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In this study, the gray wolf algorithm was applied to optimize the water-
cooled central chilling system operation in a commercial office building. The 
optimization objective was to maximize the system’s energy efficiency ratio 
by seeking the optimal number and load distribution of activated chillers, the 
number and approximate degree of activated cooling towers, and the number 
and frequency of activated chilled water pumps and activated cooling water 
pumps. The results show that by using the grey wolf optimization algorithm, the 
energy efficiency ratio of the refrigeration plant room in the design day increased 
from 5.03 to 5.51, yielding an increase of 9.67%. The annual comprehensive 
energy efficiency ratio increased from 5.50 to 6.15, or 11.82%.
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 1 Introduction

The energy consumption of buildings occupies approximately 70% of a city’s primary 
energy (Chen et al., 2019). It is crucial to improve building-energy efficiency for 
socially sustainable development (Hong et al., 2020). Central air conditioning systems 
consume more than two-thirds of a building’s total energy consumption (Ali et al., 
2013). Thus, it is essential to improve the energy efficiency of central air conditioning 
systems to conserve building energy. Central chilling systems yield over 50% of total 
central air conditioning systems’ energy consumption (Luis et al., 2008). Therefore, the 
optimization of central chilling operations is key to central air conditioning system energy
conservation.

Numerous recent studies have been conducted on the operational optimization of 
water-cooled central chilling systems (Jia et al., 2021). The control strategy of this 
subsystem and its disadvantages are summarized in Table 1. Sen Huang optimized 
both load distribution and operating chiller numbers based on chiller sequencing
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TABLE 1  Water-cooled central chilling system control strategy and its disadvantages.

Subsystem Control strategy Disadvantages Ref.

Chillers Chiller sequencing control Does not fully consider the 
performance differences of each chiller.

Huang et al. (2016)

Chillers Particle swarm optimization Premature convergence to a local 
optimum rather than the global 
optimum, parameter sensitivity; 
restricted performance in constrained 
optimization problems.

Karami and Wang (2018), Chan et al. 
(2022), Deng et al. (2022), Gao et al. 
(2022)

Chillers Risk-based robust optimal chiller 
sequencing control

High computational complexity, model 
dependency, and conservatism.

Zhuang et al. (2020)

Chillers Controlling chiller plant hourly — Chen et al. (2020)

Chillers Improved flower pollination algorithm Prone to local optima, slow convergence 
in later stages, and insufficient accuracy.

Hu et al. (2024)

control (Huang et al., 2016). Sequencing control did not fully 
consider the performance differences of each chiller, making it 
impossible to optimize the load distribution and operating chiller 
numbers, thus preventing the optimal efficiency of energy systems. 
The operational parameter optimization of chiller plants has been 
conducted by particle swarm optimization (Karami and Wang, 2018; 
Chan et al., 2022; Deng et al., 2022; Gao et al., 2022). However, 
particle swarm optimization has several disadvantages, such as 
premature convergence to a local rather than global optimum, 
parameter sensitivity, and restricted performance in constrained 
optimization problems. Chaoqun Zhuang proposed a risk-based 
robust optimal chiller sequencing control strategy to improve 
chiller operational energy efficiency and robustness (Zhuang et al., 
2020). This approach also has several disadvantages and challenges, 
such as high computational complexity, model dependency, and 
conservatism. Chen et al. (2020) compared three sequencing control 
strategies, with their results indicating that the hourly control of 
chiller plants is optimal. Liu et al. (2023) studied the time limit of 
optimal calculation and the output of the optimal control strategy, 
with the result indicating that it not only has good optimization 
effect but also that confidence is increased considerably. Hu et al. 
(2024) recommended an improved flower pollination algorithm 
to optimize multi-chiller loading for higher robustness with a 
slightly reduced convergence rate. However, this also has several 
disadvantages and limitations, such as being prone to local optima, 
slow convergence in later stages, and insufficient accuracy.

The above research mainly focused on the optimization of 
chillers. Water-cooled central chilling systems consist of chillers, 
chilled water pumps, cooling water pumps, and cooling towers, 
which interact and influence each other. Therefore, although chillers 
consume a considerable amount of energy, the goal of water-cooled 
central chilling system optimization is not to minimize the energy 
consumption of chillers or any other individual device but to 
minimize the total power consumption of the system. Thus, this 
study aims to minimize the total power consumption of a water-
cooled central chilling system.

Among emerging swarm intelligent algorithms, the gray 
wolf algorithm has the advantages of fewer set parameters, 

better robustness, and higher convergence speed and accuracy 
than with the swarm and genetic algorithms (Mirjalili et al., 
2014). The gray wolf optimization algorithm has been applied 
in fields such as power (Harish Kumar and Mageshvaran, 2022) 
and medicine (Rajakumar et al., 2023). It is supposed to optimize the 
operation of water-cooled central chilling systems to improve their 
energy efficiency utilization. In this study, the gray wolf algorithm is 
implemented on a water-cooled central chilling system to improve 
its energy efficiency so as to provide a new efficient algorithm for 
water-cooled central chilling system energy conservation. 

2 Central chilling system and its 
energy consumption model

2.1 Central chilling system description

This project investigated a commercial office building in 
Guangzhou with a construction area of approximately 12,000 m2. 
The building’s main function is office space, with some commercial 
supporting functions. As depicted in Figure 1, the water-cooled 
central chilling system of this building consists of three chillers, 
three chilled water pumps, three cooling water pumps, and 
three cooling towers. The main parameters of the equipment 
are shown in Table 2. The operating parameters of its equipment, 
such as inlet and outlet water temperature, water flow, heat flux, 
operating frequency, and output power, are collected and monitored 
by a data monitoring platform.

2.2 Water-cooled central chilling system 
energy consumption model

The energy consumption model of water-cooled chillers 
includes Gordon-NG (Gordon and NG, 1995), a Lee model (Lee 
and Lu, 2010), BQ model (Yik and Lam, 1998), and an MP model 
(Reddy and Andersen, 2002). An MP model is employed in this 
paper. Based on the sample parameters provided by the chiller 
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FIGURE 1
Water-cooled central chilling system.

manufacturer, the water-cooled chiller energy consumption model 
was obtained as Equation 1 by using the MATLAB multiple linear 
regression tool.

Wch =Wchr × f(PLR) × f(Teo,Tci)

=Wchr × (a1 + a2PLR+ a3PLR2)

× (a4 + a5Teo + a6T2
eo + a7Tci + a8T2

ci + a9TeoTci)

(1)

where Wchr is the rated energy consumption of the chiller, PLR 
is the part-load ratio of the chiller, Teo is the chilled water outlet 
temperature, Tci is the cooling water inlet temperature, and a0∼a9
are regression coefficients.

Based on the actual operating data of the variable frequency 
water pump, it was found that the energy consumption and flow 
rate of the variable frequency water pump are in a quadratic 
polynomial relationship (Luan et al., 2008). Thus, based on the 
sample parameters provided by the water pump manufacturer, the 
chilled or cooling water pump energy consumption model was 
obtained as Equation 2 by a MATLAB multiple linear regression tool:

Wp = b0 + b1Q+ b2Q2 (2)

where Q is the water pump flow rate, and b0∼b2 are the 
regression coefficients.

The Braun model is a semi-empirical model used for cooling 
tower performance; it can predict the heat dissipation and 
performance of cooling towers by combining thermodynamic 
equilibrium and empirical parameters (China Electronic Energy 

Conservation Technology Association, 2024). Thus, based on the 
sample parameters provided by the cooling tower manufacturer, 
the cooling tower’s fan energy consumption was calculated by 
Equations 3, 4.

P fan = (P fan,design)(FanPLR)(FRair)3 (3)

ma = Qtower/εa(ha,w,i−ha,w,o) (4)

where Pfan, design is fan-rated energy consumption, FanPLR is the 
partial air volume power correction factor, FRair  is the ratio of the 
air volume to the rated air volume, ma is the cooling tower’s air 
volume, Qtower is the cooling tower’s heat dissipation, εa is air-side 
heat transfer efficiency, ha,w,i is the cooling tower’s inlet air enthalpy, 
and ha,w,o is the cooling tower’s outlet air enthalpy. 

3 Optimization objective, variables, 
and control constraints

For the existing building’s water-cooled central chilling system, 
the objective was to obtain its optimal energy efficiency so as to 
maximize the energy efficiency ratio of the system.

The “energy efficiency ratio” is defined as the ratio of a water-
cooled central cooling system’s total cooling capacity and its energy 
consumption. It can be calculated by Equation 5.

EER =
Qc,total

Wch +Wp + P fan
(5)

where Qc,total is the central cooling system’s total cooling 
capacity, and Wch、Wp、and Pfan are the energy consumption of 
the chillers, water pumps, and cooling towers, respectively.

Thus, the optimization objective is described as the 
following Equation 6.

max EER =max(
Qc,total

Wch +Wp + P fan
) (6)

The optimization variables of this project include the on/off 
status and operating parameters of each piece of equipment. For 
the chillers, these variables include number and load distribution 
of the activated chillers. For the cooling towers, the optimization 
variables include the approximation degree and the number 
of activated cooling towers. For the chilled and cooling water 
pumps, the optimization variables include the number and the 
frequency of the activated water pumps. The optimization variables 
are thus divided into two categories: continuous variables and 
discrete variables. Discrete variables include the on/off status of 
the chillers, water pumps, and cooling towers, where 0 and 1 
represent the off and on status of the equipment, respectively. 
Continuous variables include the load distribution of the chillers, 
the frequency of the water pumps, and approximation degree of the
cooling towers.

The optimization variables should comply with multiple physical 
and operational constraints, where the on/off status and operating 
parameters of each piece of equipment should meet its designed 
capability scope and practical operational requirements. The 
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TABLE 2  Main parameters of equipment.

Equipment Main parameters

Chiller 1 Chilled water inlet temperature: 9 °C. Chilled water outlet temperature: 14 °C. Cooling water inlet temperature: 31 °C. Cooling water outlet 
temperature: 36 °C. Capacity: 839 kW. Power: 156.8 kW. COP: 5.35.

Chillers 2、3 Chilled water inlet temperature: 9 °C. Chilled water outlet temperature: 14 °C. Cooling water inlet temperature: 31 °C. Cooling water outlet 
temperature: 36 °C. Capacity: 1,073 kW. Power: 179.6 kW. COP: 6.13.

Chilled water pump 1 Power: 22 kW. Head:33 m. Flow rate: 152 m3/h.

Chilled water pumps 2、3 Power: 30 kW. Head:33 m. Flow rate: 197 m3/h.

Cooling water pump1 Power: 18.5 kW. Head:25 m. Flow rate: 179 m3/h.

Cooling water pumps 2、3 Power: 22 kW. Head:25 m. Flow rate: 231 m3/h.

Cooling towers 1∼3 Power: 7.5 kW. Water inlet temperature: 37 °C. Water outlet temperature: 32 °C. Flow rate: 253 m3/h. Wet bulb temperature: 28 °C.

constraint conditions are described as the following Equation 7.

{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{
{

Tapproach,min < ΔTapproach

fct,min < fct < fct,max

fchiller,min < fchiller < fchiller,max

fchw_pump,min < fchw_pump < fchw_pump,max

fcw_pump,min < fcw_pump < fcw_pump,max

0 ≤ Nct ≤ Nct,max,Nct ∈ Ζ

0 ≤ Nchiller ≤ Nchiller,max,Nchiller ∈ Ζ

0 ≤ Nchw_pump ≤ Ncw_pump,max,Nchw_pump ∈ Ζ

0 ≤ Ncw_pump ≤ Ncw_pump,max,Ncw_pump ∈ Ζ

(7)

where ∆Tapproach is the approximation degree of a cooling tower, 
fct is the flow rate distribution of the cooling tower, fciller is the 
load distribution of the chillers, fchw_pump is the chilled water pump 
frequency, and fcw_pump is the cooling water pump frequency. Nct, 
Nchiller, Nchw_pump, and Ncw_pump are the activated unit number of the 
cooling tower, chiller, chilled water pump, and cooling water pump, 
respectively. Z is a set of integers.

4 Algorithm design and application

4.1 Gray wolf optimization algorithm and 
mathematical models

The gray wolf optimization algorithm (GWO) simulates the 
behavior of gray wolves hunting prey (Mirjalili et al., 2014). As a 
social animal, they have a very obvious pyramid-like hierarchical 
system. Wolf α occupies the highest position and is responsible 
for decision-making and dominating the entire pack. Wolf β is 
located at the second highest level of the pyramid and is responsible 
for assisting the lead wolf αand conveying its instructions to 
subordinates. Wolf δ is located on the third level of the pyramid 
and is mainly responsible for reconnaissance, surveillance, hunting, 
and guarding the wolf pack. The bottom wolf layer accounts for the 

FIGURE 2
Gray wolf optimization algorithm flow chart.

largest proportion of the gray wolf population and is responsible for 
hunting prey. 

4.1.1 Encircling prey
Grey wolves encircle prey during the hunt. The mathematically 

model of encircling behavior is described as the following 
Equations 8, 9.

D⃗ = |C⃗ · X⃗p(t) − X⃗(t)| (8)
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TABLE 3  Parameter boundary of each unit.

Uint Chiller Pump Cooling tower

Parameter boundary PLR: 20%–100% Frequency: 30–50 Hz Fan frequency: 30–50 Hz
Approximation degree: 2 °C–8 °C

FIGURE 3
Monthly weighted average dry bulb temperature characteristic.

FIGURE 4
Monthly weighted average wet bulb temperature characteristic.

X⃗(t+ 1) = X⃗p(t) − A⃗ · D⃗ (9)

where t indicates current iteration, A⃗ and C⃗ are coefficient 
vectors, X⃗p is the position vector of the prey, and X⃗ indicates the 
position vector of a gray wolf.

A⃗ and C⃗ are calculated by Equations 10, 11:

A⃗ = 2a⃗ · ⃗r1 − a⃗ (10)

FIGURE 5
Building monthly weighted average cooling load characteristic.

FIGURE 6
Deviation between simulated and field test values of system total 
energy consumption.

C⃗ = 2 · ⃗r2 (11)

where components of a⃗ are linearly decreased from 2 to 0 over 
the course of iterations, and ⃗r1 and ⃗r2 are random vectors in [0,1]. 

4.1.2 Hunting
It is supposed that α, β, and δ have better knowledge about the 

potential location of prey. Thus, we save the first three best solutions 
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FIGURE 7
Water-cooled central chilling system energy consumption and energy efficiency comparison between before and after optimization in design day.

FIGURE 8
Equipment energy consumption comparison between current and 
GWO strategy in design day.

obtained so far and oblige the other search agents to update their 
positions according to Equations 12–14 according to the position of 
the best search agent.

X⃗(t+ 1) =
X⃗1 + X⃗2 + X⃗3

3
(12)

X⃗1 = X⃗α − A⃗1 · (D⃗α), X⃗2 = X⃗β − A⃗2 · (D⃗β), X⃗3 = X⃗δ − A⃗3 · (D⃗δ) (13)

D⃗α = |C⃗1 · X⃗α − X⃗|, D⃗β = |C⃗2 · X⃗β − X⃗|, D⃗δ = |C⃗3 · X⃗δ − X⃗| (14)

As depicted in Figure 2, the gray wolf optimization algorithm is 
implemented as follows. First, the gray wolf population is initialized 
by generating n individuals and setting the initial values of a, A, and 
C. Next, the fitness of each individual is calculated, and the position 
of the lead wolves (Xα, Xβ, and Xδ) are initialized. The algorithm 

FIGURE 9
Equipment energy consumption comparison between before and 
after optimization on design day 06:00.

then compares each individual’s fitness with that of Xα, Xβ, and 
Xδ to determine the current optimal (Xα), second-best (Xβ), and 
third-best (Xδ) solutions. Subsequently, the values of a, A, and C are 
recalculated, and each individual’s position is updated. The process 
repeats from the fitness evaluation step until the maximum iteration 
count is reached, at which point the algorithm terminates. 

4.2 GWO application

As for the load distribution of chillers, initialization generates a 
random value based on the minimum and maximum load limits of 
each chiller. If the initial total load is not zero, we adjust its load to 
the total cooling load through scaling. For the approximation degree 
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FIGURE 10
Equipment energy consumption comparison between before and 
after optimization on design day 19:00.

TABLE 4  Design day 06:00 operating parameters before and after 
optimization.

Item Current strategy GWO strategy

Chiller capacity (kW) [511, 0, 0] [511.7, 0, 0]

Chilled water pump 
frequency (Hz)

[44.7, 0, 0] [44.7, 0, 0]

Cooling water pump 
frequency (Hz)

[31.0, 0, 0] [25.7, 0, 0]

Cooling tower flow rate 
(m3/h)

[126, 0, 0] [126.5, 0, 0]

[x1, x2, x3, …, xi] respectively represent the capacity of devices 1 to i, and 0 
indicates shutdown.

TABLE 5  Design day 19:00 operating parameters before and after 
optimization.

Item Current strategy GWO strategy

Chiller capacity (kW) [676, 865, 0] [419.5, 536.5, 585.4]

Chilled water pump 
frequency (Hz)

[47.0, 46.3, 0] [0, 49.4, 0]

Cooling water pump 
frequency (Hz)

[38.8, 38.3, 0] [0, 42.3, 0]

Cooling tower flow rate 
(m3/h)

[147, 147, 0] [147.2, 147.2, 0.0]

[x1, x2, x3, …, xi] respectively represent the capacity of devices 1 to i, and 0 
indicates shutdown.

of the cooling tower, initialization is implemented by randomly 
generating initial values between the minimum approximation 
degree and the maximum value 8 °C. Table 3 presents the detailed 
parameter boundary of each unit.

If the solution violates these constraints during the update 
process, the following methods can be used to handle this problem. If 
the chiller load solution is lower than its minimum value or exceeds 
its maximum capacity, it will be brought back within the feasible 
range through a proportional adjustment function. In the process 
of updating the solution, if the approximation degree of the cooling 
tower exceeds its range, the program will truncate it within the 
feasible range by an adjustment function.

During the optimization process, discrete variables are adjusted 
by checking the values of continuous variables. Discrete variables 
are handled using the “threshold truncation” strategy. When the 
discrete variable approaches zero, the device shuts down; when the 
discrete variable exceeds a certain threshold, the device is turned 
on. If non-integer situations occur during the update process, the 
discrete variable can be rounded or truncated using a threshold to 
maintain its integer state. 

5 Optimization result analysis

5.1 Building cooling load characteristic

The building cooling load characteristics were calculated 
using DeST software. Building envelope thermophysics parameters, 
indoor heat capacity, and indoor air temperature and humidity 
were set according to GB 50189-2015 (Design Standard for 
Energy Efficiency of Public Buildings). The building’s indoor air 
temperature was set to 25 °C. Monthly weighted average dry bulb 
and wet bulb temperature characteristic are presented in Figures 3, 
4, respectively. As depicted in Figure 5, monthly weighted average 
cooling load characteristics were obtained using DeST software 
calculation results.

As is evident from Figure 2, the cooling load of July is highest in 
the whole year, and the cooling load of November is the lowest. The 
cooling load curve of April is similar to that of October; the cooling 
load curve of May is similar to that of September. 

5.2 Simulation results validation

Based on the system model and algorithm design, Python 
was used for programming calculation. Based on the water-cooled 
central chilling system energy consumption model and its current 
sequential control logic, nine typical operation conditions were 
selected to validate the accuracy of the simulation results. The water-
cooled central chilling system refrigeration capacity of the nine 
typical operation conditions were 20%, 30%, 40%, 50%, 60%, 70%, 
80%, 90%, and 100% of air conditioning design load, respectively. 
The 10% air conditioning design load condition did not exist in 
the field test data, so it was not included in typical operational 
conditions. The part-load ratio (PLR) is defined as the ratio of the 
water-cooled central chilling system refrigeration capacity to the 
air conditioning design load. As depicted in Figure 6, the deviation 
between the simulated and field test values of the water-cooled 
central chilling system total energy consumption with sequential 
control is less than 6.5%. The simulated results show fine precision.

The refrigeration plant room with the gray wolf optimization 
algorithm requires the adjustment of operating parameters or 

Frontiers in Built Environment 07 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1611503
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Yang et al. 10.3389/fbuil.2025.1611503

FIGURE 11
Refrigeration plant room monthly energy consumption and energy efficiency comparison between current and GWO strategy.

FIGURE 12
Equipment annual energy consumption comparison between current and GWO strategy.

hardware, which may affect normal production and make it 
difficult for enterprises to bear the risk of shutdown or failure. 
Therefore, owners do not generally allow such adjustment. 
The difference between sequential control and the gray wolf 
optimization algorithm is the difference in equipment operating 
parameters. Total energy consumption simulated results under 
the above nine typical operation conditions demonstrated fine 
precision, so the system’s total energy consumption simulated 
results with the gray wolf optimization algorithm should also 
show fine precision. The following optimization results analysis
is reliable. 

5.3 Optimization results analysis

By the programming calculation, the energy consumption and 
energy efficiency ratio characteristics of the water-cooled central 
chilling system before and after optimization on the design day 
are shown in Figure 7. The design day energy consumption of 
the water-cooled central chilling system was reduced by 8.81% by 
optimization, and the design day comprehensive energy efficiency 
ratio was increased from 5.03 to 5.51, yielding an increase of 9.67%. 
As shown in Figure 8, after optimization, the design day energy 
consumption of chillers, chilled water pumps, and cooling water 
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pumps were reduced by 508 kWh (8.13%), 104 kWh (12.22%), and 
225 kWh (36.95%), respectively, while the energy consumption of 
the cooling towers increased by 135 kWh (53.15%).

As shown in Figure 7, the energy efficiency ratio of the water-
cooled central chilling system improved the most by optimization 
at 19:00, and the energy efficiency ratio improved the least at 06:00. 
The comparison of energy consumption of each equipment before 
and after optimization under 06:00 and 19:00 operating conditions 
on the design day are shown in Figures 9, 10, respectively. The 
corresponding operating parameters of each piece of equipment 
before and after optimization are shown in Tables 4 and 5, 
respectively. It can be seen that the cooling load at 06:00 is very 
small (Figure 5). At 06:00, the number of devices turned on before 
optimization is the same as after optimization (Table 4), while 
the capacity of activated devices after optimization is different 
from before optimization. Therefore, the energy consumption 
savings of the water-cooled central chilling system by optimization 
are not significant (only 3.26%), and the energy efficiency ratio 
improvement is relatively small (only 3.42%) at 06:00. Similarly, 
when the cooling load is large, the number of devices turned on 
before optimization is the same as after optimization, and only the 
capacity of activated devices can be optimized. At 19:00, the cooling 
load is relatively moderate, and both the amount and capacity of 
activated equipment can be optimized (Table 5). Therefore, both 
energy saving (14.29%) and efficiency improvement (16.79%) are 
significant through optimization at 19:00.

As shown in Figure 11, the monthly weighted average energy 
consumption of the water-cooled central chilling system decreased 
by 8.47%–16.34% after optimization, and the monthly weighted 
average energy efficiency ratio increased by 9.25%–19.54%. Of 
these, as shown in Figure 3, the average weighted cooling load 
in June, July, and August was relatively high, and the energy-
saving space by optimization was very small. The monthly weighted 
average energy efficiency ratio’s improvement was relatively low. The 
average weighted cooling load in April was relatively moderate, and 
energy saving room was large through optimization. The monthly 
weighted average energy efficiency ratio of April increased the most, 
reaching 19.54%.

The annual energy consumption comparison of each piece of 
equipment in the water-cooled central chilling system between 
the current and GWO strategies is shown in Figure 12. The 
results indicate that the annual total energy consumption of 
the water-cooled central chilling system decreased by 10.57% by 
optimization. The energy consumption of chillers, chilled water 
pumps, and cooling water pumps was saved by 10.35%, 15.51%, and 
39.5%, respectively, while the energy consumption of the cooling 
towers increased by 52.67% after optimization. The comprehensive 
energy efficiency ratio for the whole year increased from 5.50 to 
6.15, an increase of 11.82%. Therefore, the proposed operational 
optimization strategy for a water-cooled central chilling system 
based on the grey wolf algorithm is effective. 

6 Conclusion

This paper conducted operational optimization research on a 
water-cooled central chilling system of a commercial office building 
in Guangzhou based on the grey wolf algorithm. The optimization 

objective was to maximize the energy efficiency ratio by seeking 
the optimal number and load distribution of activated chillers, the 
number and approximation degree of activated cooling towers, and 
the number and frequency of activated chilled water pumps and 
activated cooling water pumps. The main finding of this study is that 
the proposed operational optimization strategy for a water-cooled 
central chilling system based on the grey wolf algorithm is effective. 
After optimization, the design day energy efficiency ratio of the 
water-cooled central chilling system increased from 5.03 to 5.51, an 
increase of 9.67%, and the annual comprehensive energy efficiency 
ratio increased from 5.50 to 6.15, an increase of 11.82%. 

6.1 Limitation

The limitations of the study is that there is a lack of 
grey wolf optimization algorithm simulation results verification. 
Refrigeration plant room with grey wolf optimization algorithm 
requires adjustment of operating parameters or hardware, which 
may affect normal production and make it difficult for enterprises 
to bear the risk of shutdown or failure. So generally, owners 
do not allow such adjustment. In the future, we will conduct 
wolf optimization algorithm experiment of the actual water-cooled 
central chilling system in small building in its spare time.

Data availability statement

The original contributions presented in the study are included in 
the article/supplementary material; further inquiries can be directed 
to the corresponding authors.

Author contributions

JY: Data curation, Formal Analysis, Funding acquisition, 
Investigation, Writing – original draft. DZ: Funding acquisition, 
Investigation, Methodology, Supervision, Writing – review and 
editing. AX: Data curation, Investigation, Resources, Writing – 
review and editing. LG: Project administration, Resources, Writing – 
review and editing. WZ: Methodology, Software, Validation, Writing 
– review and editing. YC: Investigation, Methodology, Supervision, 
Writing – review and editing. 

Funding

The author(s) declare that financial support was received for the 
research and/or publication of this article. The authors gratefully 
acknowledge the support provided by the Scientific Research Fund 
of Guangzhou Maritime University under grant no. K42022108 and 
K42024047.

Conflict of interest

Author AX was employed by Engineering Company Public 
Office, Nanjing Fiberglass Research & Design Institute Co., Ltd.

Frontiers in Built Environment 09 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1611503
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Yang et al. 10.3389/fbuil.2025.1611503

Author LG was employed by Guangzhou Shijie Energy Saving 
Technology Co., Ltd.

The remaining authors declare that the research was conducted 
in the absence of any commercial or financial relationships that 
could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 

artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

References

Ali, M., Vukovic, V., Sahir, M. H., and Fontanella, G. (2013). Energy analysis of chilled 
water system configurations using simulation-based optimization. Energy Build. 59, 
111–122. doi:10.1016/j.enbuild.2012.12.011

Chan, K. C., Wong, V. T. T., Yow, A. K. F., Yuen, P. L., and Chao, C. Y. 
H. (2022). Development and performance evaluation of a chiller plant predictive 
operational control strategy by artificial intelligence. Energy Build. 262, 112017. 
doi:10.1016/j.enbuild.2022.112017

Chen, Y., Hong, T., Luo, X., and Hooper, B. (2019). Development of city 
buildings data set for urban building energy modeling. Energy Build. 183, 252–265. 
doi:10.1016/j.enbuild.2018.11.008

Chen, Y., Yang, C., Pan, X., and Yan, D. (2020). Design and operation optimization 
of multi-chiller plants based on energy performance simulation. Energy Build. 222, 
110100. doi:10.1016/j.enbuild.2020.110100

China Electronic Energy Conservation Technology Association (2024). Technical 
specification for energy efficiency simulation and optimization control of efficient 
centralized air conditioning plant room. Beijing: China Electronic Energy Conservation 
Technology Association.

Deng, Q., Xu, L., Zhao, T., Hong, X., Shan, X., and Ren, Z. (2022). Cooperative 
optimization of A refrigeration system with A water-cooled chiller and air-cooled heat 
pump by coupling BPNN and PSO. Energies 15, 7077. doi:10.3390/en15197077

Gao, Z., Yu, J., Zhao, A., Hu, Q., and Yang, S. (2022). Optimal chiller loading 
by improved parallel particle swarm optimization algorithm for reducing energy 
consumption. Int. J. Refrig. 136, 61–70. doi:10.1016/j.ijrefrig.2022.01.014

Gordon, J. M., and Ng, K. C. (1995). A general thermodynamic model for 
absorption chillers:Theory and experiment. Heat. Recovery Systems Chp 15 (1), 73–83. 
doi:10.1016/0890-4332(95)90038-1

Harish Kumar, P., and Mageshvaran, R. (2022). Grey wolf optimisation 
algorithm for solving distribution network reconfiguration considering 
distributed generators simultaneously. Int. J. Sustain. Energy 41 (11), 2121–2149. 
doi:10.1080/14786451.2022.2134383

Hong, T., Chen, Y., Luo, X., Luo, N., and Lee, S. H. (2020). Ten 
questions on urban building energy modeling. Build. Environ. 168, 106508. 
doi:10.1016/j.buildenv.2019.106508

Hu, Y., Qin, L., Li, S., Li, X., Li, Y., and Sheng, W. (2024). Optimal chiller loading 
based on flower pollination algorithm for energy saving. J. Build. Eng. 93, 109884. 
doi:10.1016/j.jobe.2024.109884

Huang, S., Zuo, W., and Sohn, M. D. (2016). Amelioration of the 
cooling load based chiller sequencing control. Appl. Energy 168, 204–215. 
doi:10.1016/j.apenergy.2016.01.035

Jia, L., Shen, W., and Liu, J. (2021). A review of optimization approaches 
for controlling water-cooled central cooling systems. Build. Environ. 203, 108100. 
doi:10.1016/j.buildenv.2021.108100

Karami, M., and Wang, L. (2018). Particle Swarm optimization for control operation 
of an allvariable speed water-cooled chiller plant. Appl. Therm. Eng. 130, 962–978. 
doi:10.1016/j.applthermaleng.2017.11.037

Lee, T. S., and Lu, W. C. (2010). An evaluation of empirically-based models for 
predicting energy performance of vapor-compression water chillers. Appl. Energy 87 
(11), 3486–3493. doi:10.1016/j.apenergy.2010.05.005

Liu, X., Huang, B., and Zheng, Y. (2023). Control strategy for dynamic 
operation of multiple chillers under random load constraints. Energy 270, 126932. 
doi:10.1016/j.energy.2023.126932

Luan, Z. J., Zhang, G. M., Tian, M. C., and Fan, M. x. (2008). Flow resistance and 
heat transfer characteristics of a new-type plate heat exchanger. J. Hydrodynamics 20 
(4), 524–529. doi:10.1016/s1001-6058(08)60089-x

Luis, P.-L., Ortiz, J., and Christine, P. (2008). A review on buildings 
energy consumption information. Energ Build. 40 (3), 394–398. 
doi:10.1016/j.enbuild.2007.03.007

Mirjalili, S., Mirjalili, S. M., and Lewis, A. (2014). Grey wolf optimizer. Adv. Eng. 
Softw. 69 (3), 46–61. doi:10.1016/j.advengsoft.2013.12.007

Rajakumar, S., Siva Satya Sreedhar, P., Kamatchi, S., and Tamilmani, G. (2023). Gray 
wolf optimization and image enhancement with NLM Algorithm for multimodal 
medical fusion imaging system. Biomed. Signal Process. Control 85, 104950. 
doi:10.1016/j.bspc.2023.104950

Reddy, T. A., and Andersen, K. (2002). An evaluation of classical steady state off line 
linear parameter estimation methods applied to chiller performance data. HVAC&R 
Res. 8 (1), 101–124. doi:10.1080/10789669.2002.10391291

Yik, F., and Lam, V. (1998). Chiller models for plant design studies. Build. Serv. Eng. 
Res. Technol. 19 (4), 233–241. doi:10.1177/014362449801900407

Zhuang, C., Wang, S., and Shan, K. (2020). A risk-based robust optimal chiller 
sequencing control strategy for energy-efficient operation considering measurement 
uncertainties. Appl. Energy 280, 115983. doi:10.1016/j.apenergy.2020.115983

Frontiers in Built Environment 10 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1611503
https://doi.org/10.1016/j.enbuild.2012.12.011
https://doi.org/10.1016/j.enbuild.2022.112017
https://doi.org/10.1016/j.enbuild.2018.11.008
https://doi.org/10.1016/j.enbuild.2020.110100
https://doi.org/10.3390/en15197077
https://doi.org/10.1016/j.ijrefrig.2022.01.014
https://doi.org/10.1016/0890-4332(95)90038-1
https://doi.org/10.1080/14786451.2022.2134383
https://doi.org/10.1016/j.buildenv.2019.106508
https://doi.org/10.1016/j.jobe.2024.109884
https://doi.org/10.1016/j.apenergy.2016.01.035
https://doi.org/10.1016/j.buildenv.2021.108100
https://doi.org/10.1016/j.applthermaleng.2017.11.037
https://doi.org/10.1016/j.apenergy.2010.05.005
https://doi.org/10.1016/j.energy.2023.126932
https://doi.org/10.1016/s1001-6058(08)60089-x
https://doi.org/10.1016/j.enbuild.2007.03.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.bspc.2023.104950
https://doi.org/10.1080/10789669.2002.10391291
https://doi.org/10.1177/014362449801900407
https://doi.org/10.1016/j.apenergy.2020.115983
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org

	1 Introduction
	2 Central chilling system and its energy consumption model
	2.1 Central chilling system description
	2.2 Water-cooled central chilling system energy consumption model

	3 Optimization objective, variables, and control constraints
	4 Algorithm design and application
	4.1 Gray wolf optimization algorithm and mathematical models
	4.1.1 Encircling prey
	4.1.2 Hunting

	4.2 GWO application

	5 Optimization result analysis
	5.1 Building cooling load characteristic
	5.2 Simulation results validation
	5.3 Optimization results analysis

	6 Conclusion
	6.1 Limitation

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

