also wrapper-based,
the advantage of GA is the capability of conducting a global
search, while RFE works greedy and therefore more efficient, which
however may lead to suboptimal feature sets. Road segmentation
on point clouds involves various approaches from both PCS and
PCSS, primarily utilizing data captured from MMS. However,
MMS are designed to capture the near field of a road within
the scanner system’s field of view, while many use cases require
more extensive coverage beyond what an MMS system can
capture. Connecting multiple data sources during the capturing
stage can leverage synergies and enhance connections between
different domains, including urban planning, traffic simulation,
and risk management. However, combining different point cloud
data sources can be challenging due to heterogeneity in density,
features and scan patterns that make it harder for a model to
generalize well (Hu et al., 2023). Still, establishing a data source-
agnostic workflow that maximizes the quality of the semantic
segmentation is necessary to enable automatic model generation.
Especially sincemodels forDigital Twins have to stay up-to-date and
repeatedmanualmodeling in relatively short time intervals is simply
not feasible (Mansour et al., 2024).

3 Gaps and research questions

The research gaps addressed within this contribution are as
follows: (1) Development of a strategy to enrich point cloud data
of roads for semantic segmentation. (2) Efficient leveraging of
prior knowledge to improve the output of an arbitrary machine
learning approach. (3) Generalized data enrichment scheme to
automatically adapt to different point cloud data sources. Therefore,
this contribution aims to answer the following research questions:

1. How can reality capture data of roads be enriched for semantic
segmentation purposes without limiting the applicability to a
specific data source? (RQ1)

2. What prior knowledge can be leveraged to further enhance
information richness of point cloud data of roads? (RQ2)

3. What methods can be combined to improve the overall fit of
point cloud data of roads to machine learning applications
without limiting optimization to a specific model? (RQ3)

4. What is the best approach to make the workflow automatically
adapt to changes in data source and data quality? (RQ4)

This contribution introduces a workflow specifically designed
for performing pre-segmentation and preprocessing for Point
Cloud Semantic Segmentation (PCSS) applications on large-
scale laser scanning data. Through our automatic preprocessing
workflow, we showcase improvements in various PCSS models,
including standard machine learning methods such as bagging
and boosting methods for decision trees, as well as deep
learning-based techniques like PointNet++ (Qi et al., 2017b) and
PointNeXt (Qian et al., 2022). This improvement is achieved while
significantly reducing the required amount of data and training time.
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By combining PCS and PCSS with prior knowledge, we leverage the
abundant ALS point cloud data provided by governments as open
data. Our approach combines automatic adaptation to input data
with a modular structure, enabling the flexible application of our
process to different point cloud related tasks. This distinguishes
our method form other task specific solutions to point cloud
semantic segmentation approaches which are often tailored to
specific datasets. With this strategy, we aim at ensuring ease of use
and a high degree of generalizability for different point cloud related
tasks. We validate this claim by comparing the model performances
on ALS data as well as MMS data.

4 Methodology

Our workflow consists of four steps, which can be executed
sequentially or individually, based on the characteristics of the
available data (Figure 2):

1. Prior knowledge in the form of existing geospatial data is
utilized to perform pre-segmentation of roads from ALS data
by generating horizontal boundaries for the area of interest.

2. Existing geospatial data is again used to identify road blocks
along the trajectory of the roads. These blocks are then
transformed to a uniform orientation, which improves the
regularity of the input for feature extraction.

3. Various feature extraction methods are employed to generate
an initial set of features.

4. A feature selection method based on a custom GA is applied
to reduce the initial feature space to a more condensed set of
features. This selection process helps to improve the efficiency
and effectiveness of the dataset.

The workflow is structured into two phases: pre-segmentation
and feature generation (Figure 2). This design allows evaluation
of performance enhancements achieved by applying each phase
independently. It also enables the use of either phase separately
to accommodate data that is not georeferenced and, therefore,
not suitable for Phase 1. While our workflow combines different
approaches and adaptations from other domains, we want to
emphasize that the focus of this contribution is not merely
investigating the performance of deep learning models. However,
we test the preprocessing scheme outputs on various models from
deep learning and machine learning as a proof of the versatility
and universal impact of our preprocessing. Specifically, we use
PointNet++ and the more recent PointNeXt as proxies to show the
impact of our data enrichment process for deep learning approaches,
while training decision tree-based models such as Random Forest
and simple multi-layer perceptrons (MLP) as a comparison.

4.1 Dataset

The data used for our workflow is open data accessible from
“geoportal.nrw” (Interministerial Committee, 2025). This platform
provides ALS point clouds and further geospatial data specifically
for the North Rhine-Westphalia region in Germany. The ALS
point cloud data has an average density of approximately 20
points per square meter. It contains several scanner features, of

which intensity and number of returns are most relevant for
road segmentation. The number of returns is captured by partial
reflections of the same beam that are registered multiple times,
indicating a transparent or semi-transparent surface, while the
intensity is the strength of the reflection received, which differs
for surfaces with different reflectivity characteristics. Both the ALS
point cloud data and the geospatial data are georeferenced in the
official ETRS89/UTM32 coordinate reference system of Germany,
ensuring spatial alignment between the datasets. Since theALS point
clouds did not include RGB data initially, we employ a simple spatial
interpolation technique using a photogrammetric point cloud of the
same region to assign color values to it. In this work, we focused
on extracting primary and secondary roads, including highways and
federal roads. This selection criterion helped to narrow down the
scope of the segmentation task. To demonstrate the effectiveness
of Step 1, the pre-segmentation process, we observed a substantial
reduction in the number of points in each segment. On average,
applying Step 1 reduced the amount of data by 95%, narrowing down
the scope to the area of interest. Two examples of the twelve used tiles
are shown in Figure 3.

The MMS dataset used was captured using a vehicle-mounted
mapping system Trimble MX9 by the german road agency
Straßen.NRW and comprises small scenes of highways close to
bridges and shield gantries in the State of North-Rhine-Westafalia.
The average density of this dataset is approximately 700 points
per square meter. It consists of localized coordinates and intensity
values, while lacking color information. To create the dataset, we
manually labeled 37 of those section sections, where 32 were used
for training 2 for validation and 3 for testing. For the annotation of
the semantic object classes of both datasets, the open source software
CloudCompare was used.

4.2 Phase 1: pre-segmentation

For coarse pre-segmentation of the road space from the
ALS data, we apply an approach comparable to the idea
presented in Murtiyoso et al. (2020), but apply existing geospatial
data of the road network to extract the road environment as a
region of interest, instead of cutting using building footprints to
cut out buildings. While different file formats such as GML, XML
or ESRI Shapefile are applicable, we tested our approach on OSM
data and German ATKIS (the Official Topographic-Cartographic
Information System) data, which is generally more precise than
OSM data. One advantage of using the above-mentioned geospatial
data is its nationwide availability. The Shapefile from OSM and
ATKIS consist of simple polylines and semantic information, which
is attached to each polyline. We use the functional classification
in the data to determine respective maximum road widths for
different road classes in order to create polygons from the polylines
by buffering, and then utilize these to automatically slice out our
area of interest.

4.2.1 Step 1: cutting point clouds with geospatial
data

The data of the whole road network of NRW is cut automatically
by using the boundaries of the point clouds to first filter the
geospatial data and then apply the buffered polygons to the point
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FIGURE 2
Overall workflow.

clouds, which are provided in tiles of 1 square kilometer. This is
schematically shown in Figure 4 and largely reduces search time for
matching geospatial data and point clouds.

The point clouds are cut using a path-cutting algorithm. After
the horizontal pre-segmentation, we utilize a cloth simulation filter
(CSF) to separate ground and above ground points. The ground
and above-ground points are then separately treated for the rest
of the workflow. For ground points, the classes for segmentation
are road, non-road ground and road markings, while the above
ground points are segmented into road furniture, vehicles and
vegetation.

4.2.2 Step 2: road block generation

One advantage of using road-related geospatial data is the
possibility to determine the road orientation, which can be used
to process data quite similar to the trajectory information obtained
using MMS data timestamps. We sample an arbitrary number of
points on the polyline and use the predecessor-successor relation of
these points to construct rectangular blocks along the road segment

with sample point distance and road width as input parameters.
This allows us to further extract smaller road segments and rotate
them uniformly around the height axis to obtain homogenous road
blocks. This procedure enables the extraction of features along
the road trajectory. Figure 5 schematically shows the procedure
of Step 2.

The road blocks are used in the second Phase 2 to extract
additional histogram-based features. After the features have
been extracted from the individual blocks, the point cloud is
reconstructed by rotating the road blocks back to their original
positions.When using the road block approach, we add the localized
Northing and Easting UTM coordinates as features and create
bins of points with uniform thickness along the principal axis as
a basis for the histograms. In each bin, we compute the mean
intensity and the intensity gradient over the bins as additional
features. When visualizing the intensity gradients of the ground
points along the road width, a characteristic pattern can be
recognized, indicating a good potential for separation of lanes and
road markings in one direction. Figure 6 shows three examples
of histograms of the intensity gradients and their corresponding
road segments.
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FIGURE 3
Example of two point clouds, raw point clouds on the left, pre-segmented point clouds on the right.

FIGURE 4
Tesselating geospatial data by point cloud boundaries to optimize matching efficiency for pre-segmentation.
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FIGURE 5
Overview of step 2 road block generation.

FIGURE 6
Intensity gradients along the road width axis of three different road blocks.

4.3 Phase 2: feature generation

In the second phase, we extract features from the point cloud.
Preliminary analyses showed that extracting all features directly
from road blocks introduces unnecessary edges to the receptive
fields, and thereby results in less informative features than if applying
the feature extraction to the whole point cloud. We first extract
features and optimize them by varying the parameters of the applied
approaches for extraction, which is validated using a simple multi-
layer perceptron classifier (MLP) that is trained with ten manually
labeled road segments as a training set and measuring the accuracy
reached with the given features on a validation set consisting of
two road segments. After this, we employ a custom GA for feature

selection, thereby reducing the initially large feature set of up to
86 features depending on the used steps to a more condensed set
of features. The choice of GA results from our aim towards the
model agnostic design of our workflow. We validate the feature
selection step by training anMLP on the new set of features using the
same training split as in the previous step to verify whether model
performance can be maintained using fewer features.

4.3.1 Step 3: feature extraction
The extracted features are grouped into: eigenvalue-based

features, reflectance-based features, height-based features, that
are computed by applying a cylindrical neighborhood search
and computing the local distribution of height and other basic
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TABLE 1 Initial feature set grouped by extraction module, and area of
application.

Feature Extraction
module

Application area

XYZ (mult.) Position Global

RGB (mult.) Colors Global

Number of Returns Reflectance Global

Intensity Reflectance Global

Planarity Eigenvalue Local Neigh.

Linearity Eigenvalue Local Neigh.

Sphericity Eigenvalue Local Neigh.

Verticality Eigenvalue Local Neigh.

Mean Height Local Distribution Local Neigh.

Height Standard Dev. Local Distribution Local Neigh.

Mean Intensity Local Distribution Local Neigh.

Intensity Standard Dev. Local Distribution Local Neigh.

Height Range Local Distribution Local Neigh.

Number of Neighbors Local Distribution Local Neigh.

Eigenvalue Ranges
(mult.)

Local Distribution Local Neigh.

Height Difference to
Ground

Ground Relational Local Neigh.

Custom Height
Features (mult.)

Ground Relational Local Neigh.

DB Mean Height DBSCAN Segment

DB Standard Dev.
Height

DBSCAN Segment

DB Mean Intensity DBSCAN Segment

DB Standard Dev.
Intensity

DBSCAN Segment

DB Custom Shape
features (mult.)

DBSCAN Segment

Eigenvalue Segment
features (mult.)

DBSCAN Segment

Ransac Plane RANSAC Segment

Ransac Cube RANSAC Segment

Ransac Sphere RANSAC Segment

Ransac Cylinder RANSAC Segment

Ransac Line RANSAC Segment

(Continued on the following page)

TABLE 1 (Continued) Initial feature set grouped by extraction module,
and area of application.

Feature Extraction
module

Application area

Ransac Circle RANSAC Segment

Intensity Gradients X
and Y (mult.)

Road Blocks Bins along X and Y

Mean Intensity Road Blocks Bins along X and Y

Intensity Gradients X Road Blocks Bins along X

Intensity Gradients Y Road Blocks Bins along Y

Gaussian Mixture
model

GMM Point-wise

K-Means K-Means Point-wise

features, segment-based features, which are obtained by using
unsupervised approaches such as generalized Random Sample
Consensus (RANSAC) for model fitting as well as Density-Based
Spatial Clustering of Application with Noise (DBSCAN). We apply
shape constraints to the resulting segments to obtain segment-based
shape descriptor features. For the segment features computed with
RANSAC, we simply encode the recognized shapes, which are:
cube, plane, cylinder, circle, line and sphere, as binary features, for
belonging or not belonging to the inliers of a fit shape. Lastly, we use
a Gaussian Mixture Model and k-Means clustering to cluster points
into six clusters based on the previously extracted features and add
the cluster labels to the point-wise features. Table 1 shows the full list
of extracted features.

All extracted features either directly or indirectly depend on
the receptive field that is steered by the neighborhood radius for
neighborhood-based features and themaximumdistance in the case
of DBSCAN-based features. Therefore, we conducted an ablation
study by varying the parameters controlling the receptive field
for feature extraction. We compute the features in six separate
groups to find a trade-off between computational expense and
flexibility in feature optimization. Optimizing the reception radius
for each single feature is the upper boundary, and optimizing one
uniform radius for all features is the lower boundary of the trade-
off. The resulting groups are named as follows: Eigenvalue-features,
LocalDist-features, DBSCAN-features, RANSAC-features, Ground-
Relation-features and RoadBlock-features, where the second last
group is obviously only applicable to the above ground points after
ground filtering the results of the ablation study conducted are
detailed in the Supplementary Material Section. For the RoadBlock-
features, we create bins with a fixed width along the direction of
travel, which is denoted with Y, as well as orthogonal to the direction
of travel, denoted with X to assign points inside each bin to intensity
gradients over consecutive bins. A schematic visualization of this
procedure is shown in Figure 7.

Since varying the radius to obtain the best features on a full
dataset is time consuming, we also compare the manual reception
radius optimization with the use of the optimal neighborhood
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FIGURE 7
Bins along axes for feature extraction on ground points.

definition, which can be used to automatically find optimal k for
k-nearest neighborhood search per-point. We compute the optimal
neighborhood according to Weinmann et al. (2014) as shown in the
equations below Equations 1–3:

Eλ = −e1ln (e1) − e2ln (e2) − e3ln(e3) (1)

ei =
λi
∑λ
, i ∈ {1,2,3} (2)

λ1 ≥ λ2 ≥ λ3 ≥ 0 (3)

However, instead of using k-nearest neighborhood, we use
radius neighborhood in a range between 1 m and 7 m,with step sizes
of 0.5 m, to being able to pass the identified reception radius to other
feature extractionmodules for improved adaptiveness.The segment-
based features using DBSCAN rely on a criterion that depends
on point cloud density. Therefore, we choose Epsilon according
to a fraction of the average number of neighbors computed
in the optimal neighborhood approach. To increase variability
of the receptive field, we also used the k-nearest neighborhood
definition for additional feature extraction, with an inverse relation
compared to radius neighborhood, increasing k for small radius
neighborhoods.

4.3.2 Step 4: feature selection
For feature selection, we utilize a custom GA that iteratively

searches for the best feature set. We additionally compare the
performance of the reduced feature set to the performance of the
initial feature set to test the impact of reducing the feature set by
employing Step 4. Our custom GA, is configured to run 10 epochs,
aggregating a population of 20 feature sets with a specified number
of features and using 3-fold cross-validation of a Naïve Bayesian
classifier (Huang and Li, 2011) on random subsamples of 100,000

points with a matching class distribution of the full dataset for each
fold.The results are ranked according to their unweightedmIoU and
the first five ranking feature sets are transferred to the next epoch,
while ten new feature sets are generated by randomly combining
the five best feature sets from the previous epoch. The number of
recombining sets is reduced in each epoch to make the optimization
converge.We additionally allow randommutationwith a probability
of 5% in all features of a new set, limiting the maximum number of
mutations to 10% of the feature count, while choosing the remaining
5 sets from again randomly sampling features from the full feature
set. After each epoch the best feature set is validated on the full
validation set to ensure that the result is representative.

4.4 Evaluation strategy

To evaluate the impact of the stages of our workflow, we
compare different configurations of our workflow. The resulting
six configurations are depicted in Figure 8. The colored markers
highlight the most relevant stages to clarify the overall performance
boost achieved, where gray denotes the baseline dataset and green
denotes the overall highest performance gain on all metrics over
several different models.

For the optimizations in Phase 2, we use a simple multi-layer
perceptron for initial evaluation. The final configuration of each
stage is then tested on Random Forest, AdaBoost, XGBoost, MLP,
PointNet++ and PointNext-b to get a robust estimation for the
impact of the specific configuration. The ALS dataset consists of
12 manually labeled point clouds, where segments 0–9 are used for
training and segments 10 and 11 are used for validation. Though
this dataset is very small, we show that through our preprocessing
regiment, the models are still able to generalize to new data. We
labeled 3 additional point cloud segments that were not involved
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FIGURE 8
Overview of evaluation strategy.

in any of the previous steps as test data. After determining the
best strategy on the ALS data, we apply the same workflow to
the MMS dataset and evaluate the performance boost on three of
those segments. We structured the evaluation in a way that we can
compare different configurations directly to being able to interpret
the results of each consecutive step. Improvements are reported
with respect to the models trained on stage 2.1, since comparing
different data foundations would be pointless. Configuration 2.1
only employs Step 1 and does not consider ground filtering. In
configuration 3.1, we evaluate the impact of treating ground and
non-ground points separately. In configuration 4.1, we use the full
scheme of Phase 1. We split each stage into two leaves, employing
our Phase 2, consisting of feature extraction and selection, in the
second leaf while leaving it out in leaf one. This procedure allows
for a detailed evaluation of the different steps, leading to a better
understanding of the differences in data as well as learningmethods.
We train a PointNeXt-b model for validation of the performance-
boosting potential on more recent architectures in Stages 2.1, 2.2,
3.2, and 4.2.

5 Results

In this section, we present the results of our comparison of
the different stages of our preprocessing workflow. The results
of our ablation study showed that using optimal neighborhood
outperforms manual receptive field optimization while significantly

reducing the computation time. Additionally, the measures taken
to make the feature extraction self-adaptive with respect to the
data distribution based on the optimal neighborhood approach
benefit the degree of automation of the workflow. We compare the
results of ourworkflow evaluation strategy based on overall accuracy
(OA) (Equation 4), precision (pr) (Equation 5) and recall (rec)
(Equation 6), weighted mean intersection over union (mIoU) (w)
(Equations 7, 8) and unweighted intersection over union (unw.
mIoU) (u) (Equation 9) to better measure performance changes for
minority classes. Those metrics are calculated by first counting true
positives (TP), true negatives (TN), false positives (FP) and false
negatives (FN) and applying the following formulars, where n is the
number of samples, i denotes the class and N denotes the number
of classes. The difference between weighted mIoU and unweighted
mIoU is that the number of samples per class affects the weighted
metric; therefore, in cases where there is a large class imbalance, the
unweighted IoU better captures improvements of minority classes,
while the weighted mIoU better measures the overall performance.

Accuracy = TP+TN
TP+TN+ FP+ FN

(4)

Precision = TP
TP+ FP

(5)

Recall = TP
TP+ FN

(6)

IoU = TP
TP+ FN+ FP

(7)
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mIoU =
∑

i
ni ∗ IoUi

∑
i
ni

(8)

unweighted mIoU =
∑

i
IoUi

N
(9)

5.1 Results - preprocessing workflow

In this section, we discuss the results of our six workflow
configurations on the six chosen models. The results for the full
feature set are shown in Table 2. For PointNet++, we reduced the
input point number to 2048 points due to the low point density
of the ALS dataset in configurations 2.1 and 2.2, to 1,024 points
for ground points in 3.1, 3.2, 4.1, and 4.2, and to just 512 points
for above ground points. The block size was extended to 10 m
for all configurations. 4,096 points were used for the MMS data.
The remaining major hyperparameters of PointNet++ were chosen
according to the default values:

− Learning rate 0.001
− Step size: 10
− Optimizer: Adam
− Learning rate decay: 0.7
− Weight decay rate: 0.0001

The model was trained for a maximum of 200 epochs and
varying batch sizes due to the large inputs for full feature sets. The
batch size ranged from64 for the 2.1, 3.1, and 4.1 configuration down
to 8 for the 2.2, 3.2, and 4.2 configuration.

For our future target application of model generation, the most
important classes are: road, non-road ground, road markings and
road furniture. Since we focus on the road structure, the classes
“vehicle” and “vegetation” mainly fulfill the purpose of separating
the important classes from the less important objects in the road
environment. For our PointNeXt model, we chose the default
configuration, except for the voxel sampling size of 0.04 and an initial
radius of 0.3 compared to the default of 0.1. We used the relatively
light-weight PointNeXt-b model for fast training time. The number
of points per class in the training dataset are significantly imbalanced
where the majority class (road) has approximately 3 million points
whereas the minority class (road furniture) only comprises 63,000
points. The number of points per class for the ALS dataset are
denoted beneath the class names in Table 2, whereas those for the
MMS dataset are shown in 3. The majority class of the MMS dataset
is the road class, while the minority class is the non road ground
class.The class imbalance is representative for validation and test sets
for both datasets. No additional measures for compensating class
imbalance were taken during the training of any of the models.

To clarify the significant improvements over the stages, we
elaborate the performance differences between stages at the example
of PointNeXt. Starting with the baseline dataset (highlighted in
gray) the most significant performance metrics are bold. Adding the
Phase 2 preprocessing (2.2) (orange), the overall accuracy increases
by +9.70%, while unweighted mIoU increases sharply by +21.49%.
Adding ground separation in stage 3.2 (yellow), while only adding
+0.97% in overall accuracy, stage 2.2 is strongly outperformed
regarding mIoU with a performance gain of additional +11.04%

unweighted mIoU. This performance is matched and partially
outperformed in stage 4.2 (green) when using the road block
approach, adding another +2.68% to the overall accuracy and
increasing the weighted mIoU by +5.08%, while only slightly
losing on unweighted mIoU (−0.13%) compared to stage 3.2. This
consistently increasing performance throughout the steps of our
approach is mirrored by all other models as well and totals a
performance gain against the baseline of +13,35% OA, +15.16%
weighted mIoU and +32.40% in unweighted mIoU for PointNeXt.
Additionally, if only the stages without feature extraction are
taken into comparison (2.1, 3.1, and 4.1), the models still show a
consistent performance gain, in unweighted mIoU, e.g., for Random
Forest with 16.90% from 2.1 to 3.1 and another 6.80% from 3.1
to 4.1 (highlighted bold). In a way, one could argue that the steps
involving only the first phase of preprocessing are data cleaning
and homogenization steps, which enable better feature aggregation.
Limiting receptive fields in the edge areas of road blocks and adding
small error portions through erroneously separated points during
ground filtering corresponds to lowering the upper boundary of
the achievable performance. However, these steps add a small
bias, which averaged at approximately 2% of points in the ALS
dataset, compared to the significant boost of model performances
when applying feature extraction to their resulting point
cloud subset.

It can be noted that the results for the machine learning
models on stage 2.2 could be significantly improved. Specifically,
the minimum performance gain over all four machine learning
models (MLP, RandomForest, XGBoost, AdaBoost) exceeded 11.4%
of unweighted mIoU for the XGBoost model, while Random Forest
improved by 27,25% in the same metric comparing 2.1 to 2.2,
even surpassing PointNet++ performance of stage 2.2 by 4.69%
unweigthed mIoU. PointNet++ shows no significant change in
performance until stage 3.2, where the unweighted mIoU improved
by 10.87% compared to stage 2.1. It becomes obvious that on the
ALS dataset, the PointNeXt model easily outperforms PointNet++
in stages with feature generation.

Generally, we assume that the low sensitivity of PointNet++ to
the preprocessing workflow on the ALS dataset is due to the low
point density, leading to low variability in datawhen using the block-
wise data input approach of PointNet++. Here it becomes obvious
that the change made in PointNext, directly running on the full
scene similar to Randla-Net (Hu et al., 2020), is better suited for
sparse data than sampling blocks with a fixed number of points in
them. We validate this assumption by comparing results of the ALS
datasetwith those of theMMSdataset, which provides a higher point
density in the next section.

5.2 Results - MMS dataset comparison

The MMS dataset was first randomly subsampled the sections
to a point density of 120 points per square meter. The object classes
differed slightly compared to the ALS dataset lacking the car class,
since dynamic objects had been removed beforehand.The individual
sections covered approximately the same lateral area as the ALS
data after step 1 of our workflow and were not georeferenced. We,
therefore, focus on evaluating the impact of our phase 2 for the
comparison, demonstrating the flexibility of our pipeline. Since
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TABLE 2 Results of our evaluation strategy for all used models on ALS data.

St. Mod. OA w u N. R. Gr. Road R. Mark. Veg. Car R. Frunit.

Num points 2166946 3057436 387451 766310 109877 63069

Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec

2.1
(baseline)

MLP 71,45 55,58 31,2 0.73 0.81 0.74 0.94 0.38 0.12 0.81 0.48 0.08 0.01 0 0

RF 79,91 66,54 36,0 0.78 0.8 0.86 0.93 0.64 0.28 0.75 0.83 0.34 0 0 0

AB 74,48 59,35 31,4 0.74 0.82 0.72 0.92 0.17 0.0 0.93 0.55 0.26 0.04 1.00 0

XGB 70,35 54,26 35,6 0.77 0.72 0.75 0.84 0.67 0.43 0.72 0.53 0.08 0.47 0.46 0.14

PN++ 88,65 76,49 58,55 0.9 0.7 0.88 1.00 0.79 0.56 0.88 0.7 0.76 0.57 0.68 0.34

PNX 82,53 76,61 48,40 0.85 0.97 0.87 0.97 0.57 0.00 0.94 1.00 0.71 0.04 0.99 0.24

2.2

MLP 83,86 72,22 52,19 0.89 0.78 0.88 0.94 0.58 0.61 0.6 0.97 0.81 0.49 0.30 0.19

RF 87,83 78.30 63,25 0.93 0.85 0.87 0.98 0.68 0.51 0.96 0.91 0.79 0.65 0.33 0.76

AB 84,87 71,68 49,04 0.91 0.87 0.93 0.96 0.52 0.68 0.75 0.46 0.65 0.53 0.1 0.68

XGB 85,67 74,93 47,01 0.9 0.82 0.92 0.95 0.54 0.71 0.83 0.88 0.72 0.36 0.19 0.61

PN++ 88,39 76,25 58,56 0.81 0.95 0.97 0.91 0.71 0.5 0.98 0.97 0.57 0.53 0.12 0.50

PNX 92,23 84,72 69,89 0.86 0.86 0.95 0.98 0.94 0.76 0.99 0.68 0.66 0.50 0.85 0.94

3.1

MLP 78,64 64,75 45,26 0.87 0.72 0.75 0.95 0.47 0.12 0.9 0.78 0.68 0.87 0.48 0.01

RF 81,26 68,48 53,1 0.83 0.77 0.92 0.92 0.35 0.51 0.84 0.87 0.76 0.74 0 0

AB 79,94 67,63 52,82 0.81 0.88 0.92 0.91 0.66 0.31 0.76 0.64 0.67 0.67 0 0

XGB 78,49 65,41 51,56 0.83 0.81 0.88 0.93 0.47 0.36 0.84 0.55 0.68 0.79 0.05 0.12

PN++ 88,99 70,35 54,97 0.86 0.88 0.95 0.94 0.69 0.69 0.96 0.98 0.44 0.17 0.49 0.03

3.2

MLP 84,85 73,73 65,08 0.94 0.59 0.90 0.98 0.48 0.69 0.95 0.89 0.57 0.55 0.63 0.92

RF 92,91 86,81 81,10 0.89 0.87 0.96 0.98 0.78 0.71 0.99 0.94 0.77 0.89 0.79 0.96

AB 89,85 81,57 70,79 0.9 0.89 0.91 0.96 0.78 0.55 0.98 0.91 0.84 0.95 0.74 0.47

XGB 91,38 84,13 71,75 0.89 0.94 0.95 0.96 0.78 0.49 0.98 0.91 0.86 0.91 0.55 0.68

PN++ 86,96 81,48 69,42 0.89 0.84 0.96 0.93 0.60 0.81 0.81 0.99 0.9 0.38 0.88 0.93

PNX 93,20 86,69 80,93 0.92 0.83 0.97 0.99 0.81 0.88 1.00 0.70 0.81 0.97 0.92 0.96

4.1

MLP 87,62 78,09 61,55 0.9 0.9 0.89 0.98 0.89 0.3 0.89 0.92 0.82 0.77 0.32 0.23

RF 87,2 77,31 59,9 0.92 0.86 0.86 0.98 0.7 0.3 0.89 0.93 0.86 0.79 0.56 0.59

AB 85,64 74,88 61,83 0.92 0.79 0.85 0.98 0.56 0.46 0.95 0.89 0.83 0.8 0.41 0.76

XGB 86,96 76,97 62,57 0.92 0.86 0.88 0.98 0.59 0.4 0.94 0.91 0.86 0.72 0.33 0.87

PN++ 87,31 76,06 61,32 0.86 0.9 0.98 0.91 0.58 0.68 0.77 0.68 0.9 0.84 0.23 0.59

(Continued on the following page)
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TABLE 2 (Continued) Results of our evaluation strategy for all used models on ALS data.

St. Mod. OA w u N. R. Gr. Road R. Mark. Veg. Car R. Frunit.

Num points 2166946 3057436 387451 766310 109877 63069

Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec

4.2

MLP 86,55 76,35 65,15 0.88 0.69 0.92 0.98 0.54 0.63 0.98 0.89 0.50 0.70 0.58 0.62

RF 92,35 85,82 80,38 0.86 0.89 0.95 0.98 0.86 0.65 0.99 0.93 0.71 0.9 0.84 0.96

AB 88,37 79,17 70,57 0.88 0.86 0.91 0.96 0.63 0.48 0.96 0.89 0.82 0.94 0.89 0.62

XGB 89,57 81,11 69,97 0.93 0.86 0.95 0.96 0.53 0.67 0.95 0.9 0.85 0.86 0.52 0.77

PN++ 85,07 71,05 61,82 0.82 0.95 0.98 0.91 0.74 0.61 0.85 0.81 0.48 0.59 0.78 0.54

PNX 95,88 91,77 80,80 0.93 0.87 0.96 1.00 0.94 0.82 0.99 0.99 0.92 0.77 0.62 0.91

Random Forest, MLP, PointNet++ and PointNeXt had previously
shown to be most interesting for further comparison, we tested only
with these four models.

From the results in Table 3, it becomes obvious, that the higher
point density has a positive effect on the performance of PointNet++
and PointNeXt. It can be noted, that in comparison to the ALS
dataset, where the intensity ismuch noisier than in theMMSdataset,
the road markings were far better extracted, while the distinction
between road surface and the lateral non-road area remained
the main challenge for models trained on the MMS dataset. The
performance of PointNet++ strongly increases over each consecutive
stage, more than doubling the unweighted mIoU between stage
1.1 and stage 3.2, adding over 43%. PointNeXt delivered strong
performance even in Stage 1.1, without any preprocessing. Still, the
feature extraction in Stage 2.2 could improve the unweighted mIoU
by over 5%, while additionally adding 5.62% in overall accuracy.
Another interesting finding being demonstrated through the MMS
dataset is that the machine learning models could be strongly
improved, more than doubling unweighted mIoU and adding more
than 20% overall accuracy in the case of Random Forest from stage
1 to stage 2.2 and over 14% for MLP. Still, both were significantly
outperformed by the deep learning models in stage 3.2 regarding
unweighted mIoU.

5.3 Results - feature selection

After demonstrating the performance enhancement potential of
our work, we want to briefly outline the potential for reducing the
computation time demand of our workflow, focusing on training
time in this subsection. It is to show how the model performance
changes when using feature subsets assembled via our GA. For
the sake of computation speed, we chose a simple naive Bayesian
classifier for validation with the unweighted mIoU as decision
metric. We compared four different numbers of features 20, 35,
55 and the full feature set for each of the five datasets from
configurations 2.2, 3.2 ground, 3.2 non-ground, 4.2 ground and 4.2
non-ground. The results of the comparison are depicted in Figure 9.
We, additionally, used the resulting feature subsets to train an MLP

for a second comparison, which is depicted in Figure 10. We used
a fixed model configuration for the MLP, specifying the following
parameters:

− Hidden layer size: 500
− Activation: ReLu
− Optimizer: Adam
− Maximum iteration: 5

Comparing the two different classifiers, the Bayesian classifier
seems to improve for smaller feature sets, which might be the
case due to it assuming uncorrelated features while many of the
extracted features are in fact correlated. Overall, it can be noted
that our feature selection scheme works well in reducing feature
space while maintaining performance. The comparison between
the datasets of the different stages also indicates the performance
boost of each consecutive stage of our workflow. The performance
of the Bayesian classifier additionally shows that through our
automatic workflow, even simple models become applicable to the
segmentation task.

With these results, it becomes clear that, while we are
extracting a high number of features in every stage, the amount
of information we encode into individual features may still
increase in higher stages. This might be due to improved
receptive fields with reduced heterogeneity and more characteristic
neighborhoods being aggregated. This interesting finding could
lead to a significant reduction in precomputation effort by
introducing a learning scheme for feature relevance directly during
computation. The potential future research topics will be discussed
in more detail in Section 6.

6 Discussion

Through our extensive evaluation of the proposed preprocessing
workflow, we could show that it significantly boosts performance
on versatile data foundations. Sparse as well as dense point cloud
data in the road environment is consistently enriched and thereby
far better suited for arbitrary machine learning and deep learning
models. A notable achievement is the finding that enhancing point
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TABLE 3 Results of stages 1, 2.2 and 3.2 on MMS dataset comparing PointNet++, PointNeXt-b, MLP and Random Forest.

St. Mod. OA w u N. R. Gr. Road R. Mark. Veg. R. Frunit.

Num points 2343695 40666973 1953186 3415971 5968978

Pr Rec Pr Rec Pr Rec Pr Rec Pr Rec

1

MLP 78,16 64,16 33,51 0.00 0.00 0.87 0.97 0.39 0.27 0.42 0.27 0.62 0.63

RF 74,94 59,92 28,67 0.00 0.00 0.84 0.93 0.23 0.07 0.65 0.23 0.49 0.64

PN++ 61,64 44,55 42,54 0.44 0.06 0.78 0.67 0.13 1.00 0.93 0.67 0.78 0.95

PNX 90.66 93.33 85.12 0.87 0.84 1.00 0.99 0.97 1.00 0.74 0.85 0.94 0.96

2.2

MLP 92,20 85,52 66,96 0.19 0.63 0.99 0.94 0.76 0.84 0.86 0.84 0.90 0.93

RF 95,65 91,67 66,72 0.98 0.05 0.97 1.00 0.99 0.68 0.84 0.90 0.94 0.92

PN++ 94,74 90,01 66,43 0.62 0.93 0.97 0.99 0.95 0.60 1.00 0.25 0.94 0.99

PNX 96.04 97.52 90.29 0.94 0.90 0.99 1.00 0.93 0.83 0.97 0.96 0.97 0.98

3.2

MLP 86,66 76,72 59,81 0.72 0.56 0.92 0.97 0.70 0.43 0.71 0.72 0.86 0.85

RF 88,24 79,06 60,84 0.92 0.44 0.90 1.00 0.87 0.37 0.73 0.84 0.91 0.84

PN++ 93,26 88,05 86,01 0.95 0.60 0.91 0.99 0.92 1.00 1.00 0.99 0.95 0.98

PNX 97.23 94.42 87.59 0.96 0.97 0.97 0.99 0.97 0.57 0.98 0.96 0.96 0.98

FIGURE 9
Results of GA for naive Bayesian classifier.

cloud data in this way makes models more receptive to imbalanced
class distributions, which otherwise limits the applicability of
unspecialized machine learning approaches. While the sparsity may
still be a factor for specific models, working on fixed block sizes to
sample input data, models that mitigate this issue by using either full
scenes to generate input or even work with point-wise input take a
large profit of our workflow. Therefore, the main limitation of our
approach is the computation time needed for dataset preprocessing.

We measured the computation time for the processing of Stage
2 of the ALS dataset averaging to 53 min per 1 million points,
which results in a total processing time of approximately 6 h
and 30 min (GPU: Nvidia Quadro 5000, CPU: Intel i9-11900K,
RAM: 64 GB). It has to be mentioned that the preprocessing at
the current stage is purely Python-based and will be accelerated
in the future by moving to the C++ programming language.
This aligns with the strategies of many point cloud processing
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FIGURE 10
Results for feature selection with a baseline multi-layer perceptron.

neural network architectures, where preprocessing frameworks are
typically implemented in C++ to accelerate the steps before model
training as done in (Qian et al., 2022) with their openpoints library.
However, our aim is the optimization of semantic segmentation for
further use in geometric-semanticmodel generation. For geometric-
semantic model generation from segmented point clouds, it is
essential to lay a robust and as accurate as possible semantic
foundation in order to enable automatic and soundobject generation
in the next steps. We therefore accept the longer computation time
if the quality of the predicted results increases significantly, which
we have proven. The possibility of performing feature extraction
on arbitrary data with differing semantic classes simplifies the
process of machine learning, since we can improve the models’
robustness to class imbalances while also greatly improving the
overall model performance. The modular approach allows for easy
customization of the workflow to georeferenced data and data
in local coordinate reference systems. In that way, incorporating
our preprocessing workflow into deep learning models to improve
segmentation results even leads to a reduction in the amount
of data necessary. We have gained insights into the change in
model performance when changing the receptive fields in feature
extraction, and could thereby derive new research ideas towards
direct integration of prior knowledge into deep neural network
architectures.

7 Conclusion

With our work, we could show that our workflow improves
the performance of arbitrary machine learning and deep learning
models on ALS as well as on MMS datasets of the road space.
Our modular and flexible preprocessing workflow is applicable to
arbitrary neural network architectures and is capable of mitigating
class imbalances and limited data supply.The best performingmodel
regardingmIoU for theMMSdataset was themost recent PointNeXt
model, which shows that even state-of-the-art neural networks can
be boosted by data enrichment to date.

Following our findings from the immaculate evaluation of our
workflow, we can answer RQ1, since we established a workflow
directly applicable to arbitrary data, as we showed through
evaluation of both ALS and MMS datasets. With our geospatial data
integration step, we are able to automatically and efficiently limit
the area of interest to the road space and further into homogenous
road blocks, while data in local coordinate reference systems can
still be processed with steps 3 and step 4. This, together with
the finding that refining data subsets via ground filtering and
road block extraction leads to an improved capability of extracting
meaningful features with our approach, answers our RQ2. The
combination of our four steps showed consistent improvement on
all models, with the exception of PointNet++ in the ALS case, where
the data sparsity negatively interacted with the data processing
scheme of the deep learning architecture. Still, given this caveat,
being a solvable problem as demonstrated by comparison between
PointNet++ and its successor PointNeXt, where one significant
change is the approach for processing input data, we consider RQ3
solved. Lastly, the optimal neighborhood approach we intertwined
into the majority of our feature set, effectively allowed the process
to automatically adapt to changing data. We additionally analyzed,
that this approach not only automates the adaptation of receptive
fields for feature extraction, but even matches the performance
of tedious manual optimization of the receptive fields for several
sets of features in the ablation study. We, therefore, also consider
RQ4 answered.

Since in this work we focused on highway environments only,
it is yet to be evaluated whether our approach can also improve
the performance of point cloud semantic segmentation for different
target environments, such as indoor semantic segmentation or
bridge semantic segmentation. In future work, we aim to directly
incorporate our preprocessing workflow into artificial neural
network architectures to improve existing model architectures and
to allow out-of-the-box performance boosting, without the necessity
of excessive precomputation. This will be achieved by directly
learning the most information-rich features currently handled in
our feature selection step, which showed that the performance boost
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can be maintained well by choosing the most representative features
from the full feature set. This will accelerate the processing time
on the one hand and make the preprocessing scheme even more
adaptive to changing datasets on the other hand. Alternatively,
our road block approach could potentially be deployed for block-
based neural networks based on PointNet to directly utilize our
road blocks to gain context information by an ordered reception
over roads. Another idea is to combine the roadblock approach
with image data of the road surface to incorporate more knowledge
of the pavement. Generally, image data is better suited for crack
detection, and mapping those detected damages into the point
cloud would allow the generation of more realistic geometric-
semantic as-is models for damage assessment within a digital
twin use case. The workflow could also be extended to buildings
or land use applications in the future, since geospatial data of
the same kind we used is available for different domains and
could be applied similarly. This will allow the evaluation of the
performance enhancement potential for more diverse scenes, apart
from the road space we focused on in this contribution. Overall,
improving the semantic segmentation quality within the process
chain of Scan-to-Twin is essential to creating correct and accurate
digital representations for digital twins. The value of a digital
twin depends on the accuracy of its predictions and implications.
Therefore, the errors and uncertainties within the base model have
to be minimized and, if possible, quantified to allow the system
to become a reliable decision-support. In our future work, we will
focus on completing the comprehensive framework to automatically
derive and control the geometric-semantic models for digital
twins of roads.
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