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ethical use
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The integration of Artificial Intelligence (AI) into structural engineering holds
great promise for advancing analysis, design, and maintenance. However, it
also raises critical ethical and governance challenges—including bias, lack of
transparency, accountability gaps, and equity concerns—which are particularly
significant in a discipline where public safety is paramount. This study
addresses these issues through eight fictional but realistic case studies that
illustrate plausible ethical dilemmas, such as algorithmic bias in predictive
models and tensions between AI-generated recommendations and human
engineering judgment. In response, the study proposes a structured framework
for responsible AI implementation, organized into three key domains: (i)
Technical Foundations (focusing on bias mitigation, robust validation, and
explainability); (ii) Operational and Governance Considerations (emphasizing
industry standards and human-in-the-loop oversight); and (iii) Professional
and Societal Responsibilities (advocating for equity, accessibility, and ethical
awareness among engineers). The framework offers actionable guidance for
engineers, policymakers, and researchers seeking to align AI adoption with
ethical principles and regulatory standards. Beyond offering practical tools,
the study explores broader theoretical and institutional implications of AI,
including risks associated with model drift, the need for lifecycle oversight, and
the importance of cultural and geographic adaptability. It also outlines future
challenges and opportunities, such as incorporating AI ethics into engineering
education and considering the ethical impact of emerging technologies like
quantum computing and digital twins. Rather than offering prescriptive answers,
the study aims to initiate an essential dialogue on the evolving role of AI in
structural engineering, equipping stakeholders to manage its benefits and risks
while upholding trust, fairness, and public safety.

KEYWORDS

responsible AI, AI governance, AI ethics, accountability, transparency and explainability,
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1 Literature review

Artificial intelligence (AI) (Sheikh et al., 2023; Xu et al., 2021) is revolutionizing the field
of structural engineering by offering powerful tools that enhance traditional methods and
introduce innovative approaches (Lagaros and Plevris, 2022; Solorzano and Plevris, 2022b).
AI has found applications across a wide range of domains (Mahajan et al., 2024), including
enhancements to the Finite Element Method for faster and more accurate simulations
(Bolandi et al., 2022; Korzeniowski and Weinberg, 2021; Meethal et al., 2023; Uriarte et al.,
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2022), surrogate modeling (Liang et al., 2018; Solorzano and Plevris,
2022a; Solorzano and Plevris, 2023; Song and Fu, 2023), structural
health monitoring (SHM) (Mondal and Chen, 2022; Plevris and
Papazafeiropoulos, 2024) using image processing (Dong andCatbas,
2020; Ehtisham et al., 2024; Ferraris et al., 2023; Kim et al., 2024)
and sensor data analysis (Kurian and Liyanapathirana, 2020), and
structural optimization (Chamatidis et al., 2023; Solorzano and
Plevris, 2020) for achieving efficient, cost-effective and sustainable
designs (Lagaros et al., 2008; Plevris et al., 2024). Additionally,
AI is being utilized for predictive maintenance (Ghaffari et al.,
2024; Scaife, 2024; Ucar et al., 2024), enabling engineers to
anticipate and address potential failures before they occur, and
load prediction (Zhang et al., 2021), where AI models forecast
complex loading scenarios such as wind (Song et al., 2024),
earthquake (Hu et al., 2024), and traffic loads (Hussain et al.,
2023; Xu, 2024) with greater precision. Other emerging applications
include automated design generation using generative algorithms
(Liao et al., 2024; Onatayo et al., 2024; Oscar et al., 2023;
Ploennigs and Berger, 2024), risk assessment (Wang et al., 2022)
and failure prediction through probabilistic AI models (Jia and
Wu, 2022), earthquake risk mitigation (Plevris, 2024) and material
characterization (Gamil, 2023; Li et al., 2022), where machine
learning (ML) aids in predicting material properties and behaviors
under various conditions. These advances enable engineers to
solve complex problems with improved precision, efficiency, and
reliability, marking a transformative shift in the way structures are
analyzed, designed, and maintained throughout their lifecycle.

To gain a comprehensive understanding of AI-based methods
in structural engineering, we conducted a literature review using
the Scopus database. After presenting selected individual examples
of AI applications in specific areas of structural engineering
in the previous paragraph, our search strategy shifts toward
identifying review articles that offer broad perspectives on AI’s
role in the field. This approach was adopted to mitigate the
fragmentation often encountered in studies focusing on isolated
AI applications and to provide a more holistic overview of the
discipline. Scopus was the primary database used due to its extensive
coverage of engineering literature. Search terms included “artificial
intelligence”, “structural engineering”, “machine learning” and
“soft computing”. We prioritized peer-reviewed review articles
published in reputable journals over the past decade.This timeframe
ensures the inclusion of contemporary developments while
maintaining relevance.

After establishing a foundational understanding through these
review articles, our focus shifted to the ethical considerations
surrounding AI adoption in civil and structural engineering, as
well as related fields. This involved exploring discussions on
governance, transparency, accountability, and fairness in AI-driven

Abbreviations: AEC, Architecture, Engineering, and Construction; AI,
Artificial Intelligence; ANN, Artificial Neural Network; ASCE, American Society
of Civil Engineers; CNN, Convolutional Neural Network; DHS, Department
of Homeland Security; DL, Deep Learning; DT, Digital Twin; ECCOMAS,
European Community on Computational Methods in Applied Sciences;
GDPR, General Data Protection Regulation; HITL, Human-in-the-Loop; IoT,
Internet of Things; ML, Machine Learning; NN, Neural Network; OSP, Optimal
Sensor Placement; SHAP, SHapley Additive exPlanations; SHM, Structural
Health Monitoring; W3C, World Wide Web Consortium; XAI, Explainable
Artificial Intelligence

engineering applications. Our goal was to identify existing ethical
frameworks and guidelines that could be associated with the
responsible integration of AI technologies in structural engineering
practices. This structured approach allowed us to synthesize current
knowledge and identify gaps, thereby informing the development
of our approach for ethical AI implementation in structural
engineering.

1.1 Review articles on the use of AI in
structural engineering

Salehi and Burgueño (2018) review the adoption of emerging AI
techniques—ML, pattern recognition, and deep learning (DL)—in
structural engineering. These methods improve SHM, damage
detection, concrete modeling, and earthquake engineering. The
authors highlight the potential for integrating AI with the Internet
of Things (IoT) for innovative SHM systems and smart cities.
Challenges include data quality, computational efficiency, and
method selection, with recommendations for addressing these
issues to enhance AI’s impact. Thai (2022) reviews the growing
role of ML in structural engineering, emphasizing its potential to
address challenges in analyzing nonlinear systems and optimizing
performance under extreme conditions. The study outlines core ML
techniques, libraries, datasets, and applications, such as structural
analysis, health monitoring, fire resistance, and material design. The
review serves as a foundational reference for integrating ML into
structural engineering.

Focusing on structural wind engineering, the
review paper of Mostafa et al. (2022) explores the integration
of ML techniques, highlighting their transformative potential
in wind load prediction, response analysis, and structural
optimization. The study categorizes ML applications into data-
driven modeling, aerodynamic shape optimization, and SHM,
emphasizing their ability to handle complex, nonlinear interactions
inherent in wind engineering. Challenges such as data availability,
model interpretability, and computational costs are noted.
Recommendations include advancing hybrid models, expanding
datasets, and leveraging AI to improve resilience and efficiency in
wind-sensitive structural systems.

Tapeh and Naser (2023) present a comprehensive scientometric
review of AI, ML, and DL in structural engineering. The study has
three objectives: introducing AI techniques relevant to structural
engineering, mapping current knowledge through analysis of over
4,000 publications, and reviewing applications in subfields such as
earthquake, wind, fire engineering, and SHM. It emphasizes the
potential of AI for data-driven solutions in design, monitoring,
and optimization while addressing challenges like interpretability,
data availability, and adoption barriers. The article by Málaga-
Chuquitaype (2022) offers a critical review of ML applications in
structural design, exploring its potential to revolutionize traditional
approaches. It highlights the integration of ML into conceptual
design, optimization, and performance prediction, focusing on its
ability to process large datasets and uncover hidden patterns. The
authors emphasize challenges, such as data quality, interpretability
of models, and integration into existing workflows, while proposing
future directions for combining ML with advanced simulation and
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human-in-the-loop frameworks to enhance design efficiency and
innovation.

Harle (2024) reviews advancements in AI within the
broader field of civil engineering, emphasizing its transformative
potential across domains such as structural design, construction
management, geotechnical engineering, transportation, and
infrastructure maintenance. AI techniques like ML and genetic
algorithms optimize processes, enhance predictions of material
behavior, and enable efficient resource management. Applications
include soil property estimation, intelligent transportation systems,
and defect detection using image analysis. Despite progress,
challenges such as data limitations, model reliability, ethical
concerns, and interdisciplinary collaboration remain. The study
highlights AI’s capacity to improve infrastructure efficiency, safety,
and sustainability while proposing directions for future research.
The review paper of Chitkeshwar (2024) explores the transformative
impact of ML, DL, and AI in structural engineering, highlighting
their roles in SHM, optimization, and predictive maintenance. It
emphasizes the integration ofMLwith IoT for real-timemonitoring,
advancing durability and performance. The study highlights ML-
based multi-objective optimization in design, balancing cost and
structural integrity, while advocating for algorithm improvements,
enhanced data availability, and broader adoption. Challenges and
opportunities for revolutionizing structural practices are discussed
to inspire further research and application.

The more recent review article of Etim et al. (2024) provides a
comprehensive survey of ML applications in structural engineering,
emphasizing their transformative potential in modeling, analysis,
and design. Key ML techniques are explored for tasks like SHM,
damage detection, and material property prediction. The study
highlights the ability of ML to address challenges inherent in
complex structural systems, offering faster and more accurate
solutions compared to traditional methods. The authors identify
current limitations, such as data scarcity and model interpretability,
and propose strategies for enhancing ML adoption, including better
data collection and integration with physics-based models.

1.2 Ethical considerations surrounding AI
adoption in structural engineering

As the adoption of AI grows, it brings with it a dual potential:
immense benefits alongside ethical risks (Trotta et al., 2023). On the
one hand, AI holds the promise of increasing efficiency, reducing
human error, and uncovering new design possibilities (Stahl, 2021).
On the other hand, its application in critical areas such as structural
safety and resilience raises pressing ethical concerns (Dhirani et al.,
2023). Issues such as biased algorithms, lack of transparency in
AI decision-making, overreliance on automated systems, and the
potential for misuse of technology must be carefully addressed.
These concerns are particularly significant in structural engineering,
where the stakes are high, and decisions directly impact public safety
and infrastructure reliability.

While ethics in AI is widely acknowledged as a critically
important subject and has been extensively studied across various
disciplines (Safdar et al., 2020), there remains a significant gap
in research addressing the ethical considerations specific to the
application of AI-based methods in structural engineering, as

well as in the broader fields of civil engineering and construction.
Liang et al. (2024) review ethical considerations surrounding AI
and robotics in the architecture, engineering, and construction
(AEC) industry, focusing on issues such as job loss, data privacy,
safety, and liability. Through a systematic analysis of recent
literature, they identify nine ethical challenges and thirteen
research topics tied to these concerns. The authors emphasize
the need for greater stakeholder awareness and propose seven
future research directions to address gaps, aiming to balance
efficiency with ethical responsibility in integrating AI and
robotics within AEC practices. Wang (2024) examines the
ethical implications of AI in smart city development using actor-
network theory. The study analyzes AI applications in smart
transportation, water management, healthcare, grids, and city
evaluation standards, focusing on interactions among governments,
technology developers, and residents. Key challenges include
digital ethics, machine ethics, and relational alienation. The
article advocates transparent, safe, and accountable AI systems,
recognition of nonhuman actors, and the establishment of laws and
ethical guidelines to ensure sustainable and inclusive smart city
development.

Emaminejad et al. (2022) analyze 490 peer-reviewed articles to
explore the role of trust in AI applications within the AEC industry.
Their study identifies key sociotechnical factors crucial for building
trust, such as system reliability, explainability, and user acceptance,
while situating these elements within the distinct characteristics
of AEC projects and processes. The authors highlight a significant
gap in addressing trust-specific needs within the AEC domain
and stress the necessity of aligning AI solutions with both the
technical and psychological expectations of industry stakeholders.
In a subsequent systematic review (Emaminejad and Akhavian,
2022), the same researchers examine trust in AI and robotics
applications in the AEC industry by analyzing 584 publications.
This review identifies critical trust dimensions—explainability,
reliability, robustness, performance, and safety—and their relevance
to current AEC applications. The study underscores the lack of a
systematic approach to addressing these trust factors and proposes
future research directions aimed at enhancing trustworthiness.
The authors emphasize that fostering trust is essential for user
acceptance and the successful integration of AI and robotics
into AEC workflows.

2 Methodology, objectives and
structure of the study

The present study employs an interdisciplinary approach to
explore the ethical challenges associated with AI applications in
structural engineering and propose strategies for addressing these
issues effectively. First, a literature review was conducted to examine
existing AI methodologies and their applications in structural
engineering, alongside the ethical considerations highlighted in
prior research. This review identified key ethical concerns, such
as bias, transparency, accountability, and equity, and assessed their
implications for engineering workflows. Although the literature
provided valuable insights, it became evident that theoretical
discussions alone could not fully capture the practical complexities
of these ethical challenges.
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To bridge this gap, the study developed eight hypothetical
case studies designed to illustrate real-world ethical dilemmas that
arise in AI applications both today and mainly in the future.
These case studies cover a range of critical scenarios, including
bias in seismic risk prediction models, accountability in AI-driven
SHM, and conflicts between AI-generated recommendations and
engineering judgment. Each case study was designed to reflect
realistic challenges, emphasizing the high-stakes nature of ethical
lapses in structural engineering and their impact on safety, decision-
making, and public trust.

Insights from the literature review and case study analysis were
synthesized using an iterative approach to develop a structured
framework for ethical AI implementation. The literature review
provided a view of AI applications in structural engineering
and ethical concerns documented in previous studies, while the
case studies offered practical scenarios where ethical dilemmas
could arise. This dual perspective allowed us to identify recurring
challenges and patterns in AI ethics for structural engineering. To
ensure that the proposed framework was comprehensive, we drew
upon existing AI ethics frameworks from related fields, adapting
them to the specific requirements of structural engineering.
Additionally, we considered discussions in engineering ethics
literature and AI governance frameworks to ensure alignment with
existing ethical principles. The resulting framework is structured
into three domains: (i) Technical Foundations; (ii) Operational
and Governance Frameworks; and (iii) Professional and Societal
Responsibilities, each of which encompasses key pillars addressing
specific ethical concerns, such as bias mitigation, transparency, and
human oversight. The framework does not claim to offer definitive
solutions, but it serves as a structured guide to navigating ethical AI
adoption in structural engineering.The study also sets out to achieve
specific objectives:

1. Identify Ethical Challenges: Examine ethical issues such as
bias, transparency, accountability, and reliability that arise in
AI-driven structural engineering workflows.

2. Develop Practical Strategies: Formulate actionable
approaches for engineers, researchers, and policymakers
to effectively address these ethical challenges, ensuring
responsible and effective AI deployment.

3. Promote Ethical Practices: Encourage the integration of
ethical standards to build trust, ensure safety, and facilitate
the seamless incorporation of AI into structural engineering
practices.

The methodological structure of the study is
presented in Figure 1. Rather than providing definitive answers
to the complex and evolving challenges associated with AI adoption
in structural engineering, this paper aims to initiate a broader
discussion on the risks, uncertainties, and governance issues
that will shape the future of AI applications in the field. By
integrating technical considerations with ethical foresight, the
study underscores the necessity of an interdisciplinary approach
to responsible AI implementation. The proposed measures are
not presented as absolute solutions, but as guiding principles
to help engineers, researchers, and policymakers navigate the
ethical landscape of AI adoption. As AI technologies continue to
develop, new challenges and unforeseen risks will emerge, requiring

continuous reflection, adaptation, and proactive engagement from
all stakeholders.

To the best of our knowledge, this study represents the first
attempt in the literature to directly address the ethical concerns
of AI in structural engineering. Although there has been prior
work on AI ethics in a general context and numerous studies on
AI applications in structural engineering, no previous research has
specifically examined the intersection of AI ethics and structural
engineering. Given that this is an emerging and largely unexplored
topic, we aim to lay the groundwork for future discussions and
research by identifying key ethical challenges and proposing initial
directions for responsible AI integration in this field.

The structure of the paper is as follows: Section 1 presents
the Literature Review, providing an overview of AI applications
in structural engineering and identifying existing gaps in ethical
considerations. Section 2 details the Methodology, Objectives,
and Structure of the Paper, explaining the research approach,
the rationale behind the case studies, and how the ethical AI
framework was developed. Section 3 discusses Ethical Challenges in
AI Applications, examining key concerns such as bias, transparency,
accountability, and equity. Section 4 presents Case Studies of
Ethical Dilemmas, illustrating real-world implications of these
ethical challenges through hypothetical yet plausible scenarios.
Section 5 introduces The Proposed Framework and its Key Pillars,
outlining a structured approach to ensuring responsible AI
deployment in structural engineering. Section 6 explores Future
Directions, focusing on interdisciplinary research opportunities,
policy development, and advancements in AI ethics relevant to the
field. Finally, Section 7 provides the Conclusions, summarizing the
study’s contributions and emphasizing the importance of continued
engagement with ethical AI governance in structural engineering.

3 Ethical challenges in AI applications

The integration of AI into structural engineering will open
new avenues for innovation, enabling enhanced analysis, design,
and monitoring capabilities (Salehi and Burgueño, 2018). However,
these advancements also bring significant ethical challenges that
must be addressed to ensure responsible and equitable use of AI
technologies (Sadek et al., 2024). Ethical decision-making in AI is
not simply about fulfilling a set of requirements but about navigating
complex, competing principles that often involve careful balancing
and trade-offs. In structural engineering, where decisions directly
impact public safety, equity, and sustainability, these challenges
become even more critical.

AI systems inherently carry limitations and biases, which,
if unaddressed, can lead to inequitable or unsafe outcomes.
Moreover, the ethical implications of AI applications in structural
engineering often require reconciling competing values such as
safety vs cost, efficiency vs equity, and innovation vs reliability.
These conflicts cannot always be simultaneously satisfied, and
decision-makers must evaluate the trade-offs in the context of
the engineering project at hand. Frameworks like Beauchamp’s
and Childress’ principles of applied ethics (Page 2012)—which
include the values of beneficence, non-maleficence, justice and
respect for autonomy—offer valuable guidance in addressing
such dilemmas.
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FIGURE 1
Methodological structure of the study.

Although the ethical challenges outlined here—such as bias,
transparency, accountability, and equity—are universal across
AI applications, Section 4 will provide specific examples and
case studies within the context of structural engineering. These
fictional scenarios highlight the unique complexities and potential
consequences of ethical lapses in this field, where decisions affect
technical outcomes and also societal welfare.

The following subsections will go deeper into these ethical
challenges, examining issues such as overreliance on AI, data
privacy, and the use of experimental technologies. This analysis
underscores the importance of establishing frameworks and
strategies that ensure the responsible, equitable, and safe application
of AI, prioritizing safety, fairness, and transparency in the evolving
landscape of structural engineering.

3.1 Bias and fairness

AI models depend heavily on the quality and representativeness
of the data they are trained on. In structural engineering, biased
datasets can lead to inaccurate predictions and, ultimately, unsafe
or inequitable outcomes (Ntoutsi et al., 2020). For example, an
ML model trained on data from specific geographic regions or
structural types may fail to generalize to other contexts, potentially
underestimating vulnerabilities in less-represented scenarios. This
can result in unsafe designs, inequities in resource allocation, or
prioritization of projects that do not align with broader societal
needs. Some may argue that transfer learning (Xing et al., 2024),
often employed to enhance AI models using pre-trained knowledge,
could offer a solution. However, it may also inherit the same
issues. If the original pre-trained model was built on biased or
unrepresentative data, those biases can be transferred to the new
task. Ensuring fairness requires thorough dataset auditing, inclusion
of diverse data sources, and mechanisms to detect and mitigate
bias during model training and deployment (Varsha, 2023). It
should be noted that biases in AI models will lead to technical
inaccuracies as well as compound systemic inequities, as discussed
in Section 3.9.

3.2 Transparency and explainability

Explainability refers to the ability of an AI system to provide
clear, understandable insights into how it reaches its decisions
(Hassija et al., 2024).This concept is particularly crucial in structural
engineering, where AI models often influence critical decisions
involving public safety. Many AI systems, especially DL algorithms,
operate as “black boxes”, offering limited transparency about their
internal processes and decision-making pathways (Dobson, 2023).

In structural design and safety assessments, this lack of
explainability poses significant challenges (Ali et al., 2023;
Hassija et al., 2024). Engineers and stakeholders must be able
to understand and evaluate how AI systems arrive at their
conclusions, particularly in high-stakes scenarios involving
life safety (Balasubramaniam et al., 2023). For instance, if an AI
model predicts a reduced risk of structural failure without offering
clear reasoning, it can lead to misplaced trust or skepticism.
In structural engineering, AI models influencing the design of
load-bearing structures or safety assessments must provide clear
reasoning to ensure that engineers can validate and trust their
outputs, especially when these models inform life-safety decisions.

Developing explainable AI models is crucial for fostering trust,
supporting validation processes, and allowing engineers to justify
decisions based on AI-generated outputs. These models enhance
transparency, making complex algorithms more interpretable
and aligning AI-driven insights with accountable engineering
practices (Baum et al., 2022).

3.3 Reliability and accuracy

The reliability and accuracy of any AI model are fundamental
to its effective deployment, as errors can undermine trust and lead
to significant consequences (Scorzato, 2024). This is particularly
critical in structural engineering, where inaccuracies can result
in major failures or catastrophic outcomes. AI-driven systems
may underestimate structural vulnerabilities, overlook damage,
or produce overly optimistic predictions during optimization
processes. These errors often stem from issues such as overfitting,
inadequate training data, or unforeseen operational conditions.
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In structural engineering, AI-driven models that optimize
structural design or predict maintenance needs must be highly
accurate, as errors, such as overlooking critical damage in bridges
or underestimating load-bearing limits in skyscrapers, can lead to
catastrophic failures, financial losses, and even loss of life in high-
stakes scenarios. To mitigate these risks, AI models in structural
engineering must undergo rigorous validation and robustness
testing (Myllyaho et al., 2021). Additionally, periodic retraining
is essential to ensure models remain accurate and adaptable to
evolving conditions and environments, safeguarding both public
safety and engineering integrity. Although reliability is critical for
established AI systems, experimental technologies pose additional
ethical concerns, as discussed in Section 3.8.

3.4 Accountability

Accountability refers to the obligation to accept responsibility
for actions, decisions, or outcomes. In the context of AI applications
in structural engineering, accountability ensures that stakeholders
are held answerable for the systems they develop, implement, or use.
This principle becomes especially critical when AI-driven designs or
recommendations result in errors or failures (Novelli et al., 2024).

Determining accountability in such cases can be
highly complex (Buiten et al., 2023). In structural engineering,
this challenge arises when an AI system provides recommendations
that contribute to a structural failure, such as underestimating a
critical load (e.g., wind or earthquake forces) on a bridge. It is
crucial to determine whether responsibility falls on the engineers
utilizing the AI system, the developers who designed the model, or
the organizations that neglected to properly validate its predictions.

Clear accountability frameworks are crucial for ensuring
that AI adoption in structural engineering remains transparent
and that stakeholders can be held responsible for errors that
compromise safety. These frameworks should clearly define roles
and responsibilities across the AI lifecycle, from development to
deployment and application. This will enhance trust in AI systems
and promote their ethical and responsible use.

3.5 Data privacy and security

AI-driven systems in structural engineering increasingly depend
on extensive data collection, particularly for real-time structural
health monitoring and predictive maintenance (Keshmiry et al.,
2024). These systems generate and process vast amounts of data
related to infrastructure conditions, including stress levels, material
degradation, and environmental impacts. Such data, while essential
for enhancing safety and performance, may also contain highly
sensitive information about vulnerabilities in critical structures such
as bridges, dams, and tunnels. If compromised, this information
could pose significant security risks, including the potential for
malicious exploitation of structural weaknesses.

Ensuring the protection of this data is paramount, especially in
high-risk sectors such as transportation, energy, and public safety,
where breaches could lead to serious consequences. Unauthorized
access to infrastructure data could facilitate cyberattacks, sabotage,
or misuse of critical engineering insights. To mitigate these risks,

engineers and organizations must implement robust cybersecurity
measures, including encryption, multi-factor authentication, and
secure cloud-based or on-premise data storage solutions.

Beyond technical protections, compliance with data protection
regulations is essential. Frameworks such as the General
Data Protection Regulation (GDPR) of the EU (Voigt and
von dem Bussche, 2024) and other regional standards impose
strict requirements for data handling, storage, and sharing.
Organizations must establish clear data governance policies,
ensuring transparency in data usage while maintaining stakeholder
trust. Ethical AI deployment in structural engineering necessitates
advanced analytical capabilities and also strong commitments to
data privacy, cybersecurity, and regulatory adherence, ensuring that
AI-driven insights enhance safety without introducing new security
vulnerabilities.

3.6 Overreliance on AI systems

Overreliance on AI systems introduces significant ethical
concerns, particularly in high-stakes fields like structural
engineering (Klingbeil et al., 2024). Engineers and decision-
makers may place undue trust in AI-generated recommendations,
neglecting to account for the inherent limitations of the models or
failing to critically evaluate their outputs. In structural engineering,
overreliance onAI could lead to overlooking site-specific conditions,
such as soil type, local climate, or unexpected structural behavior
under extreme loads, which can only be adequately evaluated
through human expertise. Such overdependence can result in
decisions that lack sufficient human judgment, potentially leading to
unsafe designs or failure to consider critical factors vital to structural
integrity and public safety.

Addressing overreliance involves distinguishing between
adequate human judgment and dataset auditing, as discussed
earlier in Section 3.1. Dataset auditing is a proactive step focused on
building reliable AI models by identifying and mitigating biases in
training data, ensuring the quality and representativeness of datasets
before the AI model is deployed. In contrast, adequate human
judgment serves as a reactive safeguard during the application phase,
ensuring that AI outputs are critically reviewed, contextualized,
and supplemented with domain expertise to avoid blind trust in
automated recommendations.

A well-balanced relationship between AI-driven insights and
engineering judgment is critical to ensure that final decisions in
areas such as building safety and infrastructure resilience remain
well-grounded. Maintaining this equilibrium involves fostering a
collaborative relationship between AI systems and human decision-
makers, where engineers use AI insights as a starting point but apply
their expertise to validate and refine final decisions. This approach
minimizes risks while ensuring that AI technologies contribute
meaningfully to safe and effective structural engineering practices.

3.7 Misaligned objectives and optimization
trade-offs

AI models are typically designed to optimize specific objectives,
such as minimizing costs, maximizing efficiency, or enhancing
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sustainability. However, these objectives can sometimes conflict with
broader societal goals, such as promoting equity, ensuring resilience,
or maintaining long-term safety (Dung, 2023; Hristova et al.,
2024). In structural engineering, optimization models should
prioritize long-term safety and sustainability over short-term gains.
For example, AI models used for structural optimization should
not solely focus on minimizing costs or maximizing efficiency,
especially when these objectives may compromise the integrity
or resilience of a structure. Reducing material usage in a high-
rise building to minimize costs, for instance, may undermine
its seismic resilience, posing a safety risk in the event of
an earthquake.

Misalignments between AI system objectives and the core
responsibilities of engineering pose a significant ethical challenge.
In infrastructure projects, where safety, equity, and sustainability
are paramount, AI-driven optimization must not prioritize cost
efficiency at their expense. However, ensuring AI aligns with
these values is highly complex, as ethical principles cannot
be easily quantified or translated into mathematical objective
functions. While humans intuitively balance safety and long-
term impact, AI systems rely on explicit optimization criteria,
making it difficult to encode concepts like equity, resilience,
or societal welfare in a way machines can process. This
challenge underscores the need for multi-objective optimization,
ethical constraints, and human oversight to ensure AI-driven
decisions uphold public welfare. Even with safeguards, bridging
the gap between ethical reasoning and AI logic remains an
ongoing challenge.

3.8 Experimental AI technologies

The deployment of experimental or untested AI technologies
in structural engineering presents critical ethical challenges. Unlike
established systems, these emerging technologies often lack the
rigorous validation necessary to ensure safety and reliability.
Without adequate testing, they can generate inaccurate predictions
or experience system failures, potentially jeopardizing public safety
and undermining trust. For example, emerging AI technologies in
structural engineering, such as predictive maintenance systems or
generative design models, must undergo rigorous validation before
deployment in high-risk scenarios. The consequences of faulty AI
predictions in critical infrastructure could include building collapse
or catastrophic damage to bridges.

High-stakes projects that prioritize innovation over thorough
testing risk flawed designs or unforeseen hazards, especially when
unique site-specific conditions are not fully accounted for. To
address these concerns, organizations should adopt a precautionary
approach, which includes phased implementation through pilot
testing, robust risk assessments, and iterative validation to identify
and mitigate potential issues before full deployment. Collaboration
between AI developers and structural engineers is essential to
ensure that experimental technologies are both reliable and safe,
aligning innovative solutionswith the safety and reliability standards
expected in structural engineering. For established AI systems,
ensuring reliability through rigorous validation and periodic
retraining, as discussed in Section 3.3, is equally important.

3.9 Equity and accessibility in AI
deployment

AI deployment often depends on financial and technical
resources, which can create disparities where wealthier regions
gain greater benefits while underserved areas are left behind. This
raises ethical concerns about the fair distribution of AI advantages,
particularly in structural engineering, where unequal access to AI
technologies can deepen disparities in infrastructure development
and safety across regions. For example, AI deployment in structural
engineering should address the needs of underserved communities,
ensuring that rural or economically disadvantaged regions benefit
from the safety improvements AI can offer in infrastructure
maintenance and disaster resilience.

Equity in deployment also requires tackling technical biases in
data and algorithms, as highlighted in Section 3.1. Biased models
can perpetuate disadvantages for marginalized communities,
amplifying existing inequalities. Ensuring that AI systems are
accessible and fair in their application—such as providing equal
access to AI-driven structural monitoring systems—is essential to
prevent widening gaps between well-resourced and underserved
communities. Achieving this involves conducting thorough dataset
audits, employing bias mitigation techniques, and incorporating
diverse data sources. By addressing both systemic and technical
barriers, AI technologies can advance safety and development
equitably across all regions.

3.10 Data ownership and consent

In structural engineering, data ownership issues may arise
when infrastructure data, collected through SHM systems, is owned
by private entities. Ethical concerns regarding data ownership
and consent (Beauchamp, 2011) are particularly relevant when
monitoring systems are implemented in privately owned structures.
Clear guidelines on consent and data usage must be established
to ensure that sensitive information, such as weaknesses in
private buildings or public infrastructure, is used ethically and in
compliance with legal standards (Andreotta et al., 2022).

Addressing these concerns is especially important when AI is
applied to private-sector infrastructure projects, where data access
and usage might impact stakeholders’ privacy and security. It is
essential to ensure that stakeholders are informed about the data
collection process, how the data will be used, and their rights to
consent or opt-out, thus safeguarding privacy while maintaining
transparency and accountability in AI applications.

4 Case studies of ethical dilemmas

The integration of AI into structural engineering workflows
introduces complex ethical challenges that demand careful
examination. To illustrate these challenges and their potential real-
world implications, this section presents eight hypothetical case
studies, each addressing a key ethical dilemma associated with AI
applications in the field.

Although fictional, the case studies are designed to be both
plausible and grounded in emerging trends. They were developed
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TABLE 1 Overview of hypothetical case studies, key ethical challenges, and corresponding pillars of the ethical AI framework for structural engineering.

Case study Key ethical issue Corresponding pillars

1. Seismic Risk Bias Data exclusion of rural zones Pillar 1, Pillar 7

2. SHM Accountability Misinterpreted defect detection Pillar 2, Pillar 5, Pillar 6

3. Data Privacy Breach Security lapse in SHM data Pillar 4, Pillar 6

4. Cost-Driven Design Ignoring expert objections Pillar 3, Pillar 5

5. Retrofitting Ethics Underserved communities deprioritized Pillar 1, Pillar 7

6. Opaque Load Prediction AI recommendation lacked explainability Pillar 3, Pillar 5

7. Post-Disaster Misclassification Undertrained model risks Pillar 2, Pillar 3

8. Material Selection Unvalidated new materials Pillar 2, Pillar 6

based on several guiding criteria: (i) relevance to the specific
ethical concerns identified in the literature review, such as bias,
transparency, accountability, and equity; (ii) plausibility based on
current and near-future AI capabilities in structural and civil
engineering; (iii) diversity across application domains—including
design, monitoring, retrofitting, and disaster response—to capture
a range of real-world contexts; and (iv) inspiration from analogous
precedents, including documented dilemmas and risk patterns
observed in related fields such as healthcare, transportation, and
smart infrastructure.

These case studies are not modeled on actual incidents but
are forward-looking projections that reflect likely scenarios as AI
becomes more integrated into structural engineering practice. This
speculative yet informed approach allows for exploration of issues
that are not yet fully visible in the field due to AI’s still-limited
mainstream adoption. By focusing on realistic dilemmas that could
plausibly arise, the case studies provide a conceptual testing ground
for the ethical framework developed in this study.

To provide an overview of the scenarios and their ethical
significance, Table 1 summarizes each case study alongside its
primary ethical issue and the corresponding pillars of the proposed
framework. This mapping highlights how the fictional dilemmas
inform and support the structure of the ethical framework
developed in the study.

Following this summary, the detailed case studies are presented
individually. Each scenario explores how specific ethical failures—if
unaddressed—could compromise safety, equity, and public trust
in structural engineering applications of AI. These examples
underscore the importance of anticipating and addressing ethical
concerns as AI technologies continue to evolve and permeate
engineering practice.

4.1 Case study 1: bias in seismic risk
prediction models

A city, located in a seismically active region, implemented anAI-
based seismic risk prediction system to prioritize retrofitting efforts
for its aging infrastructure. The system was trained on a dataset that

predominantly featured historical earthquake data and structural
information from urban high-rise buildings in the city center. This
dataset excluded significant portions of the city’s outskirts, where
rural communities and critical infrastructure, such as bridges and
small hospitals, are located.

When the AI system was deployed, it prioritized retrofitting
urban high-rise buildings, deeming them most at risk based on the
training data. However, during a moderate earthquake, a bridge
connecting two rural areas and a small hospital on the outskirts
suffered severe damage, while the retrofitted urban buildings
remained largely unaffected. A post-disaster review revealed that the
AI system had underestimated the risks for rural structures because
they were poorly represented in the training data. This oversight left
vulnerable populations with inadequate protection and disrupted
critical access routes, compounding the disaster’s impact.

This case presents several ethical concerns related to bias,
fairness, and justice. The decision to prioritize urban structures
based on a biased dataset highlights the competing principles of
fairness and beneficence (promoting wellbeing). Justice, according
to Beauchamp’s principles (Page, 2012), would advocate for a more
equitable allocation of resources that reflects the needs of vulnerable
populations in underserved areas. Prioritizing the retrofitting of
urban areas over rural communities with critical infrastructure
violated the principle of justice, as it failed to address the unequal
vulnerability of rural residents.

Furthermore, from a utilitarian perspective, the system’s
prioritization of high-value urban areas could be seen as an
attempt to maximize benefits. However, the lack of inclusivity
in the training data ultimately undermined the greatest good
for the greatest number, as it failed to account for the potential
catastrophic consequences for rural communities. The principle of
non-maleficence (avoiding harm) (Al-Bar and Chamsi-Pasha, 2015)
would argue that the failure to protect rural areas from seismic risks
resulted in unnecessary harm, exacerbating the disaster’s impact.

Additionally, the lack of oversight in decision-making—relying
on the AI’s outputs without questioning the representativeness
of the training data—demonstrates the need for greater human
judgment.The deontological ethics framework (D’Alessandro, 2024)
would emphasize the duty of decision-makers to ensure the fairness
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and accuracy of the system’s outputs, ensuring that vulnerable
populations are not neglected in critical decision-making.

This scenario underscores the importance of ensuring fairness
and inclusivity in AI training datasets. Beauchamp’s principle of
justice demands that AI systems be designed to reflect the diversity
of structural types and geographical contexts, ensuring equitable
resource distribution. To address such issues, citiesmust incorporate
diverse data sources and continuously update the AImodel to reflect
these factors. Mechanisms to audit datasets for bias and implement
explainable AI are also essential to prevent similar outcomes in the
future, ensuring the responsible and ethical use of AI in critical
infrastructure planning.

4.2 Case study 2: accountability in
AI-driven structural health monitoring

The deployment of AI systems for Structural Health Monitoring
(SHM) introduces significant accountability challenges, particularly
when failures result from errors in system performance or
recommendations. Consider an AI system monitoring a bridge
for structural weaknesses by analyzing real-time sensor data and
historical maintenance records. If the system fails to detect critical
defects in support beams due to an incomplete or biased training
dataset, a catastrophic failure could occur, leading to severe
damage and potential loss of life. In such a scenario, determining
accountability becomes complex: Should responsibility fall on the
engineers who relied on the AI, the developers who designed the
system, the organization that failed to validate its accuracy, or
the state agency that approved its use? This example underscores
the need for rigorous validation, continuous monitoring, and clear
accountability structures in AI-driven SHM applications, especially
when public safety is at stake.

In another scenario, an AI system successfully detects structural
weaknesses in a bridge, identifying signs of fatigue in key load-
bearing components. However, it misinterprets the severity of
the issue, recommending superficial repairs instead of addressing
the underlying structural defects. Engineers, relying on the AI’s
assessment, implement the suggested measures, only for the bridge
to eventually collapse due to the unresolved weaknesses. This raises
a deeper accountability dilemma: Should responsibility fall on the
engineers for not critically evaluating the AI’s recommendations,
the developers for designing a flawed decision-making algorithm,
or the organization for deploying the system without proper human
oversight safeguards? Unlike traditional engineering workflows, AI
introduces a non-human actor into the decision-making process,
complicating conventional notions of responsibility and professional
liability.

These scenarios highlight the importance of ensuring that AI
systems provide clear, interpretable outputs, allowing engineers to
make informed decisions. To address these concerns, AI systems for
SHM must undergo extensive testing, incorporate mechanisms for
explainable outputs, and include robust human oversight protocols.

Furthermore, emerging regulatory frameworks, such as the
European Union’s Artificial Intelligence Act (AI Act) (Cancela-
Outeda, 2024; Covelo de Abreu, 2024), propose structured
approaches to accountability in AI applications. The AI Act
classifies AI systems based on risk levels and mandates specific

requirements for high-risk systems, including those used in critical
infrastructure like bridges. It emphasizes the need for transparency,
human oversight, and clear delineation of responsibilities among
AI providers, deployers, and users. In the context of structural
engineering, adopting such frameworks can support shared
accountability models where engineers retain ultimate decision-
making authority, while developers and institutions are held
responsible for system accuracy, validation, and ethical design.
Establishing clear accountability frameworks is essential to ensure
the responsible and ethical use of AI in structural engineering.

4.3 Case study 3: data privacy breaches in
structural health monitoring

A city implemented an AI-powered SHM system to enhance the
safety and reliability of its infrastructure. The system continuously
collected and analyzed data from critical structures, such as
bridges and tunnels, using a network of IoT sensors. This data
included real-time measurements of structural strain, vibrations,
temperature variations, and usage patterns, which were stored in a
central database accessible to authorized personnel for analysis and
maintenance planning.

Despite the system’s sophisticated functionality, the database
was not adequately secured. A vulnerability in the system’s network
allowed a malicious actor to gain unauthorized access to the
data. The attacker extracted sensitive information about a major
suspension bridge’s structural vulnerability, including stress points
and areas flagged for urgent maintenance. This information was
subsequently misused for financial and criminal purposes. The
attacker sold the data to an organized group, which used it to
exploit the vulnerabilities during a critical moment, causing partial
structural damage and widespread panic.

While the bridge did not completely collapse, the incident
forced the authorities to shut it down for emergency inspections
and repairs, leading to significant economic losses, disruptions
to transportation, and diminished public trust in the city’s
infrastructure management. This scenario highlights significant
risks and ethical concerns: (i) The stolen data provided detailed
insights into the bridge’s weaknesses, which were exploited to cause
damage. This underscores the danger of sensitive infrastructure
data falling into the wrong hands; (ii) The misuse of SHM
data violated the fundamental principle of confidentiality, raising
questions about the ethical responsibility of organizations to
safeguard critical infrastructure information; (iii)The bridge closure
resulted in significant economic losses for businesses relying on the
transportation network and caused frustration among commuters,
highlighting the cascading effects of a data breach; (iv) The lack
of robust security measures and oversight raised ethical questions
about who should be held accountable—the system developers for
inadequate cybersecurity, the city for failing to enforce proper data
protection protocols, or the engineers who managed the system
without addressing potential vulnerabilities.

This case study emphasizes the importance of addressing data
privacy in SHM systems through robust security protocols, access
control mechanisms and data minimization. Through prioritizing
cybersecurity and ethical considerations, SHMsystems can continue
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to provide valuable insights without exposing critical infrastructure
to undue risks.

4.4 Case study 4: organizational pressures
vs engineering judgment in high-rise
design

A construction firm in New City implemented an advanced AI
system to optimize the structural design of a high-rise residential
building. The AI recommended reducing the reinforcement steel in
the building’s core structure to cut costs, asserting that the reduced
reinforcement still satisfied basic safety margins under normal load
conditions. The decision, derived from an AI trained on extensive
datasets, was presented as a reliable and efficient solution. However,
Alex, a senior structural engineer with extensive experience, raised
concerns about the recommendation.

While the design complied with safety codes, Alex argued
that the AI’s recommendation might compromise the building’s
robustness during rare but critical events, such as seismic activity or
unexpected loading scenarios. He pointed out that the AI had likely
overlooked site-specific factors, including unique soil conditions
and the building’s coastal location, which exposed it to high wind
loads.These factors were crucial for the building’s long-term stability
and safety.

At the same time, the AI’s recommendation presented
a valid ethical consideration—cost reduction. The project
management team, constrained by deadlines and budgets, insisted
on implementing the AI’s design. The system’s data-driven analysis
promised significant cost savings andmore efficient use of resources.
They argued that cutting costs could make the project more
financially viable, benefiting both the firm and its clients, potentially
making housing more affordable in an economically challenging
environment. However, this pushed the boundaries of ethical
trade-offs between financial considerations and safety.

Despite Alex’s objections, the team pressured him to approve the
plan, citing the AI’s efficiency and its compliance with safety codes as
justifications. Under organizational pressure, Alex reluctantly signed
off on the design, facing a moral dilemma between his professional
duty to ensure safety and the pressure to meet financial and time
constraints. The decision also raised concerns about the role of
human judgment in the face of AI-driven solutions—should the
decision be based solely on AI’s “data-driven” conclusions, or should
there be a more human-centered approach that accounts for the
uncertainties AI might overlook?

Months later, a rare but intense windstorm caused noticeable
vibrations in the building, alarming residents and requiring costly
retrofitting to reinforce its structural integrity.This incident incurred
financial losses and led to significant public criticism of the decision-
making process. The case raised ethical questions about whether the
firm prioritized cost savings at the expense of ensuring the safety
and wellbeing of residents and workers, especially in a region prone
to extreme weather events.

This scenario underscores the complex nature of ethical
decision-making in structural engineering, where multiple valid
principles must be weighed. On the one hand, the desire to
reduce costs and improve economic viability presents an ethical
argument, especially in terms of making housing more affordable

and addressing financial constraints. On the other hand, public
safety and long-term sustainability must take precedence in design
decisions, particularly in regions with unique environmental risks.
The dilemma also highlights the importance of human expertise
in assessing factors that AI might overlook, such as local site
conditions, which are crucial for engineering resilience.

This case study illustrates how ethical decisions in structural
engineering must navigate competing imperatives—cost-efficiency
vs safety, short-term financial gains vs long-term stability, and
AI-driven solutions vs human judgment. It emphasizes the need
for organizations to foster an environment where engineers can
advocate for safety without undue pressure and where AI serves as
a tool to support, not replace, human expertise. The incident also
highlights the importance of multi-faceted ethical frameworks that
guide decisions when diverse ethical principles are in conflict.

4.5 Case study 5: ethical concerns in
retrofitting decisions

A city located in a seismically active region adopted an
AI-powered system to prioritize retrofitting efforts for its aging
infrastructure. The AI model was designed to analyze structural
vulnerability, economic impact, and maintenance history to rank
structures based on their need for retrofitting. The city implemented
this system to efficiently allocate limited funding for disaster
preparedness.

When the AI model’s recommendations were reviewed, it
prioritized retrofitting high-value commercial buildings in the
downtown area, such as office towers, shopping malls, and luxury
apartment complexes. These structures were deemed critical due
to their economic contribution and high repair costs in the event
of an earthquake. However, older residential buildings in low-
income neighborhoods, many of which housed the city’s most
vulnerable populations, were ranked much lower on the list. These
neighborhoods had limited structural documentation and were
often constructed before modern building codes were enforced,
making them particularly susceptible to seismic damage.

City officials, following the AI’s recommendations, allocated
most of the retrofitting budget to the commercial district, leaving
the residential neighborhoods withminimal resources for upgrades.
Months later, a moderate earthquake struck Rivertown. While the
retrofitted commercial buildings sustainedminimal damage, several
residential structures in low-income areas collapsed, resulting in
casualties and widespread displacement of vulnerable families.
Public outrage ensued, with community leaders accusing the city of
prioritizing economic interests over human lives.

This case study highlights the following ethical concerns: (i)
The AI system’s prioritization disproportionately benefited affluent
areas, exacerbating existing social inequalities and neglecting
the safety of marginalized communities; (ii) The model was
trained to value economic metrics, such as property value and
commercial importance, over human-centric factors like population
density or vulnerability; (iii) Decision-makers relied heavily on
the AI recommendations without critically evaluating whether
the algorithm’s priorities aligned with ethical considerations and
community needs.
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4.6 Case study 6: lack of explainability in
AI-Based load prediction for a bridge
design

In a growing city, a new suspension bridge was planned to
connect two busy districts across a river. To optimize the design
and ensure safety, the project team employed an advanced AI
system to predict complex loading scenarios, including vehicular
traffic, pedestrian usage, and environmental loads such as wind and
temperature variations. The AI system, trained on historical data
from similar bridges worldwide, provided recommendations for the
optimal material selection and load distribution.

During the design phase, the AI system recommended reducing
the dimensions of certain load-bearing cables, claiming the
adjustments would save costs while maintaining safety margins.
When queried, the system provided an output indicating that the
reduced dimensions would perform adequately under the forecasted
load conditions. However, the AI system, based on a DL model,
could not explain how it arrived at this conclusion. The engineers
were presented with a probability score indicating safety compliance
but were unable to trace the factors influencing this score or the
internal logic behind the recommendation.

Senior structural engineer Maria, experienced with suspension
bridge designs, expressed concern. She believed the cables might
be undersized given the expected traffic growth and unpredictable
wind conditions unique to the city’s coastal climate. The project
management team, however, insisted on adopting the AI’s cost-
saving recommendations, citing budget constraints and confidence
in the model’s advanced capabilities.

Two years after construction, the bridge began exhibiting
unusual vibrations during high wind events. Further analysis
revealed that the cable dimensions were insufficient to dampen these
effects, a factor the AI had failed to consider due to the absence of
similar coastal conditions in its training data. Although the bridge
did not fail, extensive retrofitting was required, leading to additional
costs and public criticism of the decision-making process.

The case study highlights the following ethical concerns: (i)
The AI system’s inability to provide a transparent rationale for
its recommendations left engineers unable to critically assess the
model’s reliability, undermining trust in its output; (ii) The project
management team’s dependence on AI recommendations, without
adequate human evaluation, prioritized cost savings over cautious
engineering judgment; (iii) The absence of clear explainability made
it difficult to determine responsibility for the misjudgment, shifting
blame between the AI developers, the engineers, and the decision-
makers.

4.7 Case study 7: ethical implications of AI
in post-disaster damage assessment

Following a major earthquake in the metropolitan region of
a city, the city government deployed an AI-powered system to
perform rapid post-disaster damage assessments of buildings and
infrastructure. The system analyzed drone footage and satellite
imagery using ML algorithms to categorize structures into three
levels of damage: minor, moderate, and severe. The AI system

prioritized efficiency, generating results within hours, compared to
the days or weeks required for traditional human-led assessments.

During the rebuilding process, several buildings categorized
as having “minor damage” by the AI collapsed unexpectedly
when subjected to normal use, causing injuries and fatalities. A
subsequent investigation revealed that the AI system had struggled
to assess certain structural configurations and materials, such
as older masonry buildings and hybrid construction methods,
due to a lack of training data. This issue had been flagged by
developers but overlooked during deployment in the urgency of the
disaster response.

This case underscores the need for robust testing and validation
of AI systems in disaster response scenarios, as well as clear
communication of uncertainties and limitations to ensure their
responsible use (Plevris, 2025a). The ethical concerns that this
case study highlights are: (i) The prioritization of speed over
thoroughness compromised the accuracy of the assessments,
resulting in undetected severe damage in some structures; (ii)
The system was deployed without sufficient testing in real-world
post-disaster conditions, highlighting the risks of using unproven
technology in high-stakes scenarios; (iii) The lack of explainable
outputs left engineers and officials unable to verify the AI’s
conclusions, undermining trust in the system; (iv) The decision to
deploy an untested system raises ethical questions about who bears
responsibility for the failures—the developers for highlighting the
limitations, or the decision-makers who ignored them.

4.8 Case study 8: ethical dilemmas in
AI-assisted material selection

To promote sustainability, a city introduced anAI-driven system
to assist structural engineers in selecting environmentally friendly
materials for large infrastructure projects. The system was designed
to balance factors such as cost, environmental impact, and structural
performance. When used to plan a new public transportation
hub, the AI system recommended a novel composite material that
features a low carbon footprint and reduced costs compared to
traditional materials.

Although the material passed initial strength tests and met
code requirements, several engineers expressed concerns about
its long-term durability under local environmental conditions,
including high humidity and temperature fluctuations. However,
the project managers, under pressure to meet sustainability goals
and budgets, chose to follow the AI’s recommendations without
conducting extended testing. Five years after the hubwas completed,
structural degradation in key load-bearing elements was discovered,
necessitating extensive repairs and raising questions about the long-
term viability of the chosen material.

This case highlights the importance of balancing innovation
with caution, ensuring that AI-driven recommendations for
sustainability do not compromise structural integrity or public
safety.The ethical concerns that this case study highlights are: (i)The
AI prioritized sustainability metrics over long-term performance,
potentially compromising the structure’s safety and longevity;
(ii) The decision to forego extended testing highlights the risks
of overreliance on AI without adequate human judgment and
verification; (iii) Responsibility for the premature degradation
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FIGURE 2
The framework for ethical use of AI in structural engineering: key pillars categorized into technical, operational, and societal domains.

is unclear—does it lie with the AI developers, the engineers
who approved the recommendation, or the project managers
who prioritized cost and sustainability metrics? (iv) The use of
unproven materials raises ethical questions about the risks involved
in adopting innovative technologies without comprehensive
validation.

5 The proposed framework and its key
pillars

The proposed framework for ethical use of AI in structural
engineering aims to address the ethical challenges of AI in structural
engineering in an organized manner. Through categorizing
its seven key pillars into three main domains—(A) Technical
Foundations, (B) Operational and Governance Frameworks, and
(C) Professional and Societal Responsibilities—the framework
ensures a holistic approach to ethical AI integration. This structure
balances technical accuracy, organizational oversight, and social
responsibility, offering a roadmap for engineers, organizations, and
policymakers.

Figure 2 visually summarizes the framework, presenting the
seven key pillars within these three domains. Each pillar addresses
a critical component of ethical AI implementation, forming an
interconnected structure that guides the responsible integration of
AI into structural engineering.

The Technical Foundations domain focuses on the core
technical strategies required to ensure that AI systems are reliable,
transparent, and fair. These include measures to address data bias,
improve validation processes, and enhance explainability, forming
the foundation for trustworthy AI applications.

The Operational and Governance Frameworks domain
emphasizes the structural and procedural mechanisms needed
to guide ethical AI deployment. This includes the establishment
of industry standards and guidelines to ensure consistency and
accountability, as well as the integration of human-in-the-loop

approaches to maintain human oversight in decision-making
processes.

The Professional and Societal Responsibilities domain
highlights the broader responsibilities of engineers to uphold
ethical standards, promote equity, and ensure accessibility. This
includes adhering to ethical guidelines and ensuring that AI benefits
extend beyond resource-rich areas to underserved communities and
smaller organizations.

Although each of the seven key pillars is presented individually
for conceptual clarity, they are inherently interdependent and
mutually reinforcing. For example, Robust Testing and Validation
(Pillar 2) supports Explainability (Pillar 3) by enabling transparent
communication of model performance. Similarly, Bias-Free Data
(Pillar 1) and Equity and Accessibility (Pillar 7) are deeply connected,
as addressing technical bias is a prerequisite for achieving social
equity in deployment. Human-in-the-Loop Approaches (Pillar 5)
serve as a bridge between technical foundations and professional
responsibilities, ensuring that human judgment governs AI
decision-making. Thus, the framework should not be viewed as a
checklist but as an interconnected systemwhere each pillar supports
and amplifies the others to ensure holistic ethical implementation.

The following Subsections 5.1–5.7 provide a detailed exploration
of each pillar, outlining specific strategies, principles, and practical
applications that support ethical AI use in structural engineering
workflows.

5.1 Key pillar 1: ensuring bias-free data

This first pillar is grounded in the ethical principle of
justice, which demands fairness and equitable treatment across
all populations. In the context of AI, ensuring bias-free data
supports distributive justice by avoiding systemic disadvantages for
underrepresented communities. It also aligns with non-maleficence,
as biased models may cause harm through unequal treatment or
unsafe outcomes in marginalized areas. Jobin et al. (2019) highlight
that justice and non-maleficence are among the most commonly
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cited ethical principles in global AI guidelines, underscoring their
centrality in responsible AI development. Furthermore, Leavy et al.
(2020) discuss how biases in AI training data can perpetuate social
injustices, emphasizing the need for data practices that uphold these
ethical standards.

The foundation of any AI system lies in the quality and
representativeness of the data it is trained on (Ntoutsi et al.,
2020). To minimize bias and promote fairness in structural
engineering applications, several strategies must be implemented.
First, systematic dataset audits are essential (Adams et al., 2023; Li
and Goel, 2024). These audits involve a thorough review of training
datasets to identify and mitigate biases that could skew AI outputs.
For instance, datasets should encompass a diverse range of structural
types,materials, and geographic regions to ensure that AImodels are
applicable across varied contexts and scenarios.

Another effective strategy is data augmentation (Grover et al.,
2024), which enhances dataset diversity by generating synthetic
data for underrepresented cases. This approach is particularly useful
for addressing gaps in scenarios such as rare seismic events or
unique structural configurations. By simulating these conditions,
data augmentation helps AI systems make more accurate and
equitable predictions across a wider spectrum of use cases.

Finally, incorporating fairness metrics into the evaluation of
AI model outputs is crucial. These metrics provide quantitative
measures of fairness, enabling engineers to assess whether an AI
model’s predictions disproportionately favor or disadvantage certain
groups or scenarios. By actively monitoring and addressing fairness
through such metrics, AI systems can be refined to ensure equitable
outcomes in structural engineering applications.

Together, these measures form a robust framework for ensuring
bias-free data, enabling AI systems to function more reliably and
ethically in diverse structural engineering contexts.

5.2 Key pillar 2: robust testing and
validation

Robust validation practices in AI align closely with ethical
principles such as beneficence (Thomson, 2023) and non-
maleficence (Al-Bar and Chamsi-Pasha, 2015), emphasizing the
professional duty to promote safety and prevent harm. From a
deontological perspective, engineers are ethically obligated to
ensure that the tools they use—especially in safety-critical fields
like structural engineering—meet stringent standards for reliability
and performance. Utilitarian considerations also support this
obligation: maximizing public safety and minimizing risk benefits
the greatest number of people. As Floridi and Cowls (2019)
note, beneficence and non-maleficence remain among the most
foundational principles for ethical AI governance.

In structural engineering, AI tools must be rigorously tested
and validated before being trusted in high-stakes decisions. This
validation goes beyond initial performance checks and requires
structured, transparent methodologies tailored to each application.
Challenges include defining clear performance thresholds,
interpreting black-box models, and aligning AI predictions with
engineering codes and established safety practices (Numan, 2020).
Universal validation criteria remain elusive, but context-specific

benchmarks must still be developed to ensure AI tools do not
undermine structural integrity.

Testing protocols should be diversified to reflect the many
potential AI use cases—such as seismic risk assessment, structural
health monitoring, and failure prediction. These protocols should
include: (i) Stress testing under extreme loading conditions; (ii)
Simulation of data incompleteness or noise; (iii) Quantification
of model uncertainty; (iv) Performance benchmarking against
conventional engineering calculations.

A critical component of robust validation is addressing
performance drift—where AI model accuracy degrades over time
due to changing structural, environmental, or usage conditions.
To mitigate this, validation must extend throughout the entire AI
lifecycle. Engineers should implement: (i) Continuous validation
procedures that periodically test performance on new data;
(ii) Model retraining protocols based on updated infrastructure
conditions; (iii) Sunset policies that retire or phase out outdated
models before they become unreliable.

These practices transform validation into a dynamic and
ongoing responsibility, rather than a one-time event. Lifecycle-aware
validation supports beneficence by maintaining performance and
non-maleficence by preventing harm due to model obsolescence. It
also reflects the engineer’s ethical obligation to monitor and manage
tools in use, reinforcing professional accountability and public trust.

While Pillar 5 (Human-in-the-Loop Approaches) focuses on
human ethical oversight and decision-making, this pillar centers
on the technical integrity and lifecycle governance of AI systems.
Feedback loops discussed here serve the engineering validation
function, allowing technical recalibration based on evolving system
behavior—distinct from human moral oversight loops emphasized
in HITL contexts.

Finally, ethical AI governance in structural engineering must
embed risk management directly into testing frameworks. This
includes tracking unintended biases, auditing prediction stability,
and documenting model limitations. Though many of these
techniques are still evolving, the responsibility to build, test, and
refine robust validation protocols is clear. This framework does not
claim to provide prescriptive solutions, but it calls for an industry-
wide commitment to advance these practices as AI becomes more
deeply integrated into structural engineering workflows.

5.3 Key pillar 3: developing explainable AI
models

This pillar aligns strongly with autonomy and respect
for persons (Łuków and Różyńska, 2014) from deontological
ethics, emphasizing that users and stakeholders have a right
to understand how decisions are made. Explainability also
supports accountability (Reichborn-Kjennerud, 2018) by making
it possible to trace outcomes back to responsible agents. Promoting
transparency enhances trust, which is foundational to ethical
engineering practice (Visave, 2025).

To foster trust and enhance usability, AI models in structural
engineering must provide outputs that are clear and understandable
to both engineers and stakeholders. One effective approach to
achieving this is through the use of explainable AI techniques
(Czerwinska, 2022; Ding et al., 2022). Tools such as SHAP (SHapley
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Additive exPlanations) (Merrick and Taly, 2020) can quantify
the importance of individual features and illustrate how specific
inputs influence the model’s predictions. By providing detailed
explanations, these techniques enable engineers to validate the AI’s
outputs effectively and build confidence in its recommendations.

Another strategy is to employ simpler model architectures
for scenarios where transparency is critical (Felzmann et al.,
2020). Models such as decision trees, rule-based systems,
or linear regression offer inherent interpretability, making
it easier for engineers to understand the reasoning behind
predictions (Tursunalieva et al., 2024).Thesemodels are particularly
useful in safety-critical applications, where the ability to trace
decision paths is essential for informed decision-making.

Additionally, the development of interactive visualization
tools can significantly enhance the interpretability of
AI systems (Wang et al., 2023). These tools allow users to visualize
the model’s decision-making process in an intuitive manner, such
as by highlighting critical structural elements that influence safety
predictions. By presenting complex information in a user-friendly
format, these visualizations help bridge the gap between advanced
AI algorithms and practical engineering applications.

By incorporating these approaches, AImodels can becomemore
transparent, enabling engineers and stakeholders to make more
informed and confident decisions while addressing ethical concerns
related to accountability and trust.

5.4 Key pillar 4: establishing standards and
guidelines

Establishing standards reflects deontological ethics by
formalizing duties and responsibilities for engineers and
institutions. It also supports non-maleficence (Al-Bar and Chamsi-
Pasha, 2015) and justice, ensuring that AI applications meet
uniform safety and ethical benchmarks across the industry. This
pillar contributes to utilitarian outcomes (Kay, 2018) by reducing
uncertainty and preventing harm across broad populations.

To ensure the consistent and ethical use of AI in structural
engineering, the establishment of formalized standards and
guidelines is paramount. One critical step is advocating for the
development of industry standards by professional organizations
such as the American Society of Civil Engineers (ASCE) or the
European Community on Computational Methods in Applied
Sciences (ECCOMAS). These organizations are well-positioned
to create standardized frameworks that define best practices
for integrating AI into structural engineering workflows. Such
standards can help ensure that AI technologies are applied
consistently and ethically across the industry, fostering uniformity
and accountability.

In addition to industry standards, the publication of best practice
guides is vital. These guides should provide detailed instructions
on responsibly integrating AI into engineering processes, covering
key elements such as protocols for model validation, documentation
requirements, and methods for detecting and mitigating bias in
AI systems. By offering practical resources for engineers and
organizations, these guides can support the responsible adoption of
AI while addressing potential ethical challenges.

Furthermore, AI systems must align with existing regulatory
frameworks to maintain compliance and uphold safety standards.
Aligning AI applications with established engineering codes and
safety requirements ensures that AI-generated recommendations
meet the same rigorous quality and safety standards as traditional
engineeringmethods.This regulatory alignment fosters trust among
engineers, regulators, and the public, providing assurance that AI
technologies are deployed responsibly.

Existing regulatory initiatives also highlight the importance
of this alignment. For example, the U.S. Department of
Homeland Security (DHS) has released a framework to guide
the safe and secure deployment of AI in critical infrastructure
(U.S. Department of Homeland Security, 2024). This framework
emphasizes the necessity of managing a wide range of risks,
including misuse and accidents, while underscoring the importance
of rigorous testing and validation before integrating AI into
essential services. Similarly, the European Parliament has addressed
the ethical implications of AI technologies, advocating for
comprehensive guidelines to ensure responsible development and
implementation (European Parliamentary Research Service, 2020).
These guidelines stress the importance of aligning AI applications
with ethical standards to mitigate potential risks, particularly those
associated with untested or experimental technologies.

Together, these measures—industry standards, best practice
guides, and compliance with existing regulations—form a
comprehensive approach to ensuring the consistency, reliability, and
ethical integrity of AI in structural engineering. By incorporating
established frameworks and aligning with evolving regulatory
guidelines, the structural engineering field can adopt AI
technologies confidently and responsibly.

5.5 Key pillar 5: human-in-the-loop
approaches

Human-in-the-Loop (HITL) refers to a collaborative approach
where human oversight and input are integral to the functioning
of AI systems. HITL approaches emphasize respect for autonomy
(Łuków and Różyńska, 2014) and the deontological duty of
engineers to make informed and morally responsible decisions
(Smith et al., 2014). Rather than replacing human judgment, this
pillar supports collaborative decision-making where AI augments
but does not override professional expertise. It also reinforces non-
maleficence (Al-Bar and Chamsi-Pasha, 2015) by guarding against
unchecked automation and unintended consequences.

In structural engineering, HITL approaches are particularly
essential in safety-critical applications, where nuanced human
judgment is required to assess risks, ensure structural integrity,
and interpret complex or uncertain model outputs (Mosqueira-
Rey et al., 2023; Wu et al., 2022). Oversight mechanisms must
therefore be built into engineering workflows, ensuring that AI
recommendations undergo meaningful human evaluation before
implementation.

EffectiveHITL implementation requires formal reviewprotocols
and training programs that empower engineers to critically assess
AI outputs, understand model limitations, and intervene when
necessary.These skills help prevent blind trust in automated systems
and ensure engineers retain active control over decision-making.
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Importantly, HITL is not limited to initial deployment. Human
oversight must persist throughout the AI lifecycle to uphold
ethical and professional standards. While Pillar 2 addresses
the technical validation of AI models, this pillar emphasizes
the moral and professional obligation of engineers to remain
engaged post-deployment.This includes periodic reassessment ofAI
recommendations, reflection on changing infrastructure contexts,
and readiness to override the system when warranted. Human
oversightmust remain dynamic, responsive to new information, and
attuned to ethical risk.

By embedding HITL approaches into structural engineering
practice, professionals ensure that AI enhances—rather than
replaces—human responsibility. This safeguards public welfare,
reinforces trust, and preserves ethical integrity in the face of evolving
technologies.

5.6 Key pillar 6: ethical guidelines for
structural engineers

Ethical guidelines are rooted in virtue ethics (Gustafson
and Peterson, 2023) and professional deontology (Poff, 2023),
emphasizing the character, responsibility, and moral reasoning
of engineers. They also promote beneficence by encouraging
continuous education and interdisciplinary collaboration to
improve outcomes. Ethical codes help ensure that innovation does
not outpace the profession’s ability to manage risk and uphold
public trust.

The integration of AI into structural engineering necessitates a
unified framework of ethical guidelines to ensure its responsible and
effective use. These guidelines emphasize transparency, continuous
education, and interdisciplinary collaboration, which collectively
uphold public safety, fairness, and accountability. Transparency
is fundamental for building trust and ensuring accountability in
AI applications. Engineers must understand the capabilities and
limitations of AI models, clearly disclose the utilization of AI
outputs, and maintain detailed documentation of decisions to
provide stakeholders with a clear rationale for critical design and
safety choices.

To complement transparency, continuous education equips
engineers with the knowledge needed to navigate the evolving
landscape of AI technologies and ethical considerations.
Professional development programs and the inclusion of AI ethics in
engineering education prepare both current and future professionals
to address challenges such as explainability, bias mitigation, and
reliability testing. Staying informed ensures engineers remain
competent and adaptable to advancements.

Interdisciplinary collaboration bridges the gap between AI
technology and practical engineering applications. Engineers
working alongside AI developers, ethicists, and domain experts
can align technical capabilities with real-world requirements while
addressing societal and ethical implications. This collaborative
approach ensures that AI solutions foster innovation while
adhering to ethical standards, creating systems that prioritize public
safety, fairness, and accountability. Through these interconnected
strategies, the integration of AI into structural engineering can be
both innovative and ethically sound. The structural engineering
community can effectively integrate AI by adhering to these

principles, ensuring its application enhances innovation and public
trust while safeguarding ethical standards.

5.7 Key pillar 7: equity and accessibility

This pillar is deeply connected to the principle of justice
(Jobin et al., 2019), advocating for fair access to the benefits of AI
regardless of geographic or economic disparities. It also supports
utilitarianism (Kay, 2018) by aiming to maximize the positive
impact of AI on broader society. Ensuring accessibility reflects a
commitment to social responsibility and prevents the deepening of
existing inequalities.

Equity and accessibility are critical considerations in the
ethical implementation of AI in structural engineering. While AI
technologies have the potential to revolutionize the field, their
benefits are often unevenly distributed, creating disparities between
resource-rich and resource-constrained regions or organizations.
Smaller municipalities or rural communities may lack the financial
resources or technical expertise to implement advanced AI-driven
systems for SHM or disaster preparedness. This can exacerbate
existing inequalities, leaving underserved areas more vulnerable to
structural failures or natural disasters. Ensuring that AI applications
are accessible to all communities is essential to bridge this gap and
uphold the principles of fairness and social responsibility.

To promote equity, AI systems should be designed and
deployed with inclusivity in mind (Zowghi and Bano, 2024). This
includes creating cost-effective solutions that can be adopted by
smaller organizations and ensuring that training datasets reflect
the diverse needs of urban, suburban, and rural environments.
Partnerships between governments, academic institutions, and
private organizations can help fund and develop AI systems that
address the needs ofmarginalized or under-resourced communities.
Moreover, open-source AI models and tools can play a vital
role in democratizing access to advanced technologies, enabling
wider adoption and reducing the financial barriers for smaller
stakeholders.

Accessibility also extends to ensuring that the outputs and
recommendations of AI systems are understandable and actionable
for all users, regardless of their technical expertise. Providing user-
friendly interfaces, intuitive visualizations, and training programs
for engineers and decision-makers in under-resourced areas can
empower them to effectively utilize AI systems.

The structural engineering community can ensure that the
transformative potential of AI benefits society as a whole, rather
than deepening existing inequalities, through prioritizing equity and
accessibility. This pillar is a vital component of a responsible and
ethical AI framework, reinforcing the commitment to fairness and
inclusivity in engineering practice.

6 Future directions

The integration of AI into structural engineering holds
substantial promise, offering new capabilities in analysis,
monitoring, design, and optimization. However, realizing this
potential requires long-term foresight and a commitment to
addressing the ethical, technical, and regulatory challenges that
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will continue to emerge as AI becomes more widespread. While the
proposed framework provides immediate guidance on responsible
AI integration, it is deliberately conceptual. Structural engineering
is only beginning to adopt AI in meaningful ways, and the field
currently lacks sufficient empirical experience to support rigid
checklists or detailed implementation protocols.

Oversimplified or premature standardization may obscure the
inherent complexities involved in aligning AI technologies with
public safety, engineering integrity, and professional ethics. At
this early stage, the value of the framework lies in its ability to
raise awareness, guide ethical reflection, and serve as a foundation
for ongoing development. As empirical knowledge expands and
real-world applications grow, this framework can inform the
creation of formal ethical guidelines, educational curricula, lifecycle
management strategies, and regulatory systems tailored to structural
engineering.

Future progress will require sustained interdisciplinary
collaboration, global coordination, and proactive adaptation
to technological innovation. The sections that follow outline
key directions for research, education, policy, and inclusive
development, highlighting how the ethical foundation presented
here can evolve to meet emerging needs.

6.1 Expanding interdisciplinary research

The future of ethical AI in structural engineering lies in
interdisciplinary collaboration that extends beyond current
practices. Research initiatives should deepen partnerships
among structural engineers, AI developers, ethicists, social
scientists, and policymakers to explore new challenges at the
intersection of technology, ethics, and society. Topics such as
mitigating unintended consequences of emerging AI technologies,
addressing systemic inequalities, and developing scalable AI
systems for diverse infrastructure contexts require joint efforts
across disciplines.

One of the most pressing areas for interdisciplinary research
is the validation and safety assurance of AI-driven structural
engineering systems. Unlike conventional engineering models,
which rely on deterministic calculations and well-established
safety factors, AI introduces probabilistic uncertainty that must
be rigorously quantified to ensure reliability in real-world
applications. Future efforts should focus on developing systematic
AI validation methodologies that align with existing engineering
safety frameworks. This includes integrating AI-driven uncertainty
quantification into structural safety assessments to ensure that
AI-generated predictions remain interpretable and reliable.
Additionally, AI models should be subjected to reliability-based
stress testing under extreme conditions, such as seismic events,
progressive collapse scenarios, and material degradation over time.
These validation techniques will be essential to assess the robustness
of AI-generated insights and prevent failures that could compromise
public safety.

As AI continues to evolve, the need for cross-disciplinary
expertise becomes increasingly important. Engineers must
work alongside AI researchers and ethicists to ensure that AI
models comply with structural safety standards while remaining
accountable and transparent. Without such collaborative research,

AI-assisted structural decisions may lack the clarity, reliability, and
robustness needed for safety-critical applications.

Establishing internationally accepted ethical standards will
also require global partnerships that can adapt to regional
differences while maintaining a unified framework for responsible
AI deployment. Government agencies, academic institutions,
and private-sector stakeholders should prioritize funding for
interdisciplinary research initiatives that advance AI’s role in
structural engineering while addressing its ethical implications. A
coordinated effort between technical and non-technical fields will be
essential in ensuring that AI applications in structural engineering
are innovative and also safe, transparent, and equitable.

In addition to advancing technical validation and collaborative
research, it is essential to develop long-term oversight frameworks
that ensure AI systems remain reliable, ethical, and safe over
time. As AI tools evolve or face new deployment environments,
continuous post-deploymentmonitoring, periodic revalidation, and
sunset policies for outdated models must be established. Without
such governance mechanisms, even well-validated AI systems
risk becoming unreliable as data distributions shift or structural
demands change. A robust lifecycle oversight infrastructure is vital
to institutionalize accountability and protect public welfare across
the lifespan of AI applications.

As AI adoption expands globally, ethical frameworks must
be adaptable to differing regional regulatory environments and
cultural perspectives on engineering responsibility. Norms related
to transparency, autonomy, liability, and public engagement
vary considerably across countries, influencing how AI ethics is
interpreted and enforced. For instance, the European Union’s AI
Act (Cancela-Outeda, 2024; Covelo de Abreu, 2024) emphasizes
human oversight and risk-based regulation, while other regions
may prioritize innovation or efficiency over formal governance.
Therefore, international collaboration is essential not only for
technological development but also for aligning ethical standards
with local expectations. Future interdisciplinary research must
explore how the proposed ethical principles and implementation
strategies can be localized to reflect legal systems, cultural values,
and professional norms in diverse global contexts. Beyond research,
this interdisciplinary spirit must also inform education and
professional training, ensuring that ethical literacy evolves alongside
technological advancement.

6.2 Transforming engineering education

Preparing future generations of engineers to address the ethical
challenges of AI requires a transformative shift in educational
approaches. Structural engineering curricula must integrate AI
ethics as a core component, moving beyond the technical aspects of
AI methods (Plevris, 2025b). This integration should cover ethical
theories and provide practical tools and frameworks for navigating
real-world dilemmas. Topics such as transparency, accountability,
and societal impacts should be framedwithin structural engineering
scenarios, helping students understand how these principles apply to
decision-making in practice.

To prepare students for the complex ethical questions they
will face, curricula should include specific ethical frameworks
such as the four principles of applied ethics of Beauchamp

Frontiers in Built Environment 16 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1612575
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Plevris and Hosamo 10.3389/fbuil.2025.1612575

and Childress—autonomy, non-maleficence, beneficence
and justice (Page 2012)—to guide decisions when multiple
ethical principles, such as safety vs cost, public welfare vs
efficiency, and equity vs accessibility, come to conflict. Additionally,
students should be trained to critically assess these conflicts
and make ethically sound decisions in the context of AI-driven
engineering systems.

For practicing engineers, lifelong learning initiatives are
equally crucial. Professional development programs should include
workshops and training sessions that explore the ethical dimensions
of AI integration into workflows. These programs must focus on
equipping engineers with the tools to critically assess AI systems,
identify potential ethical dilemmas, and apply responsible practices
in their work. Real-world case studies, role-playing exercises, and
simulation-based learning can help engineers develop the skills
necessary to weigh competing ethical imperatives in practical
scenarios.

Embedding ethics into both foundational education and
ongoing professional development ensures that the engineering
workforce is prepared to navigate the complexities of a rapidly
evolving technological landscape. This approach to AI ethics
education will foster technical competence and also the ethical
judgment needed to address the challenges posed by AI in structural
engineering.

6.3 Adapting to emerging technologies

Emerging technologies such as quantum computing
(Hirvensalo, 2004), autonomous systems, and AI-augmented
digital twins (DTs) (Al-Sartawi et al., 2024; Hosamo et al., 2022a)
are going to transform structural engineering, offering new
possibilities for analysis, optimization, and real-time monitoring.
However, their adoption also introduces complex ethical and
technical challenges that require proactive research and regulatory
frameworks. Although these technologies have the potential to
improve efficiency and safety, they also present risks related to
validation, accountability, and the increasing opacity of AI-driven
decision-making processes.

Quantum computing, for example, could revolutionize
structural analysis and optimization by solving computationally
intensive problems at unprecedented speeds. However, its
application raises concerns about data security, model
interpretability, and reliability (Boretti, 2024). Unlike classical
computing models, quantum-based AI may operate on probabilistic
principles that challenge existing verification and validation
protocols in structural engineering. Without rigorous validation
frameworks, the results produced by quantum-enhanced AI
models could be difficult to interpret, leading to potential
safety risks.

Similarly, autonomous systems in construction and
infrastructure maintenance (Davila Delgado et al., 2019) promise
to enhance efficiency and reduce human error, yet they pose
significant accountability challenges. Decisions made by AI-
driven autonomous agents—such as robotic inspectors or
automated reinforcement placement systems—must be traceable,
auditable, and aligned with established engineering safety
standards. The lack of human oversight in fully autonomous

operations could lead to liability issues in the event of structural
failures, raising questions about responsibility in AI-assisted
decision-making. Ensuring that AI-driven automation adheres
to engineering safety protocols will require the development
of AI accountability frameworks that clearly define the
roles of engineers, AI systems, and regulatory bodies in
decision-making processes.

Another critical area of concern is the expanding
role of AI-augmented digital twins (DTs) in structural
engineering (Hosamo et al., 2022b). Digital twins enable real-
time monitoring, predictive maintenance, and risk assessment
for infrastructure projects, improving the accuracy and efficiency
of decision-making. However, they also introduce challenges
related to data privacy, system reliability, and the ethical
implications of predictive analytics. AI-driven digital twins rely
on large-scale data collection and modeling, raising concerns
about data ownership, cybersecurity, and the unintended
consequences of algorithmic biases. A structured risk assessment
approach must be adopted to evaluate the ethical and safety
implications of AI-augmented infrastructure monitoring systems,
ensuring that these tools enhance, rather than compromise,
engineering integrity.

To responsibly harness these technologies, structural
engineers must integrate rigorous AI validation protocols into
their workflows. Unlike traditional engineering verification
methods, AI-based validation requires stress testing, explainability
techniques, and benchmarking against industry safety
codes such as ASCE 7 (American Society of Civil Engineers,
2016), Eurocode 0 (CEN, 2002), other structural design
codes, and ISO/IEC 23894:2023 (AI Guidance on risk
management) (International Organization for Standardization,
2023a). AI models used in structural engineering should undergo
performance benchmarking, uncertainty quantification, and
adversarial stress testing to ensure their reliability in safety-
critical applications. Additionally, pilot testing and phased
implementation strategies should be prioritized to assess the risks
of AI deployment in high-stakes engineering environments before
widespread adoption.

6.4 Shaping future policy and regulation

As AI technologies become increasingly integral to structural
engineering, it is imperative that policy and regulatory
frameworks evolve accordingly. Future regulations should
address challenges such as managing the ethical implications
of automated decision-making, ensuring accountability in
autonomous systems, and safeguarding against AI misuse in critical
infrastructure.

To effectively govern AI integration, adopting established
standards is essential. For instance, ISO/IEC 23894:2023
(International Organization for Standardization, 2023a) provides
comprehensive guidance on AI risk management, offering
organizations strategies to identify and mitigate potential
risks associated with AI deployment. Similarly, ISO/IEC
42001:2023 (International Organization for Standardization,
2023b) outlines requirements for AI management systems, assisting
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organizations in implementing, maintaining, and continually
improving their AI processes.

Incorporating these standards into regulatory frameworks
ensures that AI applications in structural engineering adhere to
recognized best practices, thereby enhancing safety and reliability.
Moreover, collaboration among industry associations, government
bodies, and global organizations is crucial for creating adaptive
regulatory mechanisms. These collaborative efforts should focus
on defining safety benchmarks, clarifying accountability structures,
and establishing enforceable ethical standards that align with rapid
technological advancements.

By integrating standardized guidelines and fostering
collaborative efforts, the structural engineering field can navigate
the complexities introduced by AI technologies, ensuring that their
adoption enhances both innovation and public safety.

Importantly, regulatory approaches to AI differ significantly
across countries, and a one-size-fits-all model may not be
appropriate. Therefore, ethical frameworks for AI in structural
engineering should be flexible enough to accommodate
various legal traditions, infrastructural needs, and cultural
attitudes toward risk and professional responsibility. Regional
adaptations may be necessary to ensure that global principles
are implemented effectively and respectfully within local
governance systems.

To ensure lasting ethical compliance, regulatory strategies
should also include long-term lifecycle management plans for AI
systems. These plans must outline responsibilities for ongoing
performance evaluation, retraining procedures, and criteria
for decommissioning outdated or underperforming models.
Embedding lifecycle oversight into regulation not only ensures
sustained safety but also aligns AI use with evolving legal, technical,
and societal expectations. Future policy frameworks should
encourage institutions to treat AI governance as a continuous
process, not a one-time certification step.

6.5 Promoting inclusive AI and public
engagement

The benefits of AI in structural engineering must be accessible
to all, not just resource-rich regions or organizations. Future efforts
should focus on creating affordable and scalable AI solutions
tailored to the needs of under-resourced communities. Open-source
initiatives and public-private partnerships can democratize access
to advanced AI tools, bridging the gap between urban and rural
infrastructure needs.

Engaging the public and diverse stakeholders in discussions
about AI’s role in infrastructure projects will be equally critical.
Public forums, workshops, and interactive outreach initiatives can
foster transparency and build trust, ensuring that AI is implemented
with broad societal consensus.

7 Conclusion

The integration of AI into structural engineering presents both
extraordinary opportunities and unprecedented ethical challenges.
From enhanced predictive modeling and structural monitoring

to automated decision-making, AI promises to reshape the field.
Yet, in a domain where public safety, reliability, and fairness
are non-negotiable, the ethical deployment of such technologies
must be deliberate, transparent, and grounded in well-articulated
principles.

This study proposes a comprehensive framework for responsible
AI in structural engineering, built on a foundation of literature
review, hypothetical case studies, and interdisciplinary ethical
reasoning. The eight case studies presented illustrate forward-
looking ethical dilemmas that engineers and organizations are
likely to face as AI becomes more embedded in practice. These
scenarios emphasize the need for critical safeguards—particularly
in areas of accountability, transparency, and professional
judgment—and serve as a conceptual testing ground for the
proposed framework.

The framework is structured around three core domains:
Technical Foundations; Operational and Governance Frameworks;
and Professional and Societal Responsibilities. Within these, seven
key pillars address essential ethical imperatives, including bias
mitigation, robust validation, explainability, human oversight,
professional standards, engineering ethics, and equitable
access. Each pillar has been explicitly linked to underlying
ethical theories—such as justice, autonomy, non-maleficence,
beneficence, utilitarianism, and virtue ethics—enhancing
the philosophical rigor and interdisciplinary relevance
of the framework.

The framework places particular emphasis on lifecycle
management issues—such as model drift, feedback loops,
continuous validation, and sunset policies—which are integrated
within the pillars on validation and human oversight. It also
accounts for geographic and contextual variability, acknowledging
that AI ethics must be sensitive to differences in regulatory
environments, legal systems, and cultural norms. Rather than
prescribing rigid checklists, the framework offers adaptable guiding
principles that can be tailored to specific contexts. This flexible
approach reflects the evolving nature of AI in structural engineering,
a field characterized by ongoing technological innovation and
inherent uncertainty.

Responsibility in AI-driven structural engineering must
be shared across the AI lifecycle, with clear delineation of
roles. Engineers retain the ultimate responsibility for safety-
critical decisions, especially where AI outputs influence
design or assessment. However, responsibility also extends
to developers who build AI models, institutions that deploy
them, and regulatory bodies that govern their use. Within
Domain C of the framework (Professional and Societal
Responsibilities), accountability is embedded through guidelines
that emphasize transparency, documentation, and ethical
awareness among practitioners. These ensure that ethical
duties are not abstract, but actionable and attributable. To
avoid diffusion of responsibility, organizations should establish
explicit responsibility matrices that assign decision authority,
oversight obligations, and liability boundaries across the AI
deployment chain.

The study also outlines critical future directions, including
the need for interdisciplinary research collaborations, reforms in
engineering education to integrate AI ethics, adaptation to emerging
technologies such as digital twins and quantum computing,
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the evolution of regulatory frameworks, and inclusive public
engagement. Together, these forward-looking considerations form a
roadmap for transforming the ethical foundation proposed in this
study into more formalized protocols and governance structures
over time.

By aligning ethical frameworks with structural engineering
standards and referencing emerging international regulations
(e.g., ISO/IEC 23894:2023 (International Organization for
 Standardization, 2023a) and ISO/IEC 42001:2023 (International
 Organization for Standardization, 2023b)), this work bridges
the gap between abstract ethical guidelines and safety-critical
applications. Although the framework is conceptual, it is intended
as a living structure—one that supports ethical foresight, provokes
professional dialogue, and informs future empirical research and
regulatory development.

Ultimately, this work aims to serve as a catalyst for sustained
engagement with the ethical dimensions of AI in structural
engineering. It invites engineers, researchers, and policymakers to
anticipate rather than react, to build ethics into the core of technical
systems, and to ensure that AI advances not only engineering
efficiency but also societal wellbeing, safety, and trust.
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