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In this study, the gray wolf algorithm was applied to optimize the water-
cooled central chilling system operation in a commercial office building. The
optimization objective was to maximize the system'’s energy efficiency ratio
by seeking the optimal number and load distribution of activated chillers, the
number and approximate degree of activated cooling towers, and the number
and frequency of activated chilled water pumps and activated cooling water
pumps. The results show that by using the grey wolf optimization algorithm, the
energy efficiency ratio of the refrigeration plant room in the design day increased
from 5.03 to 5.51, yielding an increase of 9.67%. The annual comprehensive
energy efficiency ratio increased from 5.50 to 6.15, or 11.82%.
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1 Introduction

The energy consumption of buildings occupies approximately 70% of a city’s primary
energy (Chen et al, 2019). It is crucial to improve building-energy efficiency for
socially sustainable development (Hong et al., 2020). Central air conditioning systems
consume more than two-thirds of a building’s total energy consumption (Ali et al,
2013). Thus, it is essential to improve the energy efficiency of central air conditioning
systems to conserve building energy. Central chilling systems yield over 50% of total
central air conditioning systems’ energy consumption (Luis et al., 2008). Therefore, the
optimization of central chilling operations is key to central air conditioning system energy
conservation.

Numerous recent studies have been conducted on the operational optimization of
water-cooled central chilling systems (Jia et al., 2021). The control strategy of this
subsystem and its disadvantages are summarized in Table 1. Sen Huang optimized
both load distribution and operating chiller numbers based on chiller sequencing
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TABLE 1 Water-cooled central chilling system control strategy and its disadvantages.

Subsystem Control strategy Disadvantages Ref.

Chillers Chiller sequencing control Does not fully consider the Huang et al. (2016)
performance differences of each chiller.

Chillers Particle swarm optimization Premature convergence to a local Karami and Wang (2018), Chan et al.
optimum rather than the global (2022), Deng et al. (2022), Gao et al.
optimum, parameter sensitivity; (2022)
restricted performance in constrained
optimization problems.

Chillers Risk-based robust optimal chiller High computational complexity, model Zhuang et al. (2020)

sequencing control dependency, and conservatism.

Chillers Controlling chiller plant hourly — Chen et al. (2020)

Chillers Improved flower pollination algorithm Prone to local optima, slow convergence Hu et al. (2024)
in later stages, and insufficient accuracy.

control (Huang et al, 2016). Sequencing control did not fully
consider the performance differences of each chiller, making it
impossible to optimize the load distribution and operating chiller
numbers, thus preventing the optimal efficiency of energy systems.
The operational parameter optimization of chiller plants has been
conducted by particle swarm optimization (Karami and Wang, 2018;
Chan et al., 2022; Deng et al., 2022; Gao et al.,, 2022). However,
particle swarm optimization has several disadvantages, such as
premature convergence to a local rather than global optimum,
parameter sensitivity, and restricted performance in constrained
optimization problems. Chaoqun Zhuang proposed a risk-based
robust optimal chiller sequencing control strategy to improve
chiller operational energy efficiency and robustness (Zhuang et al,
2020). This approach also has several disadvantages and challenges,
such as high computational complexity, model dependency, and
conservatism. Chen et al. (2020) compared three sequencing control
strategies, with their results indicating that the hourly control of
chiller plants is optimal. Liu et al. (2023) studied the time limit of
optimal calculation and the output of the optimal control strategy,
with the result indicating that it not only has good optimization
effect but also that confidence is increased considerably. Hu et al.
(2024) recommended an improved flower pollination algorithm
to optimize multi-chiller loading for higher robustness with a
slightly reduced convergence rate. However, this also has several
disadvantages and limitations, such as being prone to local optima,
slow convergence in later stages, and insufficient accuracy.

The above research mainly focused on the optimization of
chillers. Water-cooled central chilling systems consist of chillers,
chilled water pumps, cooling water pumps, and cooling towers,
which interact and influence each other. Therefore, although chillers
consume a considerable amount of energy, the goal of water-cooled
central chilling system optimization is not to minimize the energy
consumption of chillers or any other individual device but to
minimize the total power consumption of the system. Thus, this
study aims to minimize the total power consumption of a water-
cooled central chilling system.

Among emerging swarm intelligent algorithms, the gray
wolf algorithm has the advantages of fewer set parameters,
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better robustness, and higher convergence speed and accuracy
than with the swarm and genetic algorithms (Mirjalili et al.,
2014). The gray wolf optimization algorithm has been applied
in fields such as power (Harish Kumar and Mageshvaran, 2022)
and medicine (Rajakumar et al., 2023). It is supposed to optimize the
operation of water-cooled central chilling systems to improve their
energy efficiency utilization. In this study, the gray wolf algorithm is
implemented on a water-cooled central chilling system to improve
its energy efficiency so as to provide a new eflicient algorithm for
water-cooled central chilling system energy conservation.

2 Central chilling system and its
energy consumption model

2.1 Central chilling system description

This project investigated a commercial office building in
Guangzhou with a construction area of approximately 12,000 m?.
The building’s main function is office space, with some commercial
supporting functions. As depicted in Figure 1, the water-cooled
central chilling system of this building consists of three chillers,
three chilled water pumps, three cooling water pumps, and
three cooling towers. The main parameters of the equipment
are shown in Table 2. The operating parameters of its equipment,
such as inlet and outlet water temperature, water flow, heat flux,
operating frequency, and output power, are collected and monitored
by a data monitoring platform.

2.2 Water-cooled central chilling system
energy consumption model

The energy consumption model of water-cooled chillers
includes Gordon-NG (Gordon and NG, 1995), a Lee model (Lee
and Lu, 2010), BQ model (Yik and Lam, 1998), and an MP model
(Reddy and Andersen, 2002). An MP model is employed in this
paper. Based on the sample parameters provided by the chiller
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FIGURE 1
Water-cooled central chilling system.

manufacturer, the water-cooled chiller energy consumption model
was obtained as Equation 1 by using the MATLAB multiple linear
regression tool.

W

Cl

h= Wchr X f(PLR) X f(Teo’ Tci)
=W,,, x (a, + a,PLR + a;PLR*) (1)

2 2
X (ay+asTy,+agToy+a; T +ag T2 +ag T, T,;)

where W, . is the rated energy consumption of the chiller, PLR
is the part-load ratio of the chiller, T, is the chilled water outlet
temperature, T ; is the cooling water inlet temperature, and ay~a,
are regression coefficients.

Based on the actual operating data of the variable frequency
water pump, it was found that the energy consumption and flow
rate of the variable frequency water pump are in a quadratic
polynomial relationship (Luan et al., 2008). Thus, based on the
sample parameters provided by the water pump manufacturer, the
chilled or cooling water pump energy consumption model was
obtained as Equation 2 by a MATLAB multiple linear regression tool:

W, =by+b,Q+b,Q° ()

where Q is the water pump flow rate, and by~b, are the
regression coefficients.

The Braun model is a semi-empirical model used for cooling
tower performance; it can predict the heat dissipation and
performance of cooling towers by combining thermodynamic
equilibrium and empirical parameters (China Electronic Energy
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Conservation Technology Association, 2024). Thus, based on the
sample parameters provided by the cooling tower manufacturer,
the cooling tower’s fan energy consumption was calculated by
Equations 3, 4.

Pfun = (Pfun,design)(FanPLR)(FRair)3 (3)

ma = Qtower/su(hu,w,i—ha,w,o) (4)

where Pg,;, gegign is fan-rated energy consumption, Fanp is the

partial air volume power correction factor, FR,;, is the ratio of the

air
air volume to the rated air volume, m, is the cooling tower’s air
volume, Q. i the cooling tower’s heat dissipation, ¢, is air-side

heat transfer efficiency, h,, ,,; is the cooling tower’s inlet air enthalpy,

awi
and h, ,,, is the cooling tower’s outlet air enthalpy.

3 Optimization objective, variables,
and control constraints

For the existing building’s water-cooled central chilling system,
the objective was to obtain its optimal energy efficiency so as to
maximize the energy efficiency ratio of the system.

The “energy efficiency ratio” is defined as the ratio of a water-
cooled central cooling system’s total cooling capacity and its energy
consumption. It can be calculated by Equation 5.

Qc,total

EER= ——F——
Wch + WP +Pfal’l

)

where Qo is the central cooling system’s total cooling

capacity, and Wy~ W, and P, are the energy consumption of

p
the chillers, water pumps, and cooling towers, respectively.
Thus, described as the

following Equation 6.

the optimization objective 1is

max EER = max( Ltota > (6)

W+ Wp + Pfan

The optimization variables of this project include the on/off
status and operating parameters of each piece of equipment. For
the chillers, these variables include number and load distribution
of the activated chillers. For the cooling towers, the optimization
variables include the approximation degree and the number
of activated cooling towers. For the chilled and cooling water
pumps, the optimization variables include the number and the
frequency of the activated water pumps. The optimization variables
are thus divided into two categories: continuous variables and
discrete variables. Discrete variables include the on/off status of
the chillers, water pumps, and cooling towers, where 0 and 1
represent the off and on status of the equipment, respectively.
Continuous variables include the load distribution of the chillers,
the frequency of the water pumps, and approximation degree of the
cooling towers.

The optimization variables should comply with multiple physical
and operational constraints, where the on/off status and operating
parameters of each piece of equipment should meet its designed
capability scope and practical operational requirements. The
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TABLE 2 Main parameters of equipment.
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Equipment Main parameters

Chiller 1

Chilled water inlet temperature: 9 °C. Chilled water outlet temperature: 14 °C. Cooling water inlet temperature: 31 °C. Cooling water outlet
temperature: 36 °C. Capacity: 839 kW. Power: 156.8 kW. COP: 5.35.

Chillers 2. 3

Chilled water inlet temperature: 9 °C. Chilled water outlet temperature: 14 °C. Cooling water inlet temperature: 31 °C. Cooling water outlet
temperature: 36 °C. Capacity: 1,073 kW. Power: 179.6 kW. COP: 6.13.

Chilled water pump 1 Power: 22 kW. Head:33 m. Flow rate: 152 m*/h.

Power: 30 kW. Head:33 m. Flow rate: 197 m*/h.

w

Chilled water pumps 2+

Cooling water pump1 Power: 18.5 kW. Head:25 m. Flow rate: 179 m>/h.

Cooling water pumps 2« 3 | Power: 22 kW. Head:25 m. Flow rate: 231 m*/h.

Cooling towers 1~3

Power: 7.5 KW. Water inlet temperature: 37 °C. Water outlet temperature: 32 °C. Flow rate: 253 m*/h. Wet bulb temperature: 28 °C.

constraint conditions are described as the following Equation 7.

Tupproach,min

< ATappruuch

fct,min < ct < ct,max
Setiter,min < Sehitier < Sehitter, max
fchw_pump,min < fchw_pump < fchw_pump,max
fcw_pump,min < fcw_pump < fcw_pump,max (7)
0<N4<NymawNs €Z

N chiller € Z
Notwe pump €
€7z

0< Nchiller < Nc

hiller, max>

<N,

cw_pump, max’

N,

cw_pump

0<N, chw_pump Z

N, <N,

cw_pump = *Ycw_pump, max>

10<

where AT

approac|

. is the flow rate distribution of the cooling tower, f_..

1 is the approximation degree of a cooling tower,
is the
is the chilled water pump

f

Cl

load distribution of the chillers, fy,,; pump
and f,

frequency, cw_pump

Nchiller’ N
cooling tower, chiller, chilled water pump, and cooling water pump,

is the cooling water pump frequency. N,
chw_pump> a0d Noy o, are the activated unit number of the

respectively. Z is a set of integers.

4 Algorithm design and application

4.1 Gray wolf optimization algorithm and
mathematical models

The gray wolf optimization algorithm (GWO) simulates the
behavior of gray wolves hunting prey (Mirjalili et al., 2014). As a
social animal, they have a very obvious pyramid-like hierarchical
system. Wolf a occupies the highest position and is responsible
for decision-making and dominating the entire pack. Wolf { is
located at the second highest level of the pyramid and is responsible
for assisting the lead wolf aand conveying its instructions to
subordinates. Wolf & is located on the third level of the pyramid
and is mainly responsible for reconnaissance, surveillance, hunting,
and guarding the wolf pack. The bottom wolf layer accounts for the
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FIGURE 2
Gray wolf optimization algorithm flow chart.

largest proportion of the gray wolf population and is responsible for
hunting prey.

4.1.1 Encircling prey
Grey wolves encircle prey during the hunt. The mathematically
model of encircling behavior is described as the following
Equations 8, 9.
D

=|C-X,(0- X (8)
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TABLE 3 Parameter boundary of each unit.
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Cooling tower

Parameter boundary PLR: 20%-100% Frequency: 30-50 Hz Fan frequency: 30-50 Hz
Approximation degree: 2 °C-8 °C
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Monthly weighted average dry bulb temperature characteristic.

28

26 -

24

22 +

20 -

-

"~ October

Wet bulb temperature / ‘C

18 |
6L 7 November”

1 1 1 1 1 1 1 1 1 1 1 1
1:00 3:00 5:00 7:00 9:00 11:0013:0015:0017:0019:0021:0023:00

Time

FIGURE 4
Monthly weighted average wet bulb temperature characteristic.

X(t+1)=X,()-A-D )

where t indicates current iteration, A and C are coefficient
vectors, Xp is the position vector of the prey, and X indicates the
position vector of a gray wolf.

A and C are calculated by Equations 10, 11:

.

A=2a.7,-a (10)
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Building monthly weighted average cooling load characteristic.
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FIGURE 6

Deviation between simulated and field test values of system total
energy consumption.

C=2-7, (11)

where components of @ are linearly decreased from 2 to 0 over
the course of iterations, and 7, and 7, are random vectors in [0,1].

4.1.2 Hunting
It is supposed that a, B, and § have better knowledge about the
potential location of prey. Thus, we save the first three best solutions
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Water-cooled central chilling system energy consumption and energy efficiency comparison between before and after optimization in design day.
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Equipment energy consumption comparison between current and
GWO strategy in design day.

obtained so far and oblige the other search agents to update their
positions according to Equations 12-14 according to the position of
the best search agent.

X(t+1)= X‘% (12)

2 2, -

3(1:)—)(a—A’l'(Da)’_.Z:X/}_AZ'(Dﬂ)’X :X‘S_As.(Dé) (13)

B, =[C, X, - X|, By = [Ty %y - X

’D5:|é3.5€575’(| (14)

As depicted in Figure 2, the gray wolf optimization algorithm is
implemented as follows. First, the gray wolf population is initialized
by generating n individuals and setting the initial values of a, A, and
C. Next, the fitness of each individual is calculated, and the position
of the lead wolves (X;, X, and Xj) are initialized. The algorithm
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FIGURE 9

Equipment energy consumption comparison between before and
after optimization on design day 06:00.

then compares each individual’s fitness with that of X, X, and
X5 to determine the current optimal (X,), second-best (Xﬁ), and
third-best (Xg) solutions. Subsequently, the values of a, A, and C are
recalculated, and each individual’s position is updated. The process
repeats from the fitness evaluation step until the maximum iteration
count is reached, at which point the algorithm terminates.

4.2 GWO application

As for the load distribution of chillers, initialization generates a
random value based on the minimum and maximum load limits of
each chiller. If the initial total load is not zero, we adjust its load to
the total cooling load through scaling. For the approximation degree

frontiersin.org
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Equipment energy consumption comparison between before and
after optimization on design day 19:00.

TABLE 4 Design day 06:00 operating parameters before and after
optimization.

Iltem Current strategy GWO strategy

Chiller capacity (kW) [511,0,0] [511.7,0,0]
Chilled water pump [44.7,0, 0] [44.7,0, 0]
frequency (Hz)
Cooling water pump [31.0, 0, 0] [25.7,0, 0]
frequency (Hz)
Cooling tower flow rate [126,0, 0] [126.5, 0, 0]
(m*/h)

[x1, x2, X3, ..., xi] respectively represent the capacity of devices 1 to i, and 0
indicates shutdown.

TABLE 5 Design day 19:00 operating parameters before and after
optimization.

Iltem Current strategy GWO strategy

Chiller capacity (kW) [676, 865, 0] [419.5, 536.5, 585.4]
Chilled water pump [47.0, 46.3, 0] [0, 49.4, 0]
frequency (Hz)
Cooling water pump [38.8,38.3,0] [0, 42.3, 0]
frequency (Hz)
Cooling tower flow rate (147,147, 0] [147.2,147.2,0.0]
(m*/h)

[x1, x2, X3, ..., xi] respectively represent the capacity of devices 1 to i, and 0
indicates shutdown.

of the cooling tower, initialization is implemented by randomly
generating initial values between the minimum approximation
degree and the maximum value 8 °C. Table 3 presents the detailed
parameter boundary of each unit.
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If the solution violates these constraints during the update
process, the following methods can be used to handle this problem. If
the chiller load solution is lower than its minimum value or exceeds
its maximum capacity, it will be brought back within the feasible
range through a proportional adjustment function. In the process
of updating the solution, if the approximation degree of the cooling
tower exceeds its range, the program will truncate it within the
feasible range by an adjustment function.

During the optimization process, discrete variables are adjusted
by checking the values of continuous variables. Discrete variables
are handled using the “threshold truncation” strategy. When the
discrete variable approaches zero, the device shuts down; when the
discrete variable exceeds a certain threshold, the device is turned
on. If non-integer situations occur during the update process, the
discrete variable can be rounded or truncated using a threshold to
maintain its integer state.

5 Optimization result analysis
5.1 Building cooling load characteristic

The building cooling load characteristics were calculated
using DeST software. Building envelope thermophysics parameters,
indoor heat capacity, and indoor air temperature and humidity
were set according to GB 50189-2015 (Design Standard for
Energy Efficiency of Public Buildings). The building’s indoor air
temperature was set to 25 °C. Monthly weighted average dry bulb
and wet bulb temperature characteristic are presented in Figures 3,
4, respectively. As depicted in Figure 5, monthly weighted average
cooling load characteristics were obtained using DeST software
calculation results.

As is evident from Figure 2, the cooling load of July is highest in
the whole year, and the cooling load of November is the lowest. The
cooling load curve of April is similar to that of October; the cooling
load curve of May is similar to that of September.

5.2 Simulation results validation

Based on the system model and algorithm design, Python
was used for programming calculation. Based on the water-cooled
central chilling system energy consumption model and its current
sequential control logic, nine typical operation conditions were
selected to validate the accuracy of the simulation results. The water-
cooled central chilling system refrigeration capacity of the nine
typical operation conditions were 20%, 30%, 40%, 50%, 60%, 70%,
80%, 90%, and 100% of air conditioning design load, respectively.
The 10% air conditioning design load condition did not exist in
the field test data, so it was not included in typical operational
conditions. The part-load ratio (PLR) is defined as the ratio of the
water-cooled central chilling system refrigeration capacity to the
air conditioning design load. As depicted in Figure 6, the deviation
between the simulated and field test values of the water-cooled
central chilling system total energy consumption with sequential
control is less than 6.5%. The simulated results show fine precision.

The refrigeration plant room with the gray wolf optimization
algorithm requires the adjustment of operating parameters or

frontiersin.org
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hardware, which may affect normal production and make it
difficult for enterprises to bear the risk of shutdown or failure.
Therefore, owners do not generally allow such adjustment.
The difference between sequential control and the gray wolf
optimization algorithm is the difference in equipment operating
parameters. Total energy consumption simulated results under
the above nine typical operation conditions demonstrated fine
precision, so the system’s total energy consumption simulated
results with the gray wolf optimization algorithm should also
show fine precision. The following optimization results analysis
is reliable.
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5.3 Optimization results analysis

By the programming calculation, the energy consumption and
energy efficiency ratio characteristics of the water-cooled central
chilling system before and after optimization on the design day
are shown in Figure 7. The design day energy consumption of
the water-cooled central chilling system was reduced by 8.81% by
optimization, and the design day comprehensive energy efficiency
ratio was increased from 5.03 to 5.51, yielding an increase of 9.67%.
As shown in Figure 8, after optimization, the design day energy
consumption of chillers, chilled water pumps, and cooling water
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pumps were reduced by 508 kWh (8.13%), 104 kWh (12.22%), and
225 kWh (36.95%), respectively, while the energy consumption of
the cooling towers increased by 135 kWh (53.15%).

As shown in Figure 7, the energy efficiency ratio of the water-
cooled central chilling system improved the most by optimization
at 19:00, and the energy efficiency ratio improved the least at 06:00.
The comparison of energy consumption of each equipment before
and after optimization under 06:00 and 19:00 operating conditions
on the design day are shown in Figures 9, 10, respectively. The
corresponding operating parameters of each piece of equipment
before and after optimization are shown in Tables4 and 5,
respectively. It can be seen that the cooling load at 06:00 is very
small (Figure 5). At 06:00, the number of devices turned on before
optimization is the same as after optimization (Table 4), while
the capacity of activated devices after optimization is different
from before optimization. Therefore, the energy consumption
savings of the water-cooled central chilling system by optimization
are not significant (only 3.26%), and the energy efficiency ratio
improvement is relatively small (only 3.42%) at 06:00. Similarly,
when the cooling load is large, the number of devices turned on
before optimization is the same as after optimization, and only the
capacity of activated devices can be optimized. At 19:00, the cooling
load is relatively moderate, and both the amount and capacity of
activated equipment can be optimized (Table 5). Therefore, both
energy saving (14.29%) and efficiency improvement (16.79%) are
significant through optimization at 19:00.

As shown in Figure 11, the monthly weighted average energy
consumption of the water-cooled central chilling system decreased
by 8.47%-16.34% after optimization, and the monthly weighted
average energy efficiency ratio increased by 9.25%-19.54%. Of
these, as shown in Figure 3, the average weighted cooling load
in June, July, and August was relatively high, and the energy-
saving space by optimization was very small. The monthly weighted
average energy efficiency ratios improvement was relatively low. The
average weighted cooling load in April was relatively moderate, and
energy saving room was large through optimization. The monthly
weighted average energy efficiency ratio of April increased the most,
reaching 19.54%.

The annual energy consumption comparison of each piece of
equipment in the water-cooled central chilling system between
the current and GWO strategies is shown in Figure 12. The
results indicate that the annual total energy consumption of
the water-cooled central chilling system decreased by 10.57% by
optimization. The energy consumption of chillers, chilled water
pumps, and cooling water pumps was saved by 10.35%, 15.51%, and
39.5%, respectively, while the energy consumption of the cooling
towers increased by 52.67% after optimization. The comprehensive
energy efliciency ratio for the whole year increased from 5.50 to
6.15, an increase of 11.82%. Therefore, the proposed operational
optimization strategy for a water-cooled central chilling system
based on the grey wolf algorithm is effective.

6 Conclusion

This paper conducted operational optimization research on a
water-cooled central chilling system of a commercial office building
in Guangzhou based on the grey wolf algorithm. The optimization
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objective was to maximize the energy efficiency ratio by seeking
the optimal number and load distribution of activated chillers, the
number and approximation degree of activated cooling towers, and
the number and frequency of activated chilled water pumps and
activated cooling water pumps. The main finding of this study is that
the proposed operational optimization strategy for a water-cooled
central chilling system based on the grey wolf algorithm is effective.
After optimization, the design day energy efliciency ratio of the
water-cooled central chilling system increased from 5.03 to 5.51, an
increase of 9.67%, and the annual comprehensive energy efficiency
ratio increased from 5.50 to 6.15, an increase of 11.82%.

6.1 Limitation

The limitations of the study is that there is a lack of
grey wolf optimization algorithm simulation results verification.
Refrigeration plant room with grey wolf optimization algorithm
requires adjustment of operating parameters or hardware, which
may affect normal production and make it difficult for enterprises
to bear the risk of shutdown or failure. So generally, owners
do not allow such adjustment. In the future, we will conduct
wolf optimization algorithm experiment of the actual water-cooled
central chilling system in small building in its spare time.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material; further inquiries can be directed
to the corresponding authors.

Author contributions

JY: Data curation, Formal Analysis, Funding acquisition,
Investigation, Writing — original draft. DZ: Funding acquisition,
Investigation, Methodology, Supervision, Writing - review and
editing. AX: Data curation, Investigation, Resources, Writing -
review and editing. LG: Project administration, Resources, Writing -
review and editing. WZ: Methodology, Software, Validation, Writing
- review and editing. YC: Investigation, Methodology, Supervision,
Writing - review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. The authors gratefully
acknowledge the support provided by the Scientific Research Fund

of Guangzhou Maritime University under grant no. K42022108 and
K42024047.

Conflict of interest
Author AX was employed by Engineering Company Public

Office, Nanjing Fiberglass Research & Design Institute Co., Ltd.

frontiersin.org


https://doi.org/10.3389/fbuil.2025.1611503
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org

Yang et al.

Author LG was employed by Guangzhou Shijie Energy Saving
Technology Co., Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of

References

Ali, M., Vukovic, V., Sahir, M. H., and Fontanella, G. (2013). Energy analysis of chilled
water system configurations using simulation-based optimization. Energy Build. 59,
111-122. doi:10.1016/j.enbuild.2012.12.011

Chan, K. C,, Wong, V. T. T, Yow, A. K. E, Yuen, P. L, and Chao, C. Y.
H. (2022). Development and performance evaluation of a chiller plant predictive
operational control strategy by artificial intelligence. Energy Build. 262, 112017.
doi:10.1016/j.enbuild.2022.112017

Chen, Y, Hong, T, Luo, X, and Hooper, B. (2019). Development of city
buildings data set for urban building energy modeling. Energy Build. 183, 252-265.
doi:10.1016/j.enbuild.2018.11.008

Chen, Y., Yang, C., Pan, X., and Yan, D. (2020). Design and operation optimization
of multi-chiller plants based on energy performance simulation. Energy Build. 222,
110100. doi:10.1016/j.enbuild.2020.110100

China Electronic Energy Conservation Technology Association (2024). Technical
specification for energy efficiency simulation and optimization control of efficient
centralized air conditioning plant room. Beijing: China Electronic Energy Conservation
Technology Association.

Deng, Q., Xu, L., Zhao, T., Hong, X., Shan, X,, and Ren, Z. (2022). Cooperative
optimization of A refrigeration system with A water-cooled chiller and air-cooled heat
pump by coupling BPNN and PSO. Energies 15, 7077. doi:10.3390/en15197077

Gao, Z., Yu, J., Zhao, A., Hu, Q, and Yang, S. (2022). Optimal chiller loading
by improved parallel particle swarm optimization algorithm for reducing energy
consumption. Int. J. Refrig. 136, 61-70. doi:10.1016/j.ijrefrig.2022.01.014

Gordon, J. M., and Ng, K. C. (1995). A general thermodynamic model for
absorption chillers:Theory and experiment. Heat. Recovery Systems Chp 15 (1), 73-83.
doi:10.1016/0890-4332(95)90038-1

Harish Kumar, P, and Mageshvaran, R. (2022). Grey wolf optimisation
algorithm  for solving distribution network reconfiguration considering
distributed generators simultaneously. Int. J. Sustain. Energy 41 (11), 2121-2149.
doi:10.1080/14786451.2022.2134383

Hong, T, Chen, Y, Luo, X, Luo, N, and Lee, S. H. (2020). Ten
questions on urban building energy modeling. Build. Environ. 168, 106508.
doi:10.1016/j.buildenv.2019.106508

Hu, Y, Qin, L, Li, S., Li, X,, Li, Y., and Sheng, W. (2024). Optimal chiller loading
based on flower pollination algorithm for energy saving. J. Build. Eng. 93, 109884.
doi:10.1016/j.jobe.2024.109884

Frontiers in Built Environment

10

10.3389/fbuil.2025.1611503

artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Huang, S., Zuo, W, and Sohn, M. D. (2016). Amelioration of the
cooling load based chiller sequencing control. Appl. Energy 168, 204-215.
doi:10.1016/j.apenergy.2016.01.035

Jia, L., Shen, W, and Liu, J. (2021). A review of optimization approaches
for controlling water-cooled central cooling systems. Build. Environ. 203, 108100.
doi:10.1016/j.buildenv.2021.108100

Karami, M., and Wang, L. (2018). Particle Swarm optimization for control operation
of an allvariable speed water-cooled chiller plant. Appl. Therm. Eng. 130, 962-978.
doi:10.1016/j.applthermaleng.2017.11.037

Lee, T. S., and Lu, W. C. (2010). An evaluation of empirically-based models for
predicting energy performance of vapor-compression water chillers. Appl. Energy 87
(11), 3486-3493. doi:10.1016/j.apenergy.2010.05.005

Liu, X.,, Huang, B, and Zheng, Y. (2023). Control strategy for dynamic
operation of multiple chillers under random load constraints. Energy 270, 126932.
doi:10.1016/j.energy.2023.126932

Luan, Z. J., Zhang, G. M., Tian, M. C., and Fan, M. x. (2008). Flow resistance and
heat transfer characteristics of a new-type plate heat exchanger. J. Hydrodynamics 20
(4), 524-529. doi:10.1016/s1001-6058(08)60089-x

Luis, P-L., Ortiz, ], and Christine, P. (2008). A review on buildings
energy  consumption information.  Energ  Build. 40  (3), 394-398.
doi:10.1016/j.enbuild.2007.03.007

Mirjalili, S., Mirjalili, S. M., and Lewis, A. (2014). Grey wolf optimizer. Adv. Eng.
Softw. 69 (3), 46-61. doi:10.1016/j.advengsoft.2013.12.007

Rajakumar, S., Siva Satya Sreedhar, P., Kamatchi, S., and Tamilmani, G. (2023). Gray
wolf optimization and image enhancement with NLM Algorithm for multimodal
medical fusion imaging system. Biomed. Signal Process. Control 85, 104950.
doi:10.1016/j.bspc.2023.104950

Reddy, T. A., and Andersen, K. (2002). An evaluation of classical steady state off line
linear parameter estimation methods applied to chiller performance data. HVAC&R
Res. 8 (1), 101-124. doi:10.1080/10789669.2002.10391291

Yik, E, and Lam, V. (1998). Chiller models for plant design studies. Build. Serv. Eng.
Res. Technol. 19 (4), 233-241. doi:10.1177/014362449801900407

Zhuang, C., Wang, S., and Shan, K. (2020). A risk-based robust optimal chiller
sequencing control strategy for energy-efficient operation considering measurement
uncertainties. Appl. Energy 280, 115983. doi:10.1016/j.apenergy.2020.115983

frontiersin.org


https://doi.org/10.3389/fbuil.2025.1611503
https://doi.org/10.1016/j.enbuild.2012.12.011
https://doi.org/10.1016/j.enbuild.2022.112017
https://doi.org/10.1016/j.enbuild.2018.11.008
https://doi.org/10.1016/j.enbuild.2020.110100
https://doi.org/10.3390/en15197077
https://doi.org/10.1016/j.ijrefrig.2022.01.014
https://doi.org/10.1016/0890-4332(95)90038-1
https://doi.org/10.1080/14786451.2022.2134383
https://doi.org/10.1016/j.buildenv.2019.106508
https://doi.org/10.1016/j.jobe.2024.109884
https://doi.org/10.1016/j.apenergy.2016.01.035
https://doi.org/10.1016/j.buildenv.2021.108100
https://doi.org/10.1016/j.applthermaleng.2017.11.037
https://doi.org/10.1016/j.apenergy.2010.05.005
https://doi.org/10.1016/j.energy.2023.126932
https://doi.org/10.1016/s1001-6058(08)60089-x
https://doi.org/10.1016/j.enbuild.2007.03.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.bspc.2023.104950
https://doi.org/10.1080/10789669.2002.10391291
https://doi.org/10.1177/014362449801900407
https://doi.org/10.1016/j.apenergy.2020.115983
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org

	1 Introduction
	2 Central chilling system and its energy consumption model
	2.1 Central chilling system description
	2.2 Water-cooled central chilling system energy consumption model

	3 Optimization objective, variables, and control constraints
	4 Algorithm design and application
	4.1 Gray wolf optimization algorithm and mathematical models
	4.1.1 Encircling prey
	4.1.2 Hunting

	4.2 GWO application

	5 Optimization result analysis
	5.1 Building cooling load characteristic
	5.2 Simulation results validation
	5.3 Optimization results analysis

	6 Conclusion
	6.1 Limitation

	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

