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Prediction of mechanical
properties of steel
fibre-reinforced concrete under
elevated temperature using
artificial neural network
techniques (ann)

G. Premkumar and S. Senthil Selvan*

Department of Civil Engineering, Faculty of Engineering and Technology, SRM Institute of Science and
Technology, Kattankulathur, Tamil Nadu, India

This study investigates the mechanical performance of Steel Fibre-Reinforced
Concrete (SFRC) subjected to elevated temperatures using artificial neural
network (ANN) modeling. While existing literature mainly emphasizes the
prediction of compressive strength, limited efforts have been made to predict
other key mechanical properties under thermal stress. A comprehensive ANN
framework was developed to simultaneously predict compressive strength,
flexural strength, split tensile strength, and bond strength. The model was
trained and validated using 967 experimental datasets encompassing a wide
range of concrete mix designs and exposure conditions. The ANN architecture
employed fully connected feedforward networks with ReLU activation in hidden
layers and was individually optimized for each target parameter. The ANN
model exhibited high predictive accuracy, with R² values of 0.85 (RMSE = 6.25
N/mm²) for compressive strength, 0.88 (RMSE = 5.74 N/mm²) for split tensile
strength, 0.86 (RMSE = 6.18 N/mm²) for flexural strength, and 0.86 (RMSE =
6.08 N/mm²) for bond strength. These outcomes affirm the model's robustness
in capturing complex nonlinear interactions between constituent materials,
elevated temperature exposure, andmechanical behaviour. The proposed ANN-
based framework provides an efficient and unified tool for predicting multiple
mechanical properties of SFRC under thermal loading, requiring just 10 minutes
for full analysis. This advancement fills a critical research gap and offers practical
insights for the structural design of concrete in high-temperature environments.

KEYWORDS

steel fibre reinforced concrete, artificial neural network (ANN), compressive strength,
split tensile strength, flexural strength, bond strength, elevated temperature
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1 Introduction

Concrete is a crucial component in the construction and infrastructure industries,
playing a vital role in determining the performance of engineering projects. However,
concrete structures are often subjected to various environmental factors that can
compromise their structural integrity over time. The addition of discontinuous fibres
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TABLE 1 Material properties.

Material Density (kg/m3) Specific gravity

Cement 1,438 3.15

Fine aggregate 1,620 2.74

Coarse aggregate 1800 2.90

FIGURE 1
Steel fibre.

TABLE 2 Properties of steel fibre.

Properties Hook end steel fibre

Density 7,680 kg/m3

Material Low carbon drawn round wire

Tensile strength 1,300 MPa

Elastic modulus 200 GPa

Specific gravity 7.9

Length 50 mm

Diameter 1 mm

Aspect ratio 50

ASTM specs ASTM A820 M04 type 1

Appearance and form Clear, bright and undulated along the length

to concrete has been recognized as a method to enhance
its structural performance due to their bridging effect
(Shafighfard et al., 2021; Shafighfard et al., 2019). Fibres were first
introduced into concrete mixes nearly a century ago, and today,
four main types are commonly used: glass, natural, synthetic,
and steel fibres (Hossain et al., 2019; Shahjalal et al., 2020;

Shahjalal et al., 2021). Glass fibres were initially employed for
architectural applications but faced limitations due to durability
concerns (Hwang et al., 2013). Natural fibres are often preferred
in less developed regions due to their cost-effectiveness, although
their performance compared to steel fibres has been questioned.
Some studies have indicated that even a small amount of synthetic
fibres can positively impact concrete properties (Majdzadeh et al.,
2006; Greenough and Nehdi, 2008). Steel fibres are commonly
chosen by designers for their superior ability to withstand tensile
pressures compared to concrete. The use of Steel Fibre-Reinforced
Concrete (SFRC) has gained popularity worldwide as it enhances
the performance of reinforced concrete members (Salehian and
Barros, 2017; Venkateshwaran and Tan, 2018). Consequently,
concrete with added fibres exhibits superior impact resistance,
toughness, compressive strength, tensile strength, and crack
resistance compared to conventional concrete. However, exposure
to high temperatures can lead to degradation in the performance
of these materials due to physical and chemical changes induced
by heating, which affect their mechanical properties (Dong et al.,
2022).Thus, studying themechanical properties of Fibre-Reinforced
Concrete (FRC) at high temperatures is essential for enabling
appropriate design considerations and ensuring structural integrity.

In the realm of cementitious composite materials, steel and
polypropylene fibres are prevalent choices. Steel fibres maintain
their stability under high temperatures, while polypropylene
fibres exhibit a low melting point (Wu et al., 2022). Research by
Serrano et al. (2016) and Nili et al. (2018) emphasizes that the
combination of supplementary cementitious materials (SCM)
and steel fibres significantly influences the performance of Fibre-
Reinforced Concrete (FRC) under elevated temperatures. Moreover,
the aspect ratio and orientation of reinforced fibres, as highlighted
by Tahenni et al. (2021) and Nana et al. (2021), play pivotal
roles in determining the structural integrity of FRC concrete.
Concrete strength also contributes significantly to its resistance
against high temperatures. Mahmood et al. (2022) examined the
effect of various grading of soil on the compressive strength of
cement grout treated with a water-reducing polymer. Further,
Mahmood et al. (2021) developed several mathematical models,
including Linear Regression (LR), Nonlinear Regression (NLR),
multilinear regression (MLR), artificial neural networks (ANN),
and the M5P-tree algorithm, were developed to predict the
compressive strength of cement-grouted sand considering variables
such as sand particle size, water-to-cement ratio (w/c), polymer
content, and curing duration. Kodur (2000) points out that high-
strength concrete may be more susceptible to spalling and possess
lower fire resistance compared to low-strength concrete due to
its reduced permeability and higher strength. The assessment of
mechanical properties of FRC materials under varying conditions,
including high temperatures, is essential for exploring their
potential applications (Babalola et al., 2021). However, conducting
experimental tests on FRC constructions poses challenges due to
the time and costs involved in test preparation, execution, and
material requirements. In recent years, the focus has shifted towards
developing highly accurate prediction models using Machine
Learning (ML) methodologies to estimate concrete strength.
Machine learning techniques have emerged as reliable tools for
computer modelling, particularly artificial neural networks which
demonstrate robust pattern recognition capabilities as demonstrated
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FIGURE 2
Testing specimen under various furnace temperatures: 80°C, 120°C and 200°C. (a) Cube specimen. (b) Cylinder specimen. (c) Prism specimens.

FIGURE 3
ANN General architecture of ANN (Kavya et al., 2022).

by Priddy and Keller (2005). Furthermore, the thermal behaviour
prediction of SFRC requires specialized adaptation of these
techniques according to (Wu et al., 2020). For instance, Kang et al.
(2021) employedML algorithms like linear regressor, lasso regressor,
ridge regressor, K-Nearest Neighbor (KNN) regressor, decision tree
regressor, random forest regressor, AdaBoost regressor, gradient
boost regressor, and XGBoost regressor to predict the compressive
and flexural strength of Steel Fibre-Reinforced Concrete (SFRC).
Thus, the literature underscores the importance of fibre types,
supplementary cementitious materials, fibre aspect ratio, and
concrete strength in dictating the performance of FRC at high
temperatures. Additionally, ML methodologies offer promising
avenues for accurately predicting concrete strength, thereby
facilitating the design and evaluation of FRC structures. Continued
research in this direction holds the potential to enhance the
understanding and application of FRC in various engineering
contexts, contributing to the advancement of construction practices
and infrastructure resilience.

A dataset containing 200 experimental results for both
compressive and flexural strength served as the basis for numerous
investigations into Steel Fibre-Reinforced Concrete (SFRC).Mahesh
and Sathyan (2022) utilized Artificial Neural Networks (ANN) to
predict SFRC’s compressive strength and elasticmodulus, leveraging
140 and 158 datasets, respectively. Their ANN model achieved
remarkable predictive accuracy, boasting regression coefficient
values of 0.96 and 0.97. Similarly, Khan et al. (2022) explored
Machine Learning (ML) algorithms such as random forest regressor,
gradient boost regressor, and XGBoost regressor to forecast SFRC
compressive strength. Notably, the Random Forest (RF) regressor
yielded an accurate prediction with an R2 value of 0.96. Zheng et al.
(2022) employed ML methodologies including Gradient Boosting
(GB), gradient boost regressor, and XGBoost regressor to predict
SFRC’s flexural strength. Their study highlighted the efficacy of
the Gradient Boosting (GB) model, which achieved an R2 value
of 0.96 in accurately predicting flexural strength. Awolusi et al.
(2019) employed ANN and a genetic algorithm to estimate SFRC’s
compressive strength, favouring the ANN model over the genetic
approach due to its superior performance. Rahman et al. (2021)
investigated 11 ML models to predict SFRC beam shear strength,
with the XGBoost model demonstrating an 85% accuracy in
predicting shear strength. Hossain et al. (2017) developed an
ANN model to predict SFRC beam shear strength, achieving an
impressive accuracy level of approximately 96%. Shende et al. (2022)
developed an ANN simulation to forecast SFRC strength using
five significant input parameters. Hossain et al. (2023) developed
ANN models based on 762 experimental data points and 12 input
variables to predict compressive strength. Pazouki and Pourghorban
(2022) explored Radial Basis Function Neural Network (RBFNN),
artificial neural network, and adaptive-neuro fuzzy inference system
approaches to predict SFRC’s compressive strength. Abubakar et al.
(2020) employed the support vector machine to model and predict
High Strength Concrete (HSC) compressive strength with steel fibre
addition. Shafighfard et al. (2022) predicted SFRC compressive
strength exposed to high temperatures using data from 307
experiments conducted between 2000 and 2022. Alyousef et al.
(2023) utilized novel ML techniques, including Adaptive Neuro-
Fuzzy Inference Systems (ANFIS), Artificial Neural Networks
(ANN), and Gene Expression Programming (GEP), achieving a
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FIGURE 4
ANN model-1.

correlation coefficient (R) of 0.962 for ANN in predicting SFRC
compressive strength at high temperatures.

The exploration of relationships between inputs and outputs
using machine learning (ML) models has transformed the approach
to addressing regression problems (Samuel, 2000; Challagulla et al.,
2021; Asteris et al., 2022; Wang et al., 2023; Wang et al. 2024;
Wang et al. 2025). Over the past few decades, a variety of innovative
ML prediction techniques have emerged, with Artificial Neural
Networks (ANNs) standing out prominently. ANNs, a subset
of artificial intelligence, have gained widespread acceptance for
modelling human actions (Saridemir et al., 2009). Unlike traditional
prediction models requiring periodic updates to coefficients and
equations when new data slightly deviates from the original
dataset, ANNs offer greater flexibility. They don’t rely on specific
equation forms but instead adapt to an abundance of input and
output data. ANNs excel in adapting to new data, continuously
retraining to accommodate changes (Lee, 2003). Additionally,
ANNs effectively capture latent non-linear patterns within complex
datasets through the utilization of non-linear activation functions.
This enables them to identify intricate relationships among various

elements by encoding data through connection weights, addressing
issues arising from a lack of theoretical concepts (Graupe, 2013;
Khan et al., 2018). Acikgenc et al. (2015) and Ramkumar et al.
(2020) underscored the significant potential of ANNs in predicting
concrete mix composition in SFRC. In recent years, ANN models
have increasingly replaced conventional linear regression models in
predicting the mechanical properties of concrete.

The application of Machine Learning (ML) techniques for
predicting the mechanical properties of Steel Fibre-Reinforced
Concrete (SFRC) has gained attention, particularly in estimating
compressive, flexural, and split tensile strengths. However, despite
its potential, the utilization of ML methods in enhancing SFRC
concrete estimation is still limited. One of the main hurdles
to wider ML adoption in this domain is the acquisition of
comprehensive datasets, especially considering multiple variables
such as temperature, fibre volume fraction, heating rate, and
aspect ratio. Only a few studies, such as those conducted by
Shafighfard et al. (2021), Chen et al. (2021), and Alyousef et al.
(2023), have explored the impact of temperature and employed ML
algorithms to forecast the composite strength of Fibre-Reinforced
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FIGURE 5
ANN model-2.

Concrete (FRC) at elevated temperatures. It is widely recognized that
elevated temperatures have a significant effect on the mechanical
properties of SFRC (Xiong and Liew, 2015). However, the prediction
model for temperature effect on compressive strength of SFRC
was scarce. Acknowledging the critical influence of temperature on
SFRCmechanical properties, this study aims to develop a prediction
model using Artificial Neural Network (ANN) to estimate the
mechanical behaviour of SFRC exposed to elevated temperatures.
By focusing on ANN modelling, this research aims to address the
gap in the literature and contribute to advancing SFRC technology
for practical applications, particularly in scenarios involving high-
temperature environments.

This manuscript is organized as follows: Section 2 discusses
the significance of the research, highlighting the importance of
accurately predicting the mechanical behaviour of Steel Fibre-
Reinforced Concrete (SFRC) exposed to elevated temperatures.

Section 3 presents the materials and methodology adopted,
including the experimental design and the development
of the Artificial Neural Network (ANN) model. Section 4
provides a detailed presentation and discussion of the results
obtained, emphasizing the predictive performance of the ANN
model. Finally, Section 5 summarizes the key conclusions drawn
from the study.

2 Research significance

The existing research has primarily focused on using machine
learning techniques to predict the compressive strength of SFRC at
elevated temperatures. However, it is of paramount importance to
underscore that this research focus has predominantly excluded
the prediction of various other critical mechanical properties,
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FIGURE 6
ANN model-3.

including but not limited to split tensile strength, flexural strength
and bond strength. These mechanical attributes are pivotal in
comprehensively assessing the performance and stability of
SFRC under high-temperature environments. In light of the
aforementioned research gap, the present study has been undertaken
with the primary objective of rectifying these limitations. To achieve
this goal, the experimental data gathered through a systematic and
comprehensive experimental program. The dataset encompasses
a broad spectrum of conditions characteristic of the elevated
temperatures encountered by SFRC structures during their service
life. Advanced statistical and machine learning techniques were
then employed to formulate precise predictive models. These
models are not only capable of estimating the compressive strength
of SFRC under elevated temperature conditions but also extend
their predictive capabilities to encompass the split tensile strength,
flexural strength and bond strength.

3 Materials and methodology

The primary goal of this study is to construct a predictive model
for Steel Fibre-Reinforced Concrete (SFRC) capable of estimating
its compressive strength, split tensile strength, flexural strength,
and bond strength under elevated temperatures. By focusing on the
mechanical properties of SFRC in high-temperature environments,
this research aim to bridge a gap in the current literature and
contribute to a better understanding of SFRC behaviour under such
conditions.

3.1 Materials

The mechanical properties, including compressive strength,
split tensile strength, flexural strength and bond strength of SFRC
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FIGURE 7
ANN model-4.

with M20, M30 and M40 grades at elevated temperatures, were
determined through experimental testing.The obtained results were
used as input for creating predictive models. The cement used
adhered to OPC 53 grade standards as per IS: 12269 (2015). Natural
river sand, conforming to the zone-II specifications outlined in IS:
383 (1970), was used as the fine aggregate. The coarse aggregate
comprised granite stones with a maximum size of 20 mm. Table 1
provides information on the density and specific gravity of the
cement, fine aggregate and coarse aggregate. The inclusion of steel
fibres in the concrete mix aimed to reduce cracking and enhance the
concrete durability. Specifically, hook-end steel fibre were employed,
known for their wavy configuration along their length added as
volume fraction of 0.5 as shown in Figure 1. This unique shape
improves the bond between the fibres and the concrete matrix,
further enhancing the concrete’s mechanical properties. Table 2
outlines various properties of the steel fibre.

3.2 Experimental investigation

Concrete specimens, including a Cube, Cylinder, and Prism,
underwent casting and subsequent testing to assess the compressive
strength, split tensile strength, flexural strength, and bond
strength of Steel Fibre-Reinforced Concrete (SFRC) under elevated
temperatures.This experimental procedure adhered to the standards
outlined in IS: 516-1959 and IS: 5816-1959. After casting, the
concrete samples were subjected to a 28-day curing process in a
tank to achieve optimal strength. Upon completion of the curing
period, the specimens were removed from the tank and allowed to
air-dry for 24 h before laboratory testing. To evaluate themechanical
properties of the concrete under elevated temperatures, a specialized
test setup was devised, as illustrated in Figure 2. The furnace
employed an Iron-Chromium-Aluminium alloy heating element,
with ceramic fibre and insulated bricks providing insulation against
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TABLE 3 Variables.

Variable Range

Cement (kg/m3) 383–412

Superplasticizer (kg/m3) 3.83–4.12

Water (kg/m3) 162–192

Fine aggregate (FA) (kg/m3) 642–679

Coarse aggregate (CA) (kg/m3) 1,188–1,228

Duration of heating (hours) 0–6

Temperature (°C) 80, 120 and 200

Compressive strength (N/mm2) 22.81–49.05

Split tensile strength (N/mm2) 1.91–7.94

Flexural strength (N/mm2) 1.84–8.94

Bond strength (N/mm2) 18,955–37,225

the generated heat. The furnace casing, constructed from high-
quality mild steel, was capable of withstanding temperatures up
to 1,200°C. The specimens were exposed to temperatures of 80°C,
120°C, and 200°C for a duration of 6 h. After reaching the desired
temperature, the furnace was deactivated, allowing for natural air
cooling. Subsequently, the specimens were left to return to room
temperature. Following thermal exposure, the compressive strength,
split tensile strength, flexural strength, and bond strength of the
specimens were determined through standard testing procedures.

The average compressive strengths of M20, M30, and M40
grade concrete without steel fibres at ambient temperature were
27.88 N/mm2, 35.15 N/mm2, and 42.75 N/mm2, respectively.
When exposed to elevated temperatures, these values dropped to
23.66 N/mm2 for M20, 29.52 N/mm2 for M30, and 35.66 N/mm2

for M40, corresponding to reductions of 15.3%, 16%, and 16.58%,
respectively. Similarly, the average split tensile strengths at ambient
temperature were recorded as 3.66 N/mm2 (M20), 4.67 N/mm2

(M30), and 5.94 N/mm2 (M40), while under elevated temperatures,
the values decreased to 2.41 N/mm2, 3.34 N/mm2, and 4.37 N/mm2,
representing strength losses of 34.15% for M20, 28.47% for M30,
and 26.4% for M40. Furthermore, the average flexural strengths
at ambient conditions were 3.61 N/mm2 for M20, 5.92 N/mm2 for
M30, and 6.85 N/mm2 for M40. Under elevated temperature, these
reduced to 2.78 N/mm2, 3.72 N/mm2, and 4.55 N/mm2, showing
a decline of 22.99%, 37.16%, and 33.57% for M20, M30, and M40
concrete, respectively.

3.3 Methodology

3.3.1 Building the dataset
This process involves the collection of data from various sources

and its careful compilation. To create machine learning models,
the dataset must undergo pre-processing to select the relevant

data for use. While numerous researchers have conducted machine
learning predictions for concrete strength, there have been relatively
few studies focused on developing machine learning models
specifically for SFRC at high temperatures. Constructing SFRC
machine learning models to predict compressive strength, split
tensile strength, flexural strength and bond strength necessitates a
novel dataset specifically tailored to SFRC at elevated temperatures.
Consequently, experimental data was employed to construct the
machine learning models.

3.3.2 Data pre-processing
Sorting out the missing values is crucial before standardizing

the dataset for model development in order to correctly identify
and arrange the obtained data. After the dataset was created, it was
divided into two groups as training and testing dataset. A training
set is the first and is used to train models. The second is the testing
set. The machine-learning model is trained using the training set,
and the testing set is used to compare the results to those predicted.
In this study, the ratio between the training set and the test set was
80:20. In order to prevent data leaking, scaling is carried out after
the training and testing sets have been divided (Oey et al., 2020).
Because the ranges and units of the values are different, the data
for each value were scaled to a conventional normal distribution.
Standard Scaler, a scikit-learn function that sets the mean to zero
and the standard deviation to one was used to rescale the model.

3.3.3 Selection of model
An artificial neural network is a computational model

composed of neurons, activation functions, connection
weights and bias (Priddy and Keller, 2005). The mathematical
representation of a basic artificial neuron is as follows:

Y = f(∑wX+ b)

where X is the input vector; Y is the output; f is an activation
function;w is the weight vector and b is the bias.The neuronmay be
viewed as a linear feature map with an adjustable weight matrix.

As depicted in Figure 3, the ANN model comprises multiple
interconnected layers of artificial neurons. Each artificial neuron in
every layer is fully connected to every neuron in the immediately
preceding and subsequent layers through associated weights.
Consequently, each neuron in the model receives input signals from
all neurons in the preceding layer. Weights play a crucial role in
illustrating how input values from the preceding layer influence the
processing elements and these weights can be adjusted to achieve
the desired output. In the ANN model, data flows unidirectionally
from the input layer to the output layer. The learning process is
geared towards minimizing the disparity between actual and output
values. During the learning phase, the ANN has the capacity to
adapt its model based on the significant information traversing
through the network. Artificial neural networks find applications
in modeling complex relationships, building upon established
architectures described by (Priddy and Keller, 2005). Specifically for
high-temperature conditions, the input layer configuration follows
recommendations from (Wu et al., 2020) to account for thermal
degradation effects.

The ANN models developed in this study for predicting
compressive strength, split tensile strength, flexural strength and
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FIGURE 8
Correlation between two variables of model-1.

bond strength are presented in Figures 4–7. Specifically, ANN
model-1, as shown in Figure 4, is designed to predict the
compressive strength of SFRC after exposure to high temperatures.
This model is a fully connected feedforward neural network
consisting of one input layer, one hidden layer, and one output
layer. The hidden layer comprises three nodes activated by the
ReLU activation function. The primary advantage of ReLU is its
introduction of non-linearity to the model, which enables neural
networks to learn complex patterns in data (Sharma et al., 2017).

TheANNmodel-2 depicted in Figure 5, is specifically developed
to predict the split tensile strength of SFRC after exposure to elevated
temperatures. This model adopts a fully connected feedforward
neural network architecture, which includes one input layer, one
hidden layer, and one output layer. The hidden layer is composed
of ten nodes activated by the Rectified Linear Unit (ReLU)
activation function.

The ANN model-3 as illustrated in Figure 6, is developed for
predicting the flexural strength of SFRC after exposure to high
temperatures. This model employs a fully connected feedforward
neural network architecture, consisting of one input layer, one
hidden layer and one output layer. The hidden layer is composed
of twenty nodes activated by the Rectified Linear Unit (ReLU)
activation function.

The ANNmodel-4, as depicted in Figure 7 has been specifically
designed to predict the bond strength of SFRC after exposure
to elevated temperatures. This model utilizes a fully connected

feedforward neural network architecture, comprising one input
layer, one hidden layer, and one output layer. Within the hidden
layer, there are fifteen nodes activated by the Rectified Linear Unit
(ReLU) activation function. In this hidden layer, the input data
undergoes processing and transformation into a new representation
through the use of a set of weights and biases. The ReLU activation
function is applied element-wise to the output of each neuronwithin
these layers. ReLU is favoured for its computational efficiency and
its ability to mitigate the vanishing gradient problem, a challenge
that can arise with other activation functions such as sigmoid or
tanh (Wang et al., 2019; Szandala, 2021).

3.3.4 Training the model
The ANN prediction model was developed using the Python

platform. To train themodel, 80%of the sample datawas utilized and
the training process was completed after 1,000 epochs. Subsequently,
the prediction model underwent testing using the remaining 20%
of the sample data. Throughout the training phase, the model was
optimized to minimize the mean squared error loss, employing
the Adam optimizer. The prediction results generated by the ANN
model were then compared to the actual experimental results from
the test sample.

3.3.5 Evaluation of model
The developed models were compared with each other, and

the selection of the best-performing algorithm was based on
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FIGURE 9
Correlation between two variables of model-2.

performance metrics such as the fitting coefficient (R2), Root Mean
Square Error (RMSE), and Mean Absolute Error (MAE).

3.4 Description of dataset

A dataset consisting of 967 concrete mixtures was
experimentally developed concrete mixes as well as concrete mixes
reported in the existing studies, involving varying proportions of
cement, fine aggregate, coarse aggregate, water, superplasticizer,
volume fraction of fibres, duration of heating and temperature
were used. This dataset encompasses 9 input variables and 1
output variable for each model and their respective ranges
can be found in Table 3. The input variables include cement,
superplasticizer, water, steel fibre, fine aggregate, coarse aggregate,
age, as well as concrete properties like compressive strength, split
tensile strength, flexural strength and bond strength. The output
variable encompasses compressive strength, split tensile strength,
flexural strength and bond strength, all measured at 28 days.

4 Results and discussions

The implementation aimed to assess the model’s performance
in predicting the mechanical properties of SFRC concrete under
elevated temperatures.Thismodeling taskwas treated as a regression
problem within a machine learning framework. The process of
training the model took place using Python language. Data analysis
and model development were carried out utilizing the Python
programming language on the Kaggle platform.

4.1 Statistical characteristics of the dataset

Figure 8 depicts the correlation between the input and output
variables of Model-1. The graph clearly illustrates a complex,
non-linear relationship between compressive strength and multiple
input variables. Notably, there is a negative correlation observed,
indicating that an increase in one variable is associated with a
decrease in another. Furthermore, it was observed that variables
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FIGURE 10
Correlation between two variables of model-3.

such as cement, fine aggregate, superplasticizer, and volume fraction
of fibre exhibit a positive correlation with compressive strength.
This suggests that an increase in the quantity of these variables
leads to higher compressive strength in the concrete. In contrast,
coarse aggregate, water, duration of heating and temperature show a
negative correlation with concrete compressive strength, indicating
that an increase in their quantity results in a reduction in the
compressive strength of the concrete. These similar results also
obtained by Alyousef et al. (2023).

Figure 9 illustrates the correlation between the input and output
variables of model-2. It is evident from the graph that there exists
a complex, non-linear correlation between split tensile strength and
multiple input variables. Additionally, there is a negative correlation
observed, where an increase in one variable is related to a decrease
in another. Notably, it was observed that fine aggregate and duration
of heating exhibit a positive correlation with split tensile strength,
suggesting that an increase in their quantity leads to an increase in
split tensile strength. Conversely, cement, coarse aggregate, water,
superplasticizer, volume fraction of fibre and temperature show a
negative correlation with split tensile strength, indicating that an
increase in their quantity results in a reduction in split tensile
strength of the concrete.

Figure 10 illustrates the correlation between the input and
output variables of model-3. It is evident from the graph that
there exists a complex, non-linear correlation between flexural
strength and multiple input variables. Additionally, there is a
negative correlation observed, where an increase in one variable is

related to a decrease in another. Notably, it was observed that fine
aggregate, coarse aggregate, water and duration of heating exhibit
a positive correlation with flexural strength, suggesting that an
increase in their quantity leads to an increase in flexural strength.
Conversely, cement, superplasticizer, volume fraction of steel fibre
and temperature show a negative correlation with flexural strength,
indicating that an increase in their quantity results in a reduction in
flexural strength of the concrete.

Figure 11 illustrates the correlation between the input and
output variables of model-4. It is evident from the graph that there
exists a complex, non-linear correlation between bond strength and
multiple input variables. The negative correlation also observed,
where an increase in one variable is related to a decrease in another.
Notably, it was observed that fine aggregate, coarse aggregate, water
and duration of heating exhibit a positive correlation with bond
strength, suggesting that an increase in their quantity leads to an
increase in bond strength. Conversely, cement, superplasticizer,
volume fraction of steel fibre and temperature show a negative
correlation with bond strength, indicating that an increase in their
quantity can decreases the bond strength.

4.2 Prediction outputs

The proposed ANN model achieved a performance level (R2)
of 0.85 in the prediction of the compressive strength of SFRC at
elevated temperatures. The model also demonstrated Root Mean
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FIGURE 11
Correlation between two variables of model-4.

FIGURE 12
Training and validation loss for model-1.

FIGURE 13
Precited vs. Actual compressive strength.
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FIGURE 14
Training and validation loss for model-2.

FIGURE 15
Precited vs. Actual split tensile strength.

FIGURE 16
Training and validation loss for model-3.

FIGURE 17
Precited vs. Actual flexural strength.

FIGURE 18
Training and validation loss for model-4.

FIGURE 19
Precited vs. Actual bond strength.
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TABLE 4 Errors.

Parameter RMSE MAE

Compressive strength 6.25 4.54

Split tensile strength 5.74 4.30

Flexural strength 6.18 4.55

Bond strength 6.08 4.71

Square Error (RMSE) and Mean Absolute Error (MAE) values
of 6.25 N/mm2 and 4.54 N/mm2 respectively. Figure 12 presents
the training and validation loss for model-1. Figure 13 presents a
comparison between the predicted compressive strength from the
proposed ANN model and the experimental compressive strength.
The exceptional accuracy of the ANN predictions is evident as they
consistently align closely with the diagonal line. This alignment is
most striking when considering the compressive values, where the
ANN predictions closely match the actual compressive values. This
robust alignment underscores the ANNmodel’s ability to effectively
capture the complex non-linear relationship between input and
output variables. Consequently, this study establishes that the ANN
model is proficient in estimating how temperature impacts the
compressive strength of SFRC.

The proposed ANN model achieved a performance level (R2)
of 0.88 in the prediction of the split tensile strength of SFRC at
elevated temperatures. The model also demonstrated Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) values
of 5.74 N/mm2 and 4.30 N/mm2 respectively. Figure 14 presents
the training and validation loss for model-2. Figure 15 presents a
comparison between the predicted split tensile strength from the
proposed ANN model and the experimental split tensile strength.
The enhanced accuracy of ANN predictions becomes evident as
each point predicted by the ANN aligns closely with the diagonal
line, particularly noticeable in the case of predicted split tensile
strength values, which closely mirror the actual values. This clear
alignment underscores the ANN model’s aptitude for capturing
the complex non-linear relationship between input and output
variables. Consequently, it is evident that the ANNmodel holds the
potential to estimate the impact of temperature on the split tensile
strength of SFRC.

The proposed ANN model achieved a performance level (R2)
of 0.86 in the prediction of the flexural strength of SFRC at
elevated temperatures. The model also demonstrated Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) values
of 6.18 N/mm2 and 4.55 N/mm2 respectively. Figure 16 presents
the training and validation loss for model-3. Figure 17 presents
a comparison between the predicted flexural strength from the
proposed ANN model and the experimental flexural strength. The
superior accuracy of ANNpredictions is clearly demonstrated by the
close alignment of eachANN-predicted point with the diagonal line.
This alignment is particularly conspicuous when considering the
predicted flexural strength values, which closely resemble the actual
values.This observation underscores the ANNmodel’s effectiveness
in capturing the complex non-linear relationship between input and
output variables. Consequently, it is evident that the ANNmodel has

the capacity to accurately estimate the influence of temperature on
the flexural strength of SFRC.

The proposed ANN model achieved a performance level (R2)
of 0.86 in the prediction of the bond strength of SFRC at
elevated temperatures. The model also demonstrated Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE) values
of 6.08 N/mm2 and 4.71 N/mm2 respectively. Figure 18 presents
the training and validation loss for model-4. Figure 19 presents a
comparison between the predicted bond strength from the proposed
ANN model and the experimental bond strength. During the
estimation of bond strength using the proposed ANNmodel, it was
observed that a significant portion of the predicted points fell within
a 10% margin of the line representing perfect agreement. This clear
alignment underscores that the bond strength values predicted by
the ANN closely corresponded to the actual bond strength values.
This observation serves as compelling evidence of the ANNmodel’s
capability to effectively capture the intricate non-linear connection
between input and output variables. Consequently, it was established
that theANNmodel possesses the capacity to accurately estimate the
influence of temperature on the bond strength of SFRC.

The RMSE value for compressive strength, split tensile strength,
flexural strength and bond strength was 6.25, 5.74, 6.18 and 6.08
as presented in Table 4. The MAE for compressive strength, split
tensile strength, flexural strength and bond strength was 4.54, 4.30,
4.55 and 4.71. About 70% of the samples show an error of less
than 10%, indicating a good correlation between the ANN model
predictions results and the experimental results, which validates
the suitability of the proposed ANN model for predicting the
compressive, split tensile, flexural strengths and bond strength of
SFRC.Alyousef et al. (2023) reported thatMultiple Linear regression
(MLR) model effectively predicts the compressive strength of the
SFRC after exposed to high temperature with MAE of 26.31 and
RMSE of 32.43. Compared to Multiple Linear regression (MLR)
developed by Alyousef et al. (2023), the developed ANN effectively
predicts the compressive strength with less errors. The RMSE and
MAE value of the proposed ANNmodel was 80% and 82.74% lesser
than the existing MLR model.

In the evaluation of various strength parameters, including
compressive strength, split tensile strength, flexural strength and
bond strength, RMSE and MAE values were computed to assess
the accuracy of predictive models or measurement techniques.
Among these parameters, split tensile strength emerged as the most
accurately predicted or measured, with the lowest RMSE (5.74)
and MAE (4.30) values, indicating minimal errors when compared
to actual values. Conversely, compressive strength exhibited the
highest RMSE (6.25) and flexural strength had the highest MAE
(4.55), suggesting slightly larger deviations from the true values in
these cases. The evaluation of these parameters provides valuable
insights into the performance and reliability of predictive models or
measurementmethodologies, aiding in quality control and decision-
making processes. The model demonstrated exceptional predictive
capability, surpassing traditional analytical methods documented
in (Priddy and Keller, 2005) while confirming the temperature-
strength correlation patterns identified by (Wu et al., 2020).

The emergence of the developed ANN prediction model for
concrete strength represents a significant advancement in the field
of construction and materials engineering. One notable feature
that sets the developed model apart is its remarkable efficiency,
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FIGURE 20
Time taken.

with the entire prediction process taking a mere 10 min to execute
as shown in Figure 20. This rapid processing time holds immense
practical significance. In industries where time is often of the
essence, such as construction and infrastructure development, swift
access to critical information can lead to substantial cost savings
and improved project timelines. Traditional methods of concrete
strength prediction, including time-consuming laboratory tests can
be laborious and time-intensive.

In contrast, the ANNmodel streamlines this process, providing
engineers and stakeholders with quick and reliable insights into
concrete strength. Furthermore, the ability of the model to generate
concrete strength predictions in amatter ofminutes demonstrates its
computational prowess. It showcases the potential of artificial neural
networks to efficiently process vast amounts of data and perform
complex calculationswith exceptional speed.This not only enhances
decision-making processes but also opens up avenues for real-time
monitoring and quality control in construction projects. The 10-
min runtime of this ANN prediction model is a demonstrates to
its practicality, efficiency and transformative potential in the field of
concrete strength prediction and construction management.

5 Conclusion

Elevated temperatures can substantially compromise the strength
of concrete structures, rendering themvulnerable to failures. Utilizing
an Artificial Neural Network (ANN) model can provide predictions
of concrete behaviour under such conditions, enabling more accurate
safety assessments and improved structural designs.This is of utmost

importance, especially in critical infrastructure contexts such as
bridges, buildings and nuclear power plants.The primary objective of
this study is todevelopapredictivemodel forassessing thecompressive
strength, split tensile strength, flexural strength and bond strength of
SFRC after exposure to high temperatures.

• The proposed ANN model achieved a R2 of 0.85 in predicting
SFRC compressive strength at high temperatures, with RMSE
and MAE values of 6.25 N/mm2 and 4.54 N/mm2 respectively.
The RMSE and MAE value of the proposed ANN model was
80% and 82.74% lesser than the existing MLR model.

• The presented ANN model successfully achieved an R2 value
of 0.88 when predicting the split tensile strength of SFRC at
elevated temperatures. Additionally, it yielded RMSE andMAE
values of 5.74 N/mm2 and 4.30 N/mm2, respectively.

• The proposed ANN model achieved an R2 value of 0.85 when
predicting SFRC flexural strength at elevated temperatures.
Additionally, it resulted in RMSE and MAE values of
6.18 N/mm2 and 4.55 N/mm2, respectively.

• The proposed ANN model demonstrated a performance level,
as measured by an R2 value of 0.86, in predicting the bond
strength of SFRC at elevated temperatures. It also yielded RMSE
and MAE values of 6.08 N/mm2 and 4.71 N/mm2, respectively.

• Incorporating temperature and heating duration as primary
input parameters, this study yielded noteworthy findings. The
results unveiled a substantial influence of heating duration
on split tensile strength, flexural strength and bond strength.
In contrast, the impact of heating duration on compressive
strengthwas observed to bemore limited andof amilder nature.
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• The presented model requires only 10 min for performing the
prediction.

This study focuses on the development of a predictive model
for the mechanical properties of SFRC under elevated temperature
conditions. The created model accurately forecasts compressive
strength, split tensile strength, flexural strength, and bond strength,
demonstrating minimal errors. Future improvements in model
precision can be achieved through the utilization of metaheuristic
algorithms.
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