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Seismic performance
enhancement of
three-dimensional frame
structures via inerter-based
control systems

Angelo Di Egidio1 and Alessandro Contento2*
1Department of Civil, Construction-Architectural and Environmental Engineering, University of
L’Aquila, L’Aquila, Abruzzo, Italy, 2College of Civil Engineering, Fuzhou University, Fuzhou, China

Improving the seismic response of new and existing structures is a fundamental
topic in civil engineering. Often, in structural mechanics this issue is addressed
through low-dimensional mechanical models capable of capturing the primary
dynamics of the structure. In contrast to most studies in the scientific literature
that use two-dimensional models to describe structural behavior, this paper
employs a low-dimensional, three-dimensional (3D) mechanical model to
capture the seismic response of a structure, also accounting for its torsional
effects. This low-dimensionalmodel is used to investigate two differentmethods
for improving seismic response. One approach involves inerter devices directly
connected to the structure, while the other is based on connecting the structure
to external auxiliary structures, equipped in turn with inerters. Therefore, in this
case, the inerter devices are connected directly to the external structures. The
responses of the original stand-alone frame structure and those with the two
proposed methods are compared to assess the effectiveness of each approach.
Three different earthquake records are used as base excitation. The results are
presented in performance curves and maps, showing the response in terms of
displacements of key points of the structure as various system parameters are
varied. The results reveal the good performance of both methods over a wide
range of parameters, with particularly favorable results for the approach using
external structures equipped with inerter devices.
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1 Introduction

Improving the seismic response of new and existing structures is a fundamental
topic in civil engineering. Often, structural mechanics, this issue addressed through low-
dimensionalmechanicalmodels capable of capturing the primary dynamics of the structure.

The seismic behavior of actual structures is often studied by using low-dimensional
models. A general three-dimensional (3D), multi-degree-of-freedom (M-DOF) frame
structure is modeled through a planar, two-degree-of-freedom (2-DOF) shear-type system.
For instance, such low-dimensional model were employed to explore the conceptual aspects
of the base isolation technique as proposed by (Kelly, 1995), as well as tuned mass
damper (TMD) systems discussed in (Den Hartog, 1956; Rana and Soong, 1998; Miranda,
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2005). Furtherly, (Tsai, 1995), and (Taniguchi et al., 2008) examined
the reduction of base displacement in a base-isolated system
using a TMD.

In recent years, the same approach utilizing low-dimensional
models was employed to explore the application of TMDs as
common techniques for protecting frame structures against
earthquake. In (Dadkhah et al., 2020; Khatibinia et al., 2018;
Kamgar et al., 2018; Kamgar et al., 2025), TMD systems
were implemented to safeguard high-rise buildings, while in
(Salimi et al., 2021; Kamgar et al., 2020) a friction TMD and
a modified tuned liquid damper were used to enhance the
seismic response of buildings. Additionally, in (Reggio and
De Angelis, 2015; Fabrizio et al., 2017a; Fabrizio et al., 2019;
Pagliaro and Di Egidio, 2022a; Wang et al., 2013; Pagliaro
and Di Egidio, 2022a; Di Egidio et al., 2023), the use of an
intermediate discontinuity as a non-conventional TMD was
studied.

Typically, TMDs require a small mass to function effectively.
However, when subjected to seismic excitation, the use of a small
mass may hinder the TMD’s performance. This issue can be
mitigated by coupling the TMD with an inerter device, which acts
as a virtual mass to amplify inertial forces, as illustrated in (Marian
and Giaralis, 2014). This combination led to the development of the
Tuned Mass Damper Inerter (TMDI), a device that was extensively
studied in various papers (Brzeski et al., 2015; Pietrosanti et al.,
2017; De Domenico and Ricciardi, 2018; De Domenico et al., 2018;
Giaralis and Taflanidis, 2018; Pietrosanti et al., 2020; Prakash and
Jangid, 2022).

Different external devices that are suitable combinations
of TMDs and inerters or that have hysteretic behavior were
proposed to improve the seismic performances of structures.
Also using low-dimensional mechanical models, recently in
(Di Egidio and Contento, 2023; Di Egidio and Contento, 2022) a
hysteretic device connecting the Tuned Mass Damper Inerter to
the structure was used, referred to as the Hysteretic Mass Damper
(HMDI), or in (Di Egidio et al., 2022a) where the connection of the
frame structure with a short, hysteretic exoskeleton was considered.

Among the different possibilities to improve the seismic
response of structures, one option is the regularization of torsional
modes, particularly as architectural innovation increasingly
prioritizes aesthetic asymmetry. Uncontrolled torsion during
seismic or wind events amplifies localized damage, accelerates
structural fatigue, and threatens life safety, as tragically illustrated
by torsional failures in the 1985 Mexico City earthquake (Osteraas
and Krawinkler, 1989). Contemporary building codes, such as
ASCE 7–22 (2022) (American Society of Civil Engineers, 2022),
now enforce stricter limits on torsional irregularities, reflecting
lessons from past disasters.

Research on the regularization of torsional modes, aimed at
mitigating vulnerabilities in asymmetric structures under seismic
excitations, has evolved through analytical, experimental, and
computational approaches. Early work by (Rutenberg, 1992)
provided a critical review of nonlinear responses in asymmetric
buildings, emphasizing the inadequacy of linear code provisions
to address torsional coupling under extreme seismic demands. This
work underscored the necessity of incorporating nonlinear behavior
into design codes. Building on this, (Anagnostopoulos et al., 2015),

expanded the discourse by systematically reviewing earthquake-
induced torsion, highlighting challenges such as bidirectional
excitation effects and the underestimation of torsional amplification
in static code-basedmethods.Their synthesis advocated for dynamic
analysis and performance-based design for torsionally irregular
structures. Further analytical advancements were pioneered
by De la Llera and Chopra (De la Llera and Chopra, 1995),
who modeled the inelastic seismic behavior of asymmetric-
plan buildings, demonstrating that torsional coupling amplifies
ductility demands and interstory drift. Their findings necessitated
code-compliant stiffness redistribution strategies. Subsequent
studies, such as (Lim et al., 2018), empirically validated these
analytical insights by analyzing a 3D asymmetric multi-story
reinforced concrete structure. Their results showed that torsional
irregularities exacerbate floor displacements and shear forces under
bidirectional ground motions. Similarly, (Manish and Syed, 2017),
compared symmetric and asymmetric buildings, revealing that even
minor plan irregularities induce significant torsional responses,
necessitating stricter code compliance.

The role of strong-motion duration in torsional response scaling
was later investigated in (Málaga-Chuquitaype, 2021), revealing
that prolonged seismic durations intensify torsional demands in
systems with nonlinear behavior, particularly those experiencing
strength and stiffness degradation. This work highlighted the need
for duration-sensitive design criteria in modern codes. Analytical
methods have also evolved to support regularization: (Zalka, 2001):
introduced a simplified approach for calculating natural frequencies
in wall-frame systems, enabling efficient preliminary assessments of
torsional stiffness distribution. For nonlinear modeling, (Pelletier
and Leger, 2017), developed a framework for reinforced concrete
cores, capturing torsional-axial coupling effects and advocating for
detailed 3D analysis to prevent premature damage.

Mitigation strategies have been explored across computational
and experimental studies. In (Takewaki et al., 2012), the authors
proposed a “worst-case scenario” framework for optimizing passive
dampers, such as tuned mass dampers (TMDs), to decouple
torsional and translational modes during earthquakes, thereby
improving energy dissipation. Practical retrofitting techniques,
such as stiffening and mass redistribution, were demonstrated
by (Harbic et al., 2011) to reduce torsion in existing structures
(Botis et al., 2018). extended these efforts by proposing layout
optimization of shear walls in rectangular RC buildings to balance
torsional resistance without compromising functionality. For
new designs (Maske and Pajgade, 2013), emphasized symmetric
stiffness distribution, showing that strengthening perimeter
elements suppresses torsional vibrations.

Most of the mentioned contributions in the literature address
the control of torsional modes by adding or strengthening elements
within the structure to be protected. In contrast, this study adopts
a different perspective; in particular, this paper extends the study
presented in (Di Egidio et al., 2022b), which investigated the seismic
response of a frame structure coupled with an external structure
equipped with an inerter device. In that study, a general M-
DOF frame structure was modeled as a 2-DOF shear-type system.
Although the coupling with the external structures proved to be
effective in reducing in-plane seismic effects, limited insight was
obtained regarding torsional motion, which occurs in spatial frame
structures during earthquake excitation. To overcome this limitation
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a low-dimensional spatial model is developed to investigate the
seismic response of a general frame structure. This model is a
two-level, spatial shear-type structure, in which it is assumed
that the floor slabs are infinitely rigid within their own plane.
Consequently, the model has six degrees of freedom, three for
each level. While the two papers adopt conceptually similar
approaches, employing inerter-based systems to enhance the seismic
performance of frame structures, the present paper specifically
focuses on mitigating torsional effects induced by asymmetric
mass or stiffness distribution. This is achieved by strategically
placing inertial devices to counteract rotational responses, whereas
the previous study emphasizes the reduction of translational
displacements and inter-storey drifts through coupling with an
external, deformable structure.

The present study assumes linear behavior for both the
structural system and the damping devices.While this simplification
enables clearer interpretation of the fundamental dynamic
mechanisms, particularly under moderate to strong excitations,
it does not capture potential nonlinear effects such as yielding
or stiffness degradation. The adoption of a linear model, widely
accepted for preliminary design and parametric assessment,
avoids the need to define a specific nonlinear formulation, which
would require selecting a structural typology and significantly
increasing the input data and model complexity, thus limiting
generalizability.

Two distinct methods are proposed to enhance the seismic
response of a three-dimensional (3D) frame structure. The first
approach (System 1) integrates inerter devices directly into the
structural system, whereas the second (System 2) couples the
frame with external auxiliary structures incorporating inerters. The
developedmodel facilitates a comprehensive assessment of torsional
effects and evaluates the comparative efficacy of both systems
in mitigating such responses. Using a Lagrangian formulation,
the equations of motion are derived for three configurations:
(i) the stand-alone frame structure, (ii) System 1, and (iii)
System 2.

Three different earthquake records are used as base excitation to
assess the effectiveness of each approach. An extensive parametric
analysis is conducted by varying the fundamental parameters of the
mechanical systems. Two performance indexes are introduced to
evaluate the effectiveness of the proposed methods in comparison
to the stand-alone frame structure. These indexes are defined as the
ratios of the displacements or drifts of System one or System two and
those of the stand-alone frame structure. A value of these indexes
less than unity indicates that Systems one and two are effective in
reducing the seismic effects on the frame structure. The results of
the parametric analysis are presented in performance curves and
maps that plot the performance indexes as functions of one or two
parameters, respectively. Special attention is devoted to the effects of
aligning themass and stiffness centers at the first level in both System
1 and System 2.

2 Mechanical system

Two different methods are investigated to improve the seismic
performance of a 3D frame structure. In the following analysis, a
general spatial multi-degree-of-freedom (M-DOF) frame structure

is consistently modeled as a two-level, three-dimensional shear-type
system (see Figure 1).

Each level has the same dimensions 2lx × 2ly, is rectangular
in shape, and is assumed to be rigid within its own plane. The
assumption of infinitely rigid floor diaphragms is adopted to
simplify the analysis and focus on the primary structural response
mechanisms. Although in some structures, diaphragm flexibility
and potential discontinuities can influence force distribution
and dynamic characteristics, in the cases considered in this
investigation, the floor slabs are relatively stiff compared to the
lateral load-resisting elements, and the diaphragm spans are
moderate (see Section 3.3), which reduces the significance of
diaphragm deformation.

Additionally, the mass distribution is considered uniform, with
the center of mass at each level located at the intersection of
its diagonals. The masses of the levels are denoted as msi, with
i = 1,2. Hence, the kinematics of a level can be described by
three displacement components. Since the adopted low-dimensional
mechanical system consists of two levels, six Lagrangian parameters,
usi,vsi,ϕsi, with i = {1,2}, are required to fully describe the system’s
kinematics.These Lagrangian parameters correspond directly to the
displacement of the center of mass at each of the two levels of the
structure.

The mechanical characteristics of the 6-DOF, 3D shear-
type system are selected to be dynamically equivalent to a
real M-DOF frame structure, utilizing the dynamic equivalence
criterion developed in (Fabrizio et al., 2017a; Fabrizio et al.,
2019; Fabrizio et al., 2017b). Specifically, since this criterion was
originally formulated for 2D frame structures, it is applied here
to define the total stiffness of the two levels of the 6-DOF shear-
type system separately along the x- and y-directions. This choice
yields a 3D model with equal stiffness along the two orthogonal
directions. It is evident that, when the stiffness of a level is equally
distributed among the four columns, the stiffness center of each
level coincides with its corresponding mass center, provided the
regularity in geometry and mass distribution mentioned before.
Conversely, a non-uniform distribution of stiffness among the four
columns (as in the case presented herein) would results in an
irregular structure, where the stiffness and mass centers would not
coincide. To simplify the derivation of the equations of motion, in
each direction, the stiffness resulting from all the columns of each
level has been modelled by springs located at two nodes of each
level (see Figure 2). For example, all the stiffness of the columns
of the first level along the x-direction is assumed to modeled by
kxA and kxC.

The two investigated methods to improve the seismic
performances of the frame structure both involve the use of inerter
devices (see Section 2.4 for a brief description of these devices). In
the case of System 1, the inerter devices are directly connected to
the first level of the frame structure whose seismic performance
is to be improved (see Figure 1a). Specifically, the two inerters
M1 operate along the x-direction, while the other two inerters M2
operate along the y-direction. System 1 retains the same number of
degrees of freedom as the stand-alone structure (without inerters),
making it a 6-DOF mechanical system, as there is no need to
associate additional degrees of freedomwith the inerter devices.The
Lagrangian parameters are the displacements usi,vsi,ϕsi (i = {1,2})
of the two levels.
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FIGURE 1
Mechanical systems: (a) System with only inerters (System 1); (b) System with external structures equipped with inerters (System 2).

In the case of System 2, the structure to be protected is
connected at the first level to two external, auxiliary, rectangular-
shaped structures with masses m1 and m2, through visco-
elastic linear devices. These two external structures serve as
TMDs for the studied structure. The mass distribution of the
external structures is assumed to be uniform, with the center
of mass located at the geometric center of the rectangle. The
inerter devices are, in this case, connected to the auxiliary
systems (see Figure 1b). As in the previous case, the two inerters
M1 operate along the x-direction, while the other two inerters
M2 operate along the y-direction. It is assumed that each external
structure has two degrees of freedom (DOF): one associated
with displacement along the smaller dimension and the other

with torsion. The displacement along the greater dimension
of the auxiliary structures is not considered as a Lagrangian
parameter, as the stiffness in this direction is assumed to be
very high, effectively preventing any significant interaction with
the main dynamics of the coupled system. Consequently, the
System 2 requires 10-DOF to fully describe its kinematics,
6-DOF for the two-level spatial shear-type system, and an
additional 4-DOF (u1,ϕ1,v2,ϕ2) for the two external auxiliary
structures.

In both System 1 and System 2 the polar inertia of the sections
of the columns are considered negligible.The equations ofmotion of
both the System 1 and System 2 are obtained through a Lagrangian
approach.
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FIGURE 2
Mechanical systems, location of stiffness and damping elements: (a) System with only inerters (System 1); (b) System with external structures equipped
with inerters (system 2).

2.1 Damping of the 3D frame structure

The general equations of motion of the stand-alone, two-level,
3D shear-type system can be formally written as in Equation 1:

Mẍ+Cẋ+Kx = −Mrüg (t) , (1)

where M,C, and K are the mass, damping, and stiffness
matrices of dimension 6× 6, respectively, the vector x =
{us1,vs1,ϕs1,us2,vs2,ϕs2}

T accounts the six Lagrangian parameters,
and ug is the seismic input. As observed, the seismic excitation
is applied along a direction inclined of angle ζ respective to the
horizontal line (see Figure 1). In the paper, ζ is always set to ζ =
45o. Since the mass matrix M is diagonal, the projection vector
r = {cos (ζ), sin (ζ),0,cos (ζ), sin (ζ),0}T. Although assuming a fixed
angle may appear restrictive, preliminary analyses indicated that
variations in this parameter have only a minor influence on the
resulting maps, which remain qualitatively consistent. Therefore,
only the results obtained with ζ = 45o are presented herein.

The damping matrix C is obtained from the stand-alone, two-
level, 3D shear-type system, by a Rayleigh approach. Specifically, C
is a linear combination of mass and stiffness matrices as:

C = αM+ βK, (2)

where coefficients α and β are:

α = ξ
2ω1ω2

ω1 +ω2
, β = ξ 2

ω1 +ω2
. (3)

In Equation 3, ω1 and ω2 are the circular frequencies of
the first two oscillation modes of the structure, whereas ξ is
the modal damping of such first two modes. In the analyses
performed, it is always set ξ = 0.05. The damping matrix M
obtained from Equation 2 is used also to describe the damping
properties of the 3D frame structure in System 1 and System 2.

2.2 System 1: 3D frame structure equipped
with inerters

The equations ofmotion are obtained by a Lagrangian approach.
To write the kinetic T and potential V energies, the displacements
of the points labeled from A to D (vertexes of the first level) and
from P to S (vertexes of the second level) needed to be written.
In fact, the elastic springs and the virtual masses of the inerters
are all applied in these points (see Figure 1a). With respect to
coordinate systems that have origin in the mass centers of the
two levels (intersection of the diagonals), such displacements read
(Equation 4):

xA = xg + us1 +ϕs1ly, yA = yg + vs1 −ϕs1lx,

xB = xg + us1 +ϕs1ly, yB = yg + vs1 +ϕs1lx,

xC = xg + us1 −ϕs1ly, yC = yg + vs1 −ϕs1lx,

xD = xg + us1 −ϕs1ly, yD = yg + vs1 +ϕs1lx,

⋯

xP = xg + us2 +ϕs2ly, yP = yg + vs2 −ϕs2lx,

xQ = xg + us2 +ϕs2ly, yQ = yg + vs2 +ϕs2lx,

xR = xg + us2 −ϕs2ly, yR = yg + vs2 −ϕs2lx,

xS = xg + us2 −ϕs2ly, yS = yg + vs2 +ϕs2lx,

(4)

where xg = ugcos(α) and yg = ug sin (α) are the components of
the seismic input along the horizontal and vertical directions,
respectively. The kinetic energy then reads (Equation 5):

T = 1
2
{ms1 [(ẋg + u̇s1)

2 + (ẏg + v̇s1)
2] + Is1ϕ̇

2
s1

+ms2 [(ẋg + u̇s2)
2 + (ẏg + v̇s2)

2] + Is2ϕ̇
2
s2

+ M1 [(ẋB − ẋg)
2 + (ẋD − ẋg)

2] +M2 [(ẏC − ẏg)
2 + (ẏD − ẏg)

2]} ,
(5)

where Is1 and Is2 are the polar moment of inertia of the two
levels of the 3D frame structure. The potential energy reads
(Equation 6):
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V = 1
2
{kxA(xA − xg)

2 + kxC(xC − xg)
2 + kyA(yA − yg)

2 + kyB(yB − yg)
2

+kxAP(xP − xA)
2 + kxCR(xR − xC)

2 + kyAP(yP − yA)
2 + kyBQ(yQ − yB)

2} ,
(6)

where kxA and kxC represent the sum of the stiffness of all the
columns below the first level along horizontal lines passing through
points A and C, respectively. Similarly, kyA and kyB represent the
sum of the stiffness of all the columns below the first level along
vertical lines passing through points A and B, respectively. The
same meaning is associated to the other stiffnesses appearing in the
potential energy. Specifically, kxAP and kxCR represent the sum of the
stiffness of all the columns below the second level along horizontal
lines passing through points P and R, respectively. Similarly, kyAP
and kyBQ represent the sum of the stiffness of all the columns below
the second level along vertical lines passing through points P andQ,
respectively.

To account for the non-conservative forces due to the damping
of the structure, their virtual work δW needs to be computed
(Equation 7). It reads:

δW = (Cẋ)Tδx, (7)

whereC is the damping matrix and x is the vector containing the six
Lagrangian parameters, already described in Section 2.1. Finally, δx
represents the virtual variation of the Lagrangian parameters.

By introducing the Lagrangian function L = T−V, the six
equations of motion are then obtained through Equation 8:

d
dt
(∂L
∂ẋ
)− ∂L

∂x
= Cẋ. (8)

The equations ofmotion are omitted for brevity, but all the equations
presented in this section permit their derivation.

2.3 System 2: 3D frame structure coupled
to an external apparatus with inerters

To derive the equations of motion of the System 2 (see
Figure 1b), the displacements of all the vertexes of the 3D frame
structure need to be evaluated.Their displacements are exactly equal
to those written for System 1 and reported in Equation 4. Moreover,
also the displacements of all the vertexes of the external auxiliary
structures have to be written. With respect to coordinate systems
that have origin in the mass centers of the two external structures
(intersection of the diagonals, see Figure 1b), such displacements
read as in Equation 9:

xL = xg + u1 +ϕ1ly,

xM = xg + u1 −ϕ1ly,

xN = xg + u1 +ϕ1ly,

xO = xg + u1 −ϕ1ly,

⋯

yE = yg + v2 −ϕ2lx,

yF = yg + v2 +ϕ2lx,

yH = yg + v2 −ϕ2lx,

yI = yg + v2 +ϕ2lx,

(9)

Then kinetic energy T reads (Equation 10):

T = 1
2
{ms1 [(ẋg + u̇s1)

2 + (ẏg + v̇s1)
2] + Is1ϕ̇

2
s1

+ms2 [(ẋg + u̇s2)
2 + (ẏg + v̇s2)

2] + Is2ϕ̇
2
s2

+m1(ẋg + u̇1)
2 + I1ϕ̇

2
1 +m2(ẏg + v̇2)

2 + I2ϕ̇
2
2

+ M1 [(ẋL − ẋg)
2 + (ẋM − ẋg)

2] +M2 [(ẏE − ẏg)
2 + (ẏF − ẏg)

2]} ,
(10)

where I1 and I2 are the polar moment of inertia of the two auxiliary
structures. The potential energy reads as in Equation 11:

V = 1
2
{kxA(xA − xg)

2 + kxC(xC − xg)
2 + kyA(yA − yg)

2 + kyB(yB − yg)
2

+kxAP(xP − xA)
2 + kxCR(xR − xC)

2 + kyAP(yP − yA)
2 + kyBQ(yQ − yB)

2

+kxN(xN − xg)
2 + kxO(xO − xg)

2 + kyH(yH − yg)
2 + kyI(yI − yg)

2

+ kxBL(xL − xB)
2 + kxDM(xM − xD)

2 + kyCE(yE − yC)
2 + kyDF(yF − yD)

2} ,
(11)

where kxBL, kxDM, kuCE, and kyDF are the stiffness of the coupling
visco-elastic devices that connects the 3D frame structure to the
auxiliary structures (see Figure 1b).

To account for the non-conservative forces due to the damping
of the structure, their virtual work δW needs to be computed as in
Equations 12, 13:

δW = [(Cs +Cext) ̇̂x]
Tδx̂, (12)

where

Cs = [

[

C 0

0 0
]

]
, x̂ =
{
{
{

x

xext

}
}
}
. (13)

Quantities C and x are the damping matrix and vector of the
Lagrangian parameters of the 3D frame structure already introduced
in Equation 7, andCs is a 10× 10matrix.Moreover,Cext is still a 10×
10 matrix and accounts for the damping of the auxiliary structures
and coupling visco-elastic devices. Vector xext = {u1,ϕ1,v2,ϕ2}

T

contains the Lagrangian parameters associated to the auxiliary
structures. Due to the large dimensions of Matrix Cext and by
exploiting the symmetry properties, only its symmetric components
cij are reported in Equation 14:

c11 = −cxBL − cxDM
c21 = 0, c22 = −cyCE − cyDF
c31 = cxDMly − cxBLly, c32 = cyCElx − cyDFlx, 
c33 = −cxBLl2y − cxDMl2y − cyCEl2x − cyDFl2x
c41 = 0, c42 = 0, c43 = 0, c44 = 0
c51 = 0, c52 = 0, c53 = 0, c54 = 0, c55 = 0
c61 = 0, c62 = 0, c63 = 0, c64 = 0, c65 = 0, c66 = 0
c71 = cxBL + cxDM, c72 = 0, c73 = cxBLly − cxDMly, c74 = 0, c75 = 0, c76 = 0, 
c77 = −cxBL − cxDM − cxN − cxO
c81 = cxBLly − cxDMly, c82 = 0, c83 = cyDFlx − cyCElx, c84 = 0, c85 = 0, c86 = 0, 
c87 = −cxBLly + cxDMly − cxNly + cxOly, c88 = −cxBLly2 − cxDMl2y − cxNl2y − cxOl2y
c91 = 0, c92 = cyCE + cyDF, c93 = cyDFlx − cyCElx, c94 = 0, c95 = 0, c96 = 0, 
c97 = 0, c98 = 0, c99 = −cyCE − cyDF − cyH − cyI
c101 = 0, c102 = cyDFlx − cyCElx, c103 = cyCEl2x + cyDFl2x, c104 = 0, c105 = 0, 
c106 = 0, c107 = 0, c108 = 0, c109 = cyCElx − cyDFlx + cyHlx − cyIlx, 
c1010= − cyCEl2x − cyDFl2x − cyHl2x − cyIl2x

(14)

Damping coefficients cxN, cxO, cyH, and cyI are associated to
the auxiliary structures and represent the viscous characteristic
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of the devices applied to the vertexes that correspond to the
last subscript. As an instance, cxN is the damping coefficient that
complete the description of the visco-elastic device applied at point
N and having stiffness kxN. Note that in Figure 1 the visco-elastic
properties associated to the elements of the structures are drawn
only with springs for simplicity. Such dampings are conventionally
defined as in Equation 15:

cxN = cxO = 2ωe1m1ξe,

cyH = cyI = 2ωe2m2ξe,
(15)

where ωe1 = √(kxO + kxN)/m1 and ωe2 = √(kyH + kyI)/m2 are the
frequencies of the two auxiliary structures assumed isolated. It is
always considered ξe = 0.05.

Damping coefficients cxBL, cxDM, cyCE, and cyDF are instead
associated to the coupling devices that connect the couple of vertexes
corresponding to the last two subscripts. As an instance, cxBL is
the damping coefficient that complete the description of the visco-
elastic device connecting points B and L and of stiffness kxBL. Such
dampings are conventionally assumed as in Equation 16:

cxBL = cxDM = 2ωe1m1ξc,

cyCE = cyDF = 2ωe2m2ξc,
(16)

where it is always considered ξc = 0.10.
By introducing the Lagrangian function L = T−V, the ten

equations of motion are then obtained through Equation 17:
d
dt
(∂L
∂ ̇̂x
)− ∂L

∂x̂
= (Cs +Cext) ̇̂x, (17)

and can be synthetically written as in Equation 18:

M̂ ̈̂x+ Ĉ ̇̂x+ K̂x̂ = −M̂ ̂rüg (t) . (18)

The explicit expressions of such equations are presented
in the Supplementary Appendix.

2.4 Inerter device

An inerter is a mechanical device designed to exert a force,
FID, that is directly proportional to the relative acceleration between
two connection points, or terminals. A common design approach
involves using a rack-pinion-flywheel assembly, as depicted in
Figure 3. In this configuration, the device’s primary components
include two or more flywheels with radius Ri and mass mωi, which
are linked to a linear rack through a pinion-gear mechanism.
This arrangement allows the inerter to effectively translate relative
accelerations into force outputs.The resisting force FID of the inerter
device is defined as in Equation 19 (Makris and Kampas, 2016;
Thiers-Moggia and Málaga-Chuquitaype, 2018):

FID =mI (üdx − üsx) . (19)

Here,mI represents the virtualmass (or inertance) of the inerter.This
virtual mass can be increased by incorporating additional flywheels
into the device. For an inerter device comprising N flywheels, mI
is given by Equation 20:

mI =
1
2
mω1

R2
1

ρ21
+ 1
2
mω2

R2
1R

2
2

ρ21ρ
2
2
+⋯+ 1

2
mωi

R2
1R

2
2⋯R

2
i

ρ21ρ
2
2⋯ρ

2
i
+⋯
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2
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1R

2
2⋯R

2
i⋯R

2
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ρ21ρ
2
2⋯ρ

2
i⋯ρ

2
N

. (20)

FIGURE 3
Rack-pinion-flywheel rotational inertia system.

The first two terms of Equation 20 define the virtual mass mI
of the device shown in Figure 4. Importantly, in this type of inerter
device, kinetic energy can transfer freely between the inerter and
the structure due to the absence of clutches or other mechanisms
that could restrict such energy exchange, as seen in (Makris and
Kampas, 2016).

3 Parametric analysis

An extensive parametric analysis is conducted by varying
several parameters that characterize the coupledmechanical system.
This analysis encompasses both System 1 and System 2 and
aims to highlight the role of these parameters in promoting
a more informed application of the proposed improvement
methods.

3.1 Variable parameters for System 1

After selecting the frame characteristics for the parametric
analysis, the fundamental parameter to consider as a variable is
the value of the virtual mass provided by the inerters. The total
virtual mass M acting in both x and y directions thanks to the
couples of equal inerters of virtual mass M1 (acting along the x
direction) and M2 (acting along the y direction) (see Figure 1a) is
parametrized with respect to the mass of the first level ms1 as in
Equation 21:

M = ηms1. (21)

Therefore, for equal inerters along the x and y directions,
follows that M1 =M2 =M/2. It is worth observing that, when the
distribution of the virtual masses is uniform along the sides of the
structures, as considered in this paper, the mass centers of both
System one and System two coincide with the center of mass of the
stand-alone frame structure.

3.2 Variable parameters for System 2

For System 2, a higher number of variable parameters than
System 1 are investigated to analyse the performance of the
protection method. The variable parameters considered in the
analysis are.
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FIGURE 4
Periods and modal shapes of system 1 with only inerters.

• The total virtual mass M of the inerters in both the x and y
directions (parametrized as before, Equation 22)

M = ηms1. (22)

For equal inerters along the x and y directions, follows thatM1 =
M2 =M/2.

• The total stiffness Ke of the external auxiliary
structures along their shorter directions (assumed to be
equal in both, Equation 23)

Ke = γeKx1orequivalentlyKe = γeKy1, (23)

where K1x = K1y refers to the total stiffness of the first level of the 3D
shear-type system, assumed equal in both directions.The stiffnessKe
is assumed to be uniformly distributed to align the centers of mass
and stiffness within each auxiliary structure (i.e., kxN = kxO = Ke/2,
kyH = kyI = Ke/2).

• The total stiffness Kc of the coupling devices among the 3D
shear-type system and the auxiliary structures (Equation 24)

Kc = γcKx1orequivalentlyKc = γeKy1. (24)

The distribution of stiffness is considered variable to allow for
adjusting the position of the stiffness center of the global coupled
structure. Specifically (Equation 25):

kxBL = αKc,kxDM = (1− α)Kc,

kyCE = βKc,kxDF = (1− β)Kc.
(25)

Coefficients α and β are suitably selected to move the global stiffness
center of the coupled structure in a desired point.

In all the analyses the mass of the auxiliary structures are
considered fixed quantities,m1 =m2 = 0.1ms1.

3.3 Geometrical and mechanical
characteristics of the 3D frame structure

The parametric analyses are performed on two different frame
structures. Table 1 shows the original geometrical characteristics of
the studied M-DOF frame structures, that are then modeled by
two-level, 3D shear-type systems. Specifically, the columns Storeys,
Area, 2lx, and 2ly refer to actual the M-DOF frame structures. The
structure labeled as Frame 1 (first row of the Table) has four identical
rectangular levels, each with an area of 300 m2 and dimensions
20.0× 15.0 m2, while the other, labeled as Frame 2 (second row
of the Table), has five identical rectangular levels, each measuring
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TABLE 1 Geometrical and mechanical characteristics of the two reference frame structures.

Frame Storeys Area 2lx 2ly ms1 ms2 K1x = K1y K2x = K2y Period

[m2] [m] [m] [kg× 103] [kg× 103] [kNm−1] [kNm−1] [s]

Frame 1 4 300 20.0 15.0 361.8 1,085.4 588,748 280,763 0.51

Frame 2 5 350 25.0 14.0 422.1 1,688.4 767,626 285,132 0.60

TABLE 2 Position of the stiffness center of the two reference frame
structure.

Frame xk yk

[m] [m]

Frame 1 12.0 6.0

Frame 2 15.0 5.6

350 m2 and with dimensions 25.0× 14.0 m2. Both structures are
assumed to have levels with uniform stiffness in both directions.
Additionally, the mass centers at each level coincide, while the
stiffness centers, although aligned with each other at the two levels,
are offset from the mass centers.

The remaining columns of Table 1 refer to the mechanical
characteristics of the two-level, 3D shear-type systems, which are
dynamically equivalent to the actual structures. The previously
mentioned dynamic equivalence criterion ((Fabrizio et al., 2017a;
Fabrizio et al., 2019; Fabrizio et al., 2017b)), used to assess the
characteristics of the 3D shear-type systems, determines the values
of masses and stiffnesses such that the first level corresponds
to the first level of the actual structure, while the second level
corresponds to the top level of the actual structure. Consequently,
the displacement differences between the two levels serves as a
measure of the drift in the actual structure. Columns ms1 and ms2
provide the masses associated to each level. It is worth noticing that
in Frame 1, ms2 is three times ms1 since the second level of the 3D
shear-type system has to represent all the levels above the first. The
same thing occur for the Frame 2, where ms2 is four times ms1.
Columns K1x = K1y and K2x = K2y are the total stiffness of the two
levels of the 3D shear-type system along directions x and y. Finally,
the last column, Period, provides the fundamental oscillation period
of the structures.The applied equivalence criterion ensures that both
the actual structures and the 3D shear-type systems have the same
oscillation period.

The position of the stiffness centers ks of the 3D shear-type
systems, assumed coincident at each level, is reported in Table 2.The
two columns provide the coordinates of kswith respect the structural
vertex A ≡ P (see Figure 1).

The eccentricity of the stiffness center with respect to the mass
center is caused by the non-uniform distribution of stiffness among
the columns along the two alignments parallel to the x− and
y−axes. Specifically, the position of the stiffness center in Table 2 is

determined by the following stiffness distribution (Equation 26):

kxA = 0.60K1x, kxC = 0.40K1x

kyA = 0.60K1y, kyB = 0.40K1y

…

kxAP = 0.60K2x, kxCR = 0.40K2x

kyAP = 0.60K2y, kyBQ = 0.40K2y

(26)

3.4 Performance indexes

To evaluate the performance of the proposed methods, two
performance indexes are introduced (Equation 27). They read:

α1 =
max |sD (t)|
max | ̃sD (t)|

, α2 =
max |ΔsDS (t)|
max |Δ ̃sDS (t)|

(27)

where sD = √u2D + v
2
D is the displacement of point D of System

1 or System 2, whereas ̃sD is the displacement of the same
point D of the stand-alone frame structure. Similarly, ΔsDS =
√(uS − uD)2 + (vS − vD)2 is the relative displacement (total drift)
between points S and D of System 1 or System 2 (drift), whereas
Δ ̃sDS is the same drift evaluated on the stand-alone frame structure.
Therefore, α1 refers to the displacement of the first level of the
structures, whereas α2 refers to the drift between the top and the
first levels.

Two additional performance indexes related to the torsion
of the structure are used to assess the performance of the
protection methods (Equation 28). They are defined as:

β1 =
max |ϕs1 (t)|

max | ̃ϕs1 (t)|
, β2 =

max |ϕs2 (t) −ϕs1 (t)|

max | ̃ϕs2 (t) − ̃ϕs1 (t)|
, (28)

where ϕs1 and ϕs2 are the rotations of the two levels of the System
1 or Sytem 2, whereas ̃ϕs1 and ̃ϕs2 are the corresponding rotations of
the stand-alone frame structure. It is worth observing that β1 refers
to the torsion of the first level of the structures, whereas β2 refers to
torsional drift between the top and first levels.

With this formulation, the effectiveness of the external apparatus
improves as the values of α1, α2 and β1, β2 decrease relative to
unity. Although no absolute engineering threshold is imposed to
quantify the effectiveness of the protection systems, a response ratio
significantly lower than unity (typically below 0.8) can be considered
as indicative of substantial improvement, with values approaching
0.6 or lower denoting particularly effective performance.
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4 Spectral analysis

The first analysis aims to investigate the impact of the total
virtual mass M on the spectral characteristics of both System 1
and System 2. The periods and modal shapes of all the oscillation
modes for System 1 and System 2 are obtained by varying M, then
compared with those of the stand-alone structure, and the role of
M is discussed. All the results shown in this section refer to the 3D
frame structure with geometrical and mechanical characteristics of
Frame 1 (see the first row of Table 1).

4.1 Periods and modes of System 1

Both the stand-alone 3D frame structure and System 1 are 6-
DOF mechanical systems, therefore they admit six frequencies and
oscillation modes. The results of the spectral analysis is reported in
Figure 4, which shows the periods and modal shapes of the stand-
alone frame structure (left columns), and those of the System 1 with
two different total virtual mass M. Specifically, the middle column
refers to the case with M = 10ms1 and the right column shows the
case with M = 50ms1. In the modal shapes, the dashed line refers
to the undeformed configuration, the thick solid line shows the
modal displacement of the first level, whereas the thin solid line
refers to the second level.The first observation concerns the fact that
the mode periods increase as the virtual mass increases, producing
effects similar to those achieved through base isolation (Mazza and
Labernarda, 2022; Mazza et al., 2024). The other notable effect is
related to the role played by the virtual massM on themodal shapes.
AsM increases, a separation of effects on the oscillation modes can
be observed. Specifically, for high values of M, only the first level
exhibits significant modal displacement in the first three modes,
while the second level is nearly superimposed on the first. In the
second set of three modes, only the second level shows significant
modal displacement, with the first level nearly superimposed on the
undeformed configuration. This separation of effects between the
two levels of the system clarifies the structure’s dynamic response,
enabling a more straightforward design approach.

4.2 Periods and modes of System 2

The spectral analysis on System 2 is performed under the
hypothesis that γe = γc = 1 (i.e., Ke = Kc = 1.0Kxs1, see Equations 23
and 24). Moreover, the stiffness of the coupling devices (kxBL, kxDM
and kyCE, kyDF) are distributed to align the stiffness andmass centers
of the first level of the coupled structure. This can be obtained with
specific values of α and β in Equation 25: α = 0.4, β = 0.6.

Figure 5 shows the frequencies and modal shapes of the stand-
alone frame structure and of System 2 for two different values of
M. The same graphical conventions as in Figure 4 are used: dashed
lines represent the undeformed configuration, while thick and thin
solid lines represent the first and second levels, respectively. Since the
stand-alone and System 2 admit different number of modes (six and
ten, respectively), in Figure 5 the modes of the stand-alone system
and System 2 with similar shapes are arranged side by side.

For the smallest value of M, M = 20ms1, the first three modes
of System 2 (middle column) show a slight increase in periods

and exhibit shapes similar to those of the first three modes of the
stand-alone structure. However, the modal amplitudes of the frame
structure of System 2 are smaller than those of the stand-alone
structure, with the predominant modal displacements occurring
primarily in the external structures. The last three modes exhibit
periods and modal shapes close to the last three of the stand-alone
structure, with a negligible participation of the external auxiliary
structures.

An increase of the virtual mass up to the value of M = 100ms1
results in a significant increase in the periods of the first three
modes. Additionally, these modes primarily affect the first level, as
the modal displacements at the second level are negligible, with
predominant effects mainly occurring in the external structures.
Modes 5, 6, and seven exhibit periods similar to those of the first
three modes of the stand-alone structure, with the predominant
modal displacements concentrated at the second level.This indicates
a distinct separation of modal effects between the first and second
levels, as previously discussed for System 1. Finally, the last three
modes of System two have periods that closely match those of the
last three modes of the stand-alone structure, albeit with slightly
higher modal displacements at both levels. It is noteworthy that
in modes 5 to 10, the external auxiliary structures are minimally
involved due to their small modal displacements. As a final remark,
mode four of System two does not have a direct correspondence
with the modes of the stand-alone structure. It involves the
frame structure through translational displacement and the external
auxiliary structures through pure torsional displacement. Also in
this case, distinguishing the modal effects at each system level
enhances clarity in analyzing the structure’s dynamic response,
thereby facilitating a more streamlined design process.

5 Seismic analysis

The seismic analysis is conducted by subjecting System 1 or
System 2 to specific earthquake records and varying one or more
parameters (see Section 3). Specifically, the parametric analysis on
System 1 is carried out by evaluating the performance indexes
α1 and α2 as the total virtual mass M varies (Equation 22). In
contrast, for System 2, the parametric analysis is conducted by
creating performance maps that display the contour plot of the
performance indexes in the parameter plane γc − γe (i.e., the stiffness
Kc and Ke are considered variable, see Equations 23 and 24),
under a specific earthquake and keeping the total virtual mass M
fixed.

In the regions of the curves or maps where the performance
indexes are less than unity, the seismic effects on System 1 and
System 2 are smaller than those on the stand-alone frame structure.

5.1 Earthquake records

The following earthquake records are considered in
this study (Figure 6).

(a) Kobe, 1995 Japan earthquake, Takarazuka station, 0 deg,
ground level, position of the station: 34.8090N, 135.3440W;
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FIGURE 5
Periods and modal shapes of system 2 with external structures equipped with inerters.

(b) Northridge, Newhall, 1994 California earthquake,- LA County
Fire station no.24279, 360 deg, position of the station:
34.387N, 118.530W;

(c) Parkfield, 1966 California earthquake, station no.013,
comp N65E, position of the station: 35.726N,
120.287W.
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FIGURE 6
Records of kobe, newhall and parkfield events: (a) Time histories; (b) Pseudo-acceleration spectra.

For ease of reference, each record is labeled using the underlined
name provided in the list.

The use of three natural earthquake records (Kobe, Newhall,
and Parkfield) is driven by the need for an initial evaluation of the
protection system’s performance under seismic inputs characterized
by distinct spectral contents. These records are selected based
on their effective use in prior studies by the authors, where
they demonstrated marked differences in system dynamics due
to variations in frequency content. This distinction is further
supported by their pseudo-acceleration spectra, which highlight
how different excitations can engage different modal responses of
the structural system.

In this preliminary phase of the study, the earthquake records
are used without scaling to a specific design spectrum or code-based
intensity level. The aim is to qualitatively assess the sensitivity of the
protection system to differences in seismic frequency content using
natural, unmodified ground motions, thus preserving the intrinsic
variability present in real earthquake data. This choice avoids
potential distortions introduced by artificial scaling and is justified
in the context of the linear structural model adopted in the study.
Since the performance of the proposed systems is expressed through
normalized response ratios (e.g., α1 and α2), applying uniform
scaling to the input ground motions would not affect the results
since both the numerator and denominator of the ratios would
scale proportionally.Nonetheless, for a comprehensive assessment
of practical applicability, especially for a specific structure or site,
ground motions should be selected and scaled in accordance with
seismic code provisions, hazard levels, and target spectra. Future
developments of this research will include such extensions to enable
a more rigorous, code-compliant performance evaluation of the
proposed protection strategies.

5.2 Seismic response of System 1

The parametric seismic analysis involves evaluating the
performance indices, α1 and α2, by varying the total virtual mass
M and using a single earthquake record. As a result, performance
curves plotting the performance indexes against the total virtual
mass M are generated. Each graph also includes a line at unity
to highlight the range of M values where the proposed method
effectively reduces the seismic effects on the frame structure.
Specifically, in regions where the performance curves fall below
this line, System one exhibits better seismic behavior than the
stand-alone frame structure.

Figure 7 shows the results obtained by exciting Frame 1 (see
Table 1) with the three selected earthquake records. Each graph
displays two performance curves: the solid curve corresponds to the
α1 index, while the dashed curve represents the α2 index. As can
be observed, there are large ranges of η (i.e., of M) where both the
indexes are less than unity, assuring good performances of System
1 respective to the stand-alone frame structure. Notably, the best
performances of the two levels (identified by theminimum values of
α1 and α2) occur for different virtual massM. Specifically, to ensure
optimal seismic response at the first level, the value of M must be
higher than that required to achieve the best response at the second
level. This can be explained by noting that, at the highest values
of M, the system exhibits a separation in the dynamics between
the first and second levels, as previously discussed. Furthermore,
the modes primarily involving the first level acquire longer periods,
thereby shifting the dynamics into the range of periods where
the earthquakes exhibit lower spectral power. In contrast, the
seismic response of the second level is associated with modes
that have periods falling within the range where the earthquakes
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FIGURE 7
Performance curves α1 and α2 for system 1 under kobe, newhall, and
parkfield earthquakes (Frame 1).

exhibit the highest spectral power. Conversely, the optimal seismic
response at the second level, represented by α2, necessitates small
values of M. However, these values are found in regions where
the performance index α1 remains significantly greater than unity.
Therefore, selecting an optimal value for the virtual mass M must
consider both performance indexes simultaneously. It is important
to note that developing an optimal procedure for choosing the value
of M is not the focus of this paper. Finally, based on the results, it
can be concluded that the performance trends of System one are
qualitatively consistent across the three selected earthquake records,
as evidenced by the similar shapes of the performance curves
and the comparable ranges of the parameter η in which optimal
responses are observed in Figure 7. Nonetheless, some variation in
the amplitude of the performance indexes is apparent, most notably
for the Parkfield earthquake, where the range of η values for which
α1 exceeds unity is significantly narrower than in the other two cases.

The time-histories of the total displacement sD and drift ΔsDS
(see Section 3.4), for both System one and the stand-alone structure
are obtained and compared in Figure 8. This figure shows the time-
histories of the absolute value of sD and ΔsDS that refer to points
labelled with letters P1 and P2 in Figure 7. Specifically, at point
P1, the performance index α2 reaches its minimum value, while at
point P2, the index α1 attains its minimum value. Each graph in
Figure 8 contains two time-histories: one representing the stand-
alone structure (thick grey line) and the other representing System
1 (thin black line). The system’s behavior at point P1 (graphs in

the first row of Figure 7) demonstrates that the maximum drift
ΔsDS of System 1 is smaller than that of the stand-alone structure.
Conversely, the maximum displacement sD is larger for System
1, aligning with the performance curves in Figure 7. The time-
histories referring to point P2 (second row of Figure 8) show
that the maximum values of both sD and ΔsDS for System 1 are
smaller than those for the stand-alone structure, consistent with
the curves in Figure 7.

The performance curves obtained from Frame 2 (see Table 1)
and shown in Figure 9 are qualitatively similar to those referring
to Frame one that are shown in Figure 7. Independently from
the earthquake record, the performance index α1 acquires the
minimum value for high values of the parameter η. Contrarily,
the performance index α2 reaches its minimum value for small
values of η. As a general observation, the efficiency of using inerter
devices to enhance seismic behavior decreases as the dimensions
of the frame structure, and in particular its height, increase. The
observed reduction in performance is primarily associated with
the relatively low installation level selected for the connection of
the protection system. Inerters or auxiliary structural elements
exert a direct influence on the displacement of the first storey,
contributing to a modal regularization that effectively limits top-
storey displacements. However, as the height of the structure
increases (i.e., with a greater number of storeys), the influence of
this indirect effect tends to diminish due to the increasing structural
flexibility and mode complexity.

5.3 Seismic response of System 2

The parametric seismic analysis involves mapping the values
of the performance indexes, α1 and α2 (or β1 and β2), onto the
parameter plane defined by γe and γc (see Equations 23 and 24,
respectively) using a single earthquake record and for a fixed value of
the virtualmassM.This process generates performancemaps, which
are contour plots illustrating the distribution of α1 and α2 across
the γe − γc parameter’s plane. To enhance readability, the contour
levels are delineated using a specific greyscale scheme, where lighter
shades correspond to smaller values of the performance indices.
A better seismic performance of System two than the stand-alone
frame structure is observedwithin regions of themaps characterized
by clearer greyscale tones. These areas indicate a superior system
performance, as denoted by lower values of the performance indexes
α1 and α2.

The first performance maps presented are those referring to
Frame 1 (see Table 1), excited by Parkfield earthquake, are obtained.
The stiffness of the coupling devices (kxBL, kxDM and kyCE, kyDF)
are distributed to align the stiffness and mass centers of the first
level of the coupled structure. Since, the sum Kc of these stiffnesses
in each direction is related to the first-level stiffness, Kx1 (or Ky1)
through the parameter γc (see Equation 24), the distribution of the
coupling stiffnesses directly depends on this parameter. Specifically,
the parametersα and β appearing in Equation 25 read (Equation 29):

α = 0.5− 0.1
γc
, β = 0.5+ 0.1

γc
. (29)

Figure 10 shows the performance maps, arranged in matrix
form. Specifically, along the rows the maps refer to different
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FIGURE 8
Time-histories of the system 1 under Parkfield earthquake (Frame 1, M = 30ms1, thin black line: System 1, thick grey line: stand-alone frame structure,
P1 ≡ (M = 20.0);P2 ≡ (M = 40.0).

FIGURE 9
Performance curves α1 and α2 for system one under kobe, newhall,
and parkfield earthquakes (Frame 2).

values of M, whereas along the columns the maps refer to the
two performance indexes α1 and α2. In the regions colored with
uniform grey the performance indexes are higher than unity,
therefore no advantage in using the proposed method occurs. It
should be noted that the grayscale levels used in the performance
maps are independently scaled for each figure, as they are
adapted to the specific range of values of the performance index
displayed. Consequently, no uniform colormap bar is shown. These
maps are intended to qualitatively highlight regions of improved
performance, with lighter shades indicating lower index values
relative to the stand-alone case, rather than to serve as absolute
design charts. The analysis reveals that the size of the advantage
regions, where the performance indexes are less than unity, as well
as the values of the indexes themselves, depend on the virtual mass
M. An increase in this parameter has opposing effects on the two
indexes. Specifically, as M increases, the advantage regions in the
α1 map expand, while those in the α2 map contract. Additionally,
an increase in M generally leads to a decrease in the values of α1
and an increase in those of α2. The spectral analysis in Section 4
provides insights into the dependence of the maps on the value
of M. For high values of M, there is a form of modal decoupling
between the two levels of the frame system.Themodes that primarily
involve the first level acquire a longer period, shifting their dynamics
outside the range where the earthquake has higher spectral power.
Consequently, the seismic effects on the first level are less severe.
Conversely, the modes involving the second level acquire periods
that fall within ranges where the earthquake has higher spectral
power, leading to more intense excitation. Therefore, in general,
it is not possible to find a pair of values for the parameters γc
and γe that minimize both performance indices simultaneously.
The optimal results should be sought for moderate values of M,
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FIGURE 10
Performance maps α1 and α2 for system two under parkfield earthquake (Frame 1).

where the best trade-off between the performance indices can be
achieved.

It is of great interest to evaluate the effects occurring from the
coincidence between the stiffness and mass centers at the first level.

Therefore, while the results shown in the previous Figure 10 are
obtained considering this coincidence, in Figure 11 the performance
maps with and without such coincidence are compared. The
results refer to Frame 1, excited by Parkfield earthquake, and fixed
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FIGURE 11
Effects of the centering of the mass and stiffness centers: (a) Performance maps α1 and α2 for System two under Parkfield earthquake; (b) Performance
maps β1 and β2 for system two under Parkfield earthquake (Frame 1, M = 30ms1).

M = 30ms1. Also in this figure a matrix arrangement of the maps is
used. The first two rows (Figure 11a) refer to maps obtained with
and without coincidence between the stiffness and mass centers. As

observed, this coincidence primarily affects the drift of the frame
structure, as the advantage region in the α2 map expands and the
values of α2 decrease.
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FIGURE 12
Performance maps α1 and α2 for System two under the Kobe and Newhall earthquakes (Frame 1, M = 30ms1).

The coinciden\ce between the stiffness and mass centers at the
first level has a limited effect on the α1 index, as the corresponding
maps remain qualitatively similar in their overall trends and
advantage regions. However, notably, the case without alignment
shows a local minimum in the region of higher γe and γc values,
suggesting the emergence of particularly favorable configurations
in that portion of the parameter space. The performance indexes
β1 and β2 provide interesting information about the torsion of the
first level and the torsional drift of the second level of the frame
structure. Figure 11b compares the performance β1 and β2 maps
obtained with and without the coincidence between stiffness and
mass centers. The results show that this coincidence significantly
reduces the torsion at the first level, as the advantage region
increases and the values of β1 decrease. Conversely, the torsional
drift,measured by β2, remains largely unchanged. As expected, since
the coincidence between the stiffness and mass centers occurs only
at the first level, the improvement in torsional effects is primarily
noticeable at the first level. Nevertheless, there is also a simultaneous,
notable improvement in the overall drift of the frame structure.

To further assess the effectiveness of System two in mitigating
seismic effects, Frame 1 with a total virtual mass of M =
30 ms1 is also subjected to excitation from the Kobe and
Newhall earthquake records. The corresponding performance
maps, reported in Figure 12, complement the results previously
obtained under the Parkfield earthquake and shown in Figure 10
(second row) and Figure 11a (second row). These additional maps

confirm that System two maintains its protective capabilities
across earthquakes characterized by distinct spectral contents.
TextcolormagentaConsistently across the three seismic inputs, the
maps reveal a broad region within the γc–γe parameter space
where both performance indices α1 and α2 are significantly below
unity, denoting a simultaneous reduction of first-level displacements
and inter-storey drift. Although slight variations in the extent and
location of these favorable regions are observed, likely due to the
different dominant frequency bands of the earthquakes, the overall
trend supports the robustness of the adopted protection strategy.
TextcolormagentaMore specifically, the Kobe earthquake induces
slightly larger values of the performance indices compared to
Parkfield, with optimal regions shifting slightly toward higher values
of γc. In contrast, the Newhall excitation produces performance
contours similar in structure to those from the Parkfield case,
although the drift index α2 exhibits more sensitivity to variations
in the external structure stiffness γe. These findings emphasize the
adaptability of System two under real earthquake conditions and
reinforce the idea that optimal tuning of the auxiliary system can
be maintained within practical ranges of stiffness ratios.

The performance maps for Frame 2, subjected to
seismic excitation from the three selected earthquakes, are
presented in Figure 13. All results are obtained for a fixed value
of the total virtual mass M = 50 ms1. These maps provide a
comprehensive overview of the performance of System two when
applied to a taller frame structure. Across all earthquake scenarios,
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FIGURE 13
Performance maps α1 and α2 for System two under Kobe, Newhall, and Parkfield earthquakes (Frame 5p, M = 50ms1).

System two consistently demonstrates its ability to reduce both the
displacement at the base level and the inter-storey drift, confirming
its applicability beyond the smaller prototype frame.

Nonetheless, the maps also reveal that the regions of optimal
performance vary depending on the specific performance index
considered. In particular, the minima of the displacement
performance index α1 and the drift performance index α2 do not
coincide in the γc-γe parameter space.This divergence indicates that
no single combination of coupling and external stiffness values
simultaneously optimizes both metrics. As a result, the design
strategy for System two must account for this inherent trade-off,
selecting parameter configurations that balance the reduction in
first-level displacements with the control of structural drift. Such

balance is especially critical in taller buildings, where different
vibration modes may dominate the response depending on the
excitation frequency content and structural configuration.

Finally, to understand how the coupling with external auxiliary
structures works in reducing the seismic effects on frame structures,
the time-histories of systems represented by labels P3 and P4 in
Figure 13 are obtained and discussed. Figure 14 show such time-
histories, arranged in matrix form. Specifically, rows refer to the
different systems labeled with P3 and P4, while columns refer to
displacements along the x− or y−axis. Each graph contains three
curves that represent the following: the displacement of point D
at the first level of the frame structure (uD in the x-direction and
vD in the y-direction), the displacement of point M on one of the
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FIGURE 14
Time-histories of the System two under Newhall earthquake (Frame 5p, M = 50ms1, P3 ≡ (γc = 1.0,γe = 0.5);P4 ≡ (γc = 5.0;γe = 1.6)).

external structures (uM in the x-direction and vM in the y-direction),
and the drift between point S at the second level of the frame
structure and point D (ΔuDS in the x-direction and ΔvDS in the
y-direction). These points are all clearly indicated in Figure 1. As
can be observed, at point P3 on the map, the minimum value of
the performance index α1 occurs. The time-histories show that the
two levels of the frame structure move in-phase with each other,
while the external auxiliary structuremoves almost in counter-phase
to the entire frame structure. In this case, the external structure
works as a tuned mass damper for the structure being protected.
Conversely, P4 is located at a point of minimum value for the index
α2. Here, the time-histories reveal that the first level and the external
structure are in-phase with one another, whereas the second level
moves primarily in counter-phase relative to all other components
of System 2. Therefore, it can be concluded that both the first
level and the external structure act as tuned mass dampers for the
second level.

5.4 Final remarks

System one adds only the inerter devices to the stand-alone
structure. By appropriately distributing the virtual masses along the
sides of the frame, the structure’s center of mass can shift to any
desired point. A notable choice could be to align the center of mass
with the center of stiffness at the first level of the structure. Notably,
base isolation has an opposite effect on the protected system, as it
can shift the center of stiffness of the isolated level to align with
the structure’s center of mass. However, the benefits provided by
inerter devices are accompanied by certain limitations. Specifically,

shifting the center ofmass at the first level leaves the center ofmass of
the second level (i.e., of the superstructure) unchanged. As a result,
the seismic inertial forces acting on the superstructure’s center of
mass, which are eccentric relative to the seismic forces at the first
level, induce significant torsional effects on the first level. Numerical
simulations conducted to explore this aspect confirmed the validity
of this conclusion. For the sake of brevity, these simulations are not
presented in the paper.

In contrast, System two is derived from the stand-alone structure
by adding both structural elements with appropriate stiffness and
virtual masses through inerter devices. This approach enhances
the ability to modify the characteristics of the coupled structure.
Specifically, beyond the capacity to shift themass center, as explained
above, there is also the possibility to adjust the stiffness center to
align it with the mass center of the structure. This coincidence can
be achieved by appropriately distributing the stiffness of the external
auxiliary structures. As previously mentioned, this mechanism is
similar to that provided by base isolation. Such capability enhances
the performance of System two compared to System 1, as confirmed
by the numerical simulations shown in Section 5.3.

However, the virtual mass of the inerter device needs to
be sufficiently large to significantly alter the structural modes.
When the virtual mass reaches 50 times the mass of the first
floor, it may correspond to 10 times the total mass of the
structure. Even considering the mass amplification effect of the
inerter device, achieving such magnitude is quite challenging.
Additionally, employing additional stiffness or reducing stiffness
(seismic isolation) may provide a more cost-effective and feasible
means to adjust the center of stiffness. Consequently, the practical
implementation of the studied protection strategy would be justified
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only in cases when interventions on the internal part of the building
to be protected are prohibitive and there is a compelling need to
operate on the outside of the structure.

6 Conclusion

Using low-dimensional mechanical models is a classical
approach in Structural Mechanics to capture the predominant
dynamic and seismic response of actual structures. Often, such
models are employed to investigate the effectiveness of various
external devices in enhancing the dynamic and seismic performance
of different types of structures. Typically, these studies utilize planar
models to capture the primary in-plane seismic response of frame
structures.

In this paper, a low-dimensional spatial model has been used
to investigate the seismic response of a general frame structure.
This model represents a two-level frame structure, assuming the
floor slabs are infinitely rigid within their own plane. Consequently,
the model has six degrees of freedom, three for each level. The
mechanical properties of the low-dimensional model have been
calibrated to be dynamically equivalent to actual structures, using
an established equivalence criterion.

Two different methods for enhancing the seismic response of
a three-dimensional (3D) frame structure have been proposed.
The first approach involves directly attaching inerter devices to
the structure, while the second connects the structure to external
auxiliary structures equipped with inerters. The developed 3D
model enabled a detailed examination of the torsional effects acting
on the frame structure and the effectiveness of both methods in
reducing these torsional effects.

The equations of motion for three distinct mechanical systems
have been derived using a Lagrangian approach. Specifically, the
first system pertains to the stand-alone frame structure; the second
incorporates inerter devices applied directly to the first level of the
frame; and the third involves external auxiliary structures connected
to the first level, each equipped with inerter devices.

The responses of the original stand-alone frame structure and
those with the two proposed methods have been compared to
assess the effectiveness of each approach.Three different earthquake
records have been used as base excitation. These records were
chosen due to their proven ability in previous studies by the authors
to induce distinct dynamic responses, attributed to their differing
spectral characteristics.

The results have been presented in performance curves and
maps, illustrating the outcomes of an extensive parametric analysis
in terms of the frame structure’s displacements and drifts.

The main elements of novelty of the proposed research can be
summarised as follows.

• A low-dimensional, dynamically equivalent 3D mechanical
model of an actual frame structure has been used to evaluate
the seismic response, also accounting for the structural
torsional motion.

• Two original, distinct structural schemes, both incorporating
inerter devices, have been developed with the aim of reducing
the seismic response of a frame structure.

• The effects on the seismic response due to the alignment of
the stiffness and mass centers of the structure by adjusting the
distribution of virtual mass and stiffness in the inerter devices
and external auxiliary structures have been investigated.

The analyses performed to verify the effectiveness of the
proposed protection methods led to the following relevant findings.

• Both the proposed structural schemes, named System one
and System 2, perform efficiently since they both reduce the
seismic response of the frame structure in a wide range of their
mechanical parameters.

• The maximum reductions of the displacement of the first
level (that is directly connected to the inerters or the external
structure) and the drift of the superstructure never occur for the
same values of the parameters.Therefore, design choices have to
achieve a trade-off between these two objectives.

• The ability to align the mass center with the stiffness centers
at the first level by appropriately adjusting the distribution
of virtual masses provided by the inerters results in worse
structural performance compared to the stand-alone frame
structure.

• The capability offered exclusively by System two to align
the stiffness and mass centers of the structure, achieved
by appropriately distributing the stiffness of the external
structures, leads to an improved seismic performance by
reducing both displacements and torsional effects at each level.

For a comprehensive assessment of practical applicability
on a specific structure, several limitations of the proposed
approach should be addressed. In particular, ground motions
should be selected and scaled according to seismic code provisions,
hazard levels, and target spectra. Future research will address
this by incorporating code-compliant inputs for more rigorous
performance evaluation of the proposed protection systems. A
second issued to be addressed is the assumption of infinitely
rigid floor diaphragms that is not suitable for structure with
significant floor deformability, such as structures having internal
courts or timber structures. For these structures, the floor
deformability makes the structure unsuitable for the proposed
protection mechanism. Additionally, the current analysis assumes
linear behavior for both the structure and damping devices to
enable clearer interpretation of the fundamental mechanisms.
While this is appropriate for preliminary studies, future work will
consider nonlinear effects to improve realism and applicability
under extreme seismic demands. Notably, the proposed strategy
for enhancing the seismic performance of 3D frame structures
could also be applied to improve the performance of piping
systems, and ongoing studies are investigating this potential
application.
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