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Modern seismic codes ensure life safety, but code-compliant buildings can 
still suffer significant economic losses from earthquake-induced damage, even 
during moderate events. Performance-Based Seismic Design (PBSD) has been 
developed to mitigate the impact of disproportionate financial losses. However, 
optimizing seismic retrofits involves complex trade-offs and requires explicit 
consideration of design robustness against uncertainties. This study introduces 
a novel Robust Multi-objective Optimization framework for Performance-Based 
Seismic Design (RMO-PBSD). This framework addresses the inherent conflict 
between three key objectives: economic efficiency, post-earthquake repair 
costs, and design robustness. Economic efficiency is quantified by the cost 
of fluid viscous dampers (FVDs), a common retrofit measure. Repair costs are 
estimated using the FEMA P-58 methodology, while robustness is quantified 
by the variability of structural response under seismic uncertainty. The core 
contribution lies in integrating these three metrics (FVD cost, repair cost, and 
a robustness measure) into an integrated optimization process using the Non-
dominated Sorting Genetic Algorithm II (NSGA-II). The framework’s applicability 
and effectiveness are demonstrated through a case study of a 4-story steel 
moment-resisting frame retrofitted with FVDs, modeled in OpenSees. Seismic 
demand uncertainty is rigorously quantified using a series of ground motion 
records. Optimization results reveal a clear Pareto front, generally showing 
that higher FVD costs lead to lower repair costs and more robust designs (i.e., 
less sensitive to ground motion variability), although the robustness measure 
displays a non-linear relationship with the cost metrics. By analyzing designs 
along the Pareto front, the framework facilitates informed decision-making, 
identifying optimal, cost-effective FVD configurations that significantly enhance 
seismic performance while explicitly managing performance variability. This 
work provides a practical tool for achieving resilient and economically efficient 
seismic retrofits.
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1 Introduction

Earthquakes are among the most devastating natural hazards, 
resulting in substantial loss of life and economic damage. 
The widespread destruction caused by the 1994 Northridge 
Earthquake in the United States prompted the Structural Engineers 
Association of California to develop a pioneering performance-
based methodology for seismic design to limit damage caused by 
earthquakes (Structural Engineers Association of California, 1995). 
This methodology has since been widely adopted in seismic design, 
and its primary goal is to design a structure to satisfy a set of 
desired performance levels defined by the users or building owners 
(Bertero and Bertero, 2002), (Ghobarah, 2001). A performance 
level is defined as the probability of achieving a target performance 
objective at a given seismic hazard level (Pang et al., 2010). For 
example, a performance level may be defined as the peak inter-story 
drift ratio of the building not exceeding 1% of the story height with 
a 50% non-exceedance probability (performance objective) under 
a 50-year return period earthquake (hazard level). Performance-
based seismic design (PBSD) can be used to produce designs that 
meet the requirements of multiple performance levels and ensure 
that the structures can adequately resist seismic loads of various
intensities.

The initial development of performance-based design can be 
traced back to FEMA 273 (FEMA 273, 1997) and FEMA 356 
(FEMA 356, 2000), pre-standards with guidelines for seismic 
rehabilitation of existing buildings to achieve various performance 
levels. In FEMA 273 and FEMA 356, four performance levels 
were specified to define the corresponding damage states of 
a structure: operational (very light), immediate occupancy 
(light), life safety (moderate), and collapse prevention (severe). 
Following FEMA 273/356, FEMA P-58 (FEMA P58-1, 2018) 
has been developed as the next-generation of PBSD procedures 
for quantifying the seismic performance of new and existing 
buildings under earthquakes, which includes estimating potential 
losses in terms of casualties, repair costs, and downtime. The 
ASCE 41-23 (American Society of Civil Engineers, 2023) standard 
further expands the four performance levels defined in FEMA 
273/356 pre-standards into six performance levels: immediate 
occupancy, damage control, life safety, limited safety, collapse 
prevention, and not considered, to characterize the damage 
states of existing structures. These damage states are typically 
evaluated using two commonly used Engineering Demand 
Parameters (EDPs): peak inter-story drift ratio (pIDR) and 
peak floor acceleration (pFA), which quantify the performance 
of primary structural components and some non-structural 
components (Lavan and Dargush, 2009; Mazza et al., 2023;
Mazza et al., 2024).

In traditional seismic design, shear walls (Kaplan et al., 
2011) and diagonal braces, such as buckling-restrained braces 
(Güneyisi, 2012; Aristizabal‐Ochoa, 1986; Gong et al., 2024; Zhong, 
2024), have been frequently used to enhance seismic 
performance. These components can contribute to energy 
dissipation through hysteretic behavior due to their material 
properties, thereby increasing the structure’s dissipative capacity. 
However, such methods primarily increase the structure’s 
stiffness, which can alter a structure’s vibration behavior or
natural period.

In modern structural design, energy dissipation systems, such 
as fluid viscous dampers (FVDs), have been integrated into 
structural frames. These systems can significantly improve seismic 
performance by increasing the damping ratio of the structure 
without altering its stiffness (Del Gobbo et al., 2018; Mazza and 
Labernarda, 2023). Unlike traditional methods that primarily 
increase stiffness, FVDs dissipate seismic energy through a velocity-
dependent force, effectively reducing both pIDR and pFA. Their 
ease of installation makes them particularly suitable for retrofitting 
existing buildings. However, the peak resistance force of an FVD, 
a key design parameter, is generally proportional to its cost, 
creating a fundamental trade-off: maximizing seismic performance 
enhancement while minimizing the initial retrofit cost.

Multi-objective optimization techniques have been applied 
previously in seismic design to balance competing goals like 
performance enhancement and initial cost. For instance, Kaveh et al. 
(2010) applied ant colony optimization to design steel frames 
satisfying multiple performance levels on reducing drift and meeting 
earthquake load requirements. Lavan et al. (2008) used multi-
objective optimization to meet performance targets for passive 
energy dissipation systems, balancing enhanced damping with 
cost. Dogruel et al. (2008) developed a unified framework for 
performance-based multi-objective optimization, targeting efficient 
energy dissipation and stability. Brando et al. (2015) evaluated the 
seismic performance of steel moment-resisting frames equipped 
with various hysteretic and viscous dampers, using incremental 
dynamic analysis and a damage-based design approach to derive 
equivalent behavior factors for simplified design applications. 
Askari et al. (2017) set up three objective functions to seek 
the minimum values of three EDPs: pIDR, pFA, and base 
shear force. Gholizadeh and Baghchevan (2017) defined steel 
sections as design variables to minimize the initial construction 
cost and pIDR. Charmpis et al. (2012) considered the seismic 
performance and initial construction cost to minimize the pIDR, 
base displacement, and the cost of the seismic isolation system. 
More recently, Dong et al. (2023) presented a performance-based 
design optimization framework to minimize material costs in multi-
story reinforced concrete frames while meeting seismic performance 
targets. Mohebbi and Bakhshinezhad (2021) developed a multi-
objective optimization method aimed at reducing the exceedance 
probability of specific performance levels over the building’s 
design lifetime, while simultaneously minimizing the total damping 
coefficient of FVDs as a proxy for the cost criterion. Jiang et al. 
(2022) used the Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) to optimize the structure of the magnetorheological 
damper and determine the optimal design parameters of the 
magnetorheological damper.

Despite these advances, critical gaps remain. First, while 
minimizing initial cost or specific EDPs has been explored, the 
explicit trade-off between the initial retrofit investment (economic 
efficiency) and the potential long-term post-earthquake repair 
costs has rarely been explored. More importantly, the robustness 
of optimized designs against inherent uncertainties, particularly 
ground motion variability, has often been overlooked. An optimized 
design might perform well on average but could exhibit high 
sensitivity to variations in earthquake characteristics, leading to 
unreliable performance in practice.
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To address these limitations, this study proposes a novel 
Robust Multi-objective Optimization framework for Performance-
Based Seismic Design (RMO-PBSD). This framework integrates 
performance-based design and robust optimization algorithms. It 
addresses the “trade-off ” between economic efficiency, repair costs, 
and robustness, delivering solutions with optimal performance 
while reducing variability in expected performance due to 
earthquake demand uncertainty. The key novelty of the RMO-PBSD 
framework lies in its explicit inclusion of a quantifiable robustness 
measure alongside economic and repair cost objectives within a 
multi-objective optimization context.

To illustrate the proposed RMO-PBSD framework, the problem 
of finding optimal designs for the rehabilitation of an existing 4-
story steel moment frame building with an energy dissipation system 
(fluid viscous dampers) is used as an example. In this study, the 
optimization objectives are (1) maximizing economic efficiency (or 
minimizing retrofit costs), (2) minimizing post-earthquake repair 
costs, and (3) maximizing robustness (i.e., minimizing variability in 
repair costs).

A genetic algorithm-based robust multi-objective optimization 
approach is used to simultaneously optimize these three objectives. 
This approach generates a set of compromise solutions, known 
as the Pareto front, which represents a set of non-dominated 
optimal solutions that balance trade-offs between the optimization 
objectives. The parameters of FVDs are chosen as design variables. 
These design variables determine the peak resistance force of 
FVDs, which in turn influences the cost of FVDs and the overall 
seismic performance of the building. The optimal FVD design 
variables are determined for two earthquake hazard levels, namely, 
the maximum considered earthquake (MCE) and the design basis 

earthquake (DBE) levels. These two hazard levels account for 
different probabilities of earthquake occurrence. The MCE level has 
a 2% probability of being exceeded in 50 years, while the DBE level 
has a 10% probability of being exceeded in 50 years.

The FEMA P-58 provides guidance on the assessment of 
the seismic performance of structures in terms of repair costs, 
downtimes, and casualty risks (FEMA 356, 2000; Brando et al., 
2015). Typically, pIDR and pFA are used as predictors of damage 
state fragility curves for structural and non-structural components, 
which help determine the corresponding repair cost for each 
component (Zeng et al., 2016). The total repair cost of a structure is 
calculated as the sum of the repair costs of its individual components. 
The FEMA P-58 method has been applied to estimate repair 
costs for various building types, including tall concrete buildings 
(Yang et al., 2012), steel buildings (Wang et al., 2017), and office 
buildings with energy dissipation systems (Terzic et al., 2014). By 
extending the traditional FEMA P-58 methodology and PBSD, 
the proposed framework explicitly integrates the key engineering 
parameters into the objective function, leading to more stable 
and reliable retrofit decisions with direct implications for seismic
risk mitigation. 

2 Robust multi-objective optimization 
framework for performance-based 
seismic design (RMO-PBSD)

Figure 1 shows a schematic illustration of the proposed Robust 
Multi-objective Optimization Framework for Performance-Based 
Seismic Design (RMO-PBSD). In this figure, the framework 

FIGURE 1
Overview of the proposed RMO-PBSD framework.
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TABLE 1  Unit damper device cost for different peak forces [based on 
data from (Liu, 2010)].

Peak force (kips) Cost ($)

55 3,200

110 3,600

220 6,400

330 8,700

440 11,000

FIGURE 2
Illustration of fragility curves for very light, light, moderate, and severe 
damage states.

FIGURE 3
Domination relation between Pareto front and dominated solution.

starts with the left-hand-side structural model using the damper 
parameters, Kd, Cd, and α, as the input design variables. A 
three-dimensional numerical model of the structure of interest 
is developed using OpenSees (McKenna et al., 2000). Numerical 
simulations are performed to obtain the seismic performance of the 
structure and the corresponding pIDR and pFA as the outputs. The 
key components of the optimization framework are shown on the 

FIGURE 4
(a) Plan view and (b) isometric view of the example 4-story steel 
frame building.

right-hand side of this figure. Objective 1 is to maximize economic 
efficiency (or minimize retrofit cost). For the as-built building used 
in this study, the economic efficiency is quantified by considering 
the retrofit cost of installing FVDs, while the cost is computed as a 
function of the damper design parameters, as shown in the figure. 
Objective 2 aims to minimize repair costs, which are evaluated 
using the FEMA P-58 methodology and quantified through EDPs 
such as pIDR and pFA. Two key components of this objective are 
illustrated here: fragility curves, which relate EDPs to damage states, 
and consequence function, which maps damage states to economic 
losses. Objective 3 is to maximize robustness, which reflects the 
consistency of structural performance under varying seismic inputs. 
Robustness quantifies the variability of the objective values (e.g., 
repair costs) and is estimated using the COV of pIDR, obtained 
from 44 nonlinear time histories using the FEMA P-695 far-field 
ground motion set. Since pIDR strongly influences repair costs, 
a lower COV indicates reduced variability in structural response 
and thus a more robust design. The NSGA-II-based multi-objective 
optimization algorithm is then employed to identify the optimal 
design by simultaneously optimizing these three objectives. The 
optimization results are visualized via the Pareto front, shown in the 
center-bottom portion of the figure, which demonstrates the trade-
offs between the competing objectives and guides the selection of 
an optimal design. In the following sections, the metrics of three 
optimization objectives (i.e., FVD costs, repair costs, and robustness 
measure) and the multi-objective optimization approach will be 
presented in detail. 
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TABLE 2  Critical fragility parameters for structural and non-structural components.

System EDP Damage state MEDP β

Curtain wall pIDR
Glass cracking 0.0338 0.4

Glass falls from frame 0.0383 0.4

Gypsum board partitions pIDR

Screw pop-out, slight crushing 0.005 0.4

Moderate cracking or crushing 0.01 0.3

Buckling of studs, significant cracking or crushing 0.021 0.2

Wall finishing pIDR Wall paper warped and torn 0.0021 0.6

Suspended ceiling pFA

5% of ceiling grid, tile damage 1.47 0.3

30% of ceiling grid, tile damage 1.88 0.3

50% of ceiling grid, tile damage 2.03 0.3

Fire sprinkler drop pFA Spraying, dripping leakage at drop joints 0.95 0.4

Roof tile pFA
Minor damage, tiles dislodged 1.1 0.4

Major portion of tile dislodged 1.4 0.4

Steel moment frame pIDR

Local buckling 0.03 0.3

Lateral-torsional distortion 0.04 0.3

Fracture in buckled region 0.05 0.3

FIGURE 5
Acceleration response spectra for the far-field ground motions scaled 
to the MCE level.

2.1 Economic efficiency (fluid viscous 
damper retrofit cost)

Fluid viscous dampers (FVDs) are used in the as-built building 
to enhance its seismic performance, largely due to their ease 
of installation for structural reinforcement without adding extra 
stiffness. Therefore, economic efficiency is quantified based on the 
retrofit costs of installing FVDs. The structure with supplemental 
FVDs is regarded as a dual system. The resistance force of the dual 

system is generated from both the lateral load-resisting components 
and the damper devices. For a given single degree of freedom 
(SDOF) system with a FVD, the governing equation of motion for 
the SDOF system can be expressed as:

m · ü(t) + c · u̇(t) + k · u(t) + FD(u̇(t)) = −m · ẍg(t) (1)

where m, c, and k are the structure’s mass, damping coefficient, 
and stiffness, respectively; u(t), u̇(t), and ü(t) are the displacement, 
velocity, and acceleration of the structure; ̈xg(t) is earthquake ground 
acceleration, and FD is the resistance force of the FVD, which is 
velocity dependent.

Generally, the behavior of the FVD is simulated by the Maxwell 
model, which consists of a spring (with stiffness Kd) and a dashpot 
(with damping coefficient Cd) in series (Singh et al., 2003; Greco and 
Marano, 2015; Zoccolini et al., 2023). The force-velocity relationship 
of the dashpot can be expressed by the fractional power law:

FD(u̇(t)) = Cdsgn(u̇(t))|u̇(t)|α (2)

where sgn(•) is the sign function, α is the velocity exponent, which 
typically varies between 0.3 and 1.95 (Liu, 2010).

The resistance force of the FVD can be expressed as:

FD(u̇(t)) = Kdu(t) = Cdsgn(u̇(t))|u̇(t)|α (3)

Herein, α, Kd, and Cd are the critical factors that control the 
resistance force of the FVD, which directly influences the cost of 
the FVD. Some commonly used peak resistance forces of FVDs and 
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FIGURE 6
Pareto front and dominated designs of MCE level: (a) repair cost RC[Crepair_total] versus FVD cost; (b) FVD cost versus robustness measure COVD; (c)

RC[Crepair_total] versus COVD; (d) 3D view.

their corresponding unit costs are listed in Table 1 (Liu, 2010). The 
reported costs reflect initial acquisition only and do not account 
for maintenance over the structure’s service life. The interpolation 
method is used when the peak resistance damper force falls between 
the provided values. 

2.2 Post-earthquake repair cost

Recent studies have revealed that FVDs can effectively improve 
the seismic performance of both structural and non-structural 
components. The FEMA P-58 methodology provides procedures 
for assessing the structure’s seismic performance in terms of repair 
costs, including the costs related to both structural and non-
structural components (FEMA 356, 2000; Brando et al., 2015). 
Fragility curves and consequence functions have been developed 
for both types of components. The fragility curve describes the 
probability that a component exceeds a specific damage state as a 
function of the EDP, as shown in Figure 2. Commonly used EDPs 
include pIDR, pFA, peak floor velocity, and residual drift. The 
probability that the damage (D) of a building component is equal 
to or exceeds a particular damage state given an EDP value can be 
expressed as:

P[D ≥ DS|EDP] =Φ[ 1
βDS
· ln EDP

EDPDS

] (4)

where DS refers to the damage state (very light, light, moderate 
or severe), Φ[·] is the standard normal cumulative distribution 

function, EDP is assumed to follow a lognormal distribution, EDPDS
and βDS are the median and logarithmic standard deviation values of 
the lognormally distributed EDPs.

The FEMA P-58 method generally consists of four analysis 
steps to assess the repair costs: (1) determine the loss prediction 
method; (2) assemble the structural model; (3) analyze damage by 
evaluating the EDPs of the structure; and (4) estimate the total repair 
cost of the structure. The intensity-based nonlinear performance 
assessment method is one of the loss prediction methods, which 
requires the user to specify the earthquake intensity. The other two 
methods are scenario-based and time-based methods, which require 
more details about building sites or seismic hazards. In this study, 
the intensity-based nonlinear performance assessment method is 
adopted to estimate seismic losses, and the nonlinear time history 
dynamic analysis is utilized to simulate the structural behavior under 
the effect of ground motion (Wu, 2014). The obtained EDPs are 
used with fragility functions to determine the probable damage 
states of each component. For a component with four damage states, 
the probability that this component is in each damage state can be 
calculated as:

P[D = DSi|EDP ] = {
P[D ≥ DSi|EDP ] − P[D ≥ DSi+1|EDP ] 1 ≤ i ≤ 3
P[D ≥ DSi|EDP ] i = 4

(5)

Once the damage state probabilities are computed, the 
consequence functions are used to estimate the repair cost of 
each component. The total repair cost of each component is the 
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TABLE 3  Properties of FVDs of the selected designs for MCE level.

Designs Design A Design B Design C

FVD properties Cd Kd α Cd Kd α Cd Kd α

EW Direction

1st Floor 60 1500 0.9 50 1250 0.3 10 250 0.3

2nd Floor 30 750 0.9 50 1250 0.3 60 1500 0.3

3rd Floor 50 1250 1.0 60 1500 0.6 20 500 0.5

4th Floor 60 1500 1.0 10 250 0.3 40 1000 0.5

NS Direction

1st Floor 40 1000 1.0 20 500 1.0 10 250 0.3

2nd Floor 10 250 0.7 20 500 0.5 10 250 0.3

3rd Floor 20 500 1.0 30 750 0.9 60 1500 0.3

4th Floor 60 1500 1.0 20 500 0.4 50 1250 0.4

RC[Crepair_total] (%) 3.23 4.33 8.00

COVD (%) 54.99 58.38 62.43

FVD Cost ($) 186,966 46,956 11,450

FIGURE 7
Acceleration response spectra for the far-field ground motions scaled 
to the DBE level.

sum of the repair costs for that component in each damage state,
expressed as:

RC[Crepair] =
4

∑
i=1

P[D = DSi|EDP ] ·RC[Crepair|DSi] (6)

where RC[Crepair|DSi] represents the repair cost of each component 
under each damage state. RC[Crepair] represents the total repair cost 
of each component. The cost includes both direct and indirect costs.

The total repair cost of the structure, RC[Crepair_total], is the sum 
of the costs due to the damage of both structural and non-structural 
components, expressed as:

RC[Crepair_total] = RC[Crepair_SS] +RC[Crepair_NS] (7)

where RC[Crepair_SS] and RC[Crepair_NS] represent the repair costs of 
structural and non-structural components, respectively. If the total 
repair cost of the structure exceeds 40% of the replacement cost, 
many owners choose to replace buildings (FEMA P58-1, 2018). 

2.3 Robustness measure

Regardless of the numerical model’s sophistication and detail, 
simulating the seismic performance of a structure requires 
accounting for uncertainties in structural responses. These 
uncertainties can stem from various sources, including seismic 
loads, numerical modeling assumptions, simplifications, and 
variations in input parameters.

Uncertainties can be classified into two main categories: 
epistemic and aleatoric. Epistemic uncertainty arises due to 
incomplete information or knowledge gaps, such as unknown 
material characteristics or model simplifications, and can be 
reduced with more data or improved models. In contrast, aleatoric 
uncertainty represents inherent, irreducible randomness, such as 
variability in material properties and the frequency content of 
earthquakes. Ground motion variability is typically the largest 
contributor among the various sources of uncertainty in PBSD 
(Bracchi et al., 2015; Cocco et al., 2024; Manfredi et al., 2022; Gentile 
and Galasso, 2021).

The seismic responses, including pIDR and pFA of a structure, 
are sensitive to earthquake record-to-record variability, commonly 
referred to as ground motion uncertainty (Deng et al., 2017). A series 
of ground motion records are typically applied to the numerical 
model to address MCE in PBSD. The ASCE 7-22 standard specifies 
that more than three ground motion records should be considered 
in structural design (Ame rican Society of Civil Engineers, 2022). In 
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FIGURE 8
Pareto front and dominated designs of DBE level: (a) repair cost RC[Crepair_total] versus FVD cost; (b) FVD cost versus robustness measure COVD; (c)

RC[Crepair_total] versus COVD; (d) 3D view.

TABLE 4  Properties of FVDs of the selected designs for DBE level.

Designs Design a Design b Design c

FVD properties Cd Kd α Cd Kd α Cd Kd α

EW Direction

1st Floor 50 1250 0.9 30 750 0.8 10 250 0.3

2nd Floor 50 1250 0.5 10 250 0.3 10 250 0.5

3rd Floor 60 1500 0.9 60 1500 0.6 10 250 0.5

4th Floor 40 1000 0.5 30 750 0.7 30 750 0.5

NS Direction

1st Floor 60 1500 1.0 60 1500 0.6 10 250 0.8

2nd Floor 20 500 1.0 50 1250 1.0 10 250 0.3

3rd Floor 50 1250 1.0 50 1250 0.9 30 750 0.3

4th Floor 50 1250 1.0 20 500 0.8 20 500 0.4

RC[Crepair_total] (%) 2.20 2.60 3.35

COVD (%) 49.81 62.81 55.83

FVD Cost ($) 122,299 62,462 11,962
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FIGURE 9
Seismic performance of selected designs under the effect of MCE level: (a) pIDR of EW direction; (b) pIDR of NS direction; (c) pFA of EW direction; (d)
pFA of NS direction.

this study, the 22 pairs of far-field bi-axial ground motions in FEMA 
P-695 and the associated modeling approach are utilized to quantify 
the ground motion uncertainty. This approach accounts for ground 
motion variability and provides a more comprehensive evaluation 
of the structure’s seismic performance. Although ground motion 
uncertainty is irreducible, it may be managed. A robust structural 
design approach has been proposed to minimize the impact of 
uncertainties, often referred to as “noise factors” (Kang, 2005). The 
goal of robust design is to reduce the influence of these noise factors, 
thereby achieving a reliable and efficient structural design without 
completely eliminating the uncertainties.

Recently, the robust optimization design concept has 
been proposed, integrating optimization algorithms with 
robustness measures. Typically, robust optimization involves 
minimizing two objective functions: the mean and the standard 
deviation of EDPs (Doltsinis and Kang, 2004). In this study, the 
maximum COV of the pIDRs is used as the robustness measure, 
COVD:

COVD =max(
σi(pIDR1…44)
μi(pIDR1…44)

) (8)

where pIDR1…44 is the pIDR under each biaxial ground motion, 
i is the story number of the structure, μ and σ represent the 
mean and standard deviation of pIDRs of each story, and COVD is 
the maximum COV value. A lower COVD value indicates greater 
robustness of the structure.

In this context, the multi-objective robust optimization 
framework for PBSD aims to identify the optimal sets of design 

parameters (i.e., α, Kd, and Cd of the FVD) to minimize three 
metrics of optimization objectives simultaneously: the FVD cost, 
repair cost (RC[Crepair_total]), and robustness measure (COVD). 

3 Multi-objective optimization 
methods

In the context of performance-based design optimization, 
multi-objective optimization problems arise when multiple, 
often conflicting objectives must be optimized simultaneously. A 
general multi-objective optimization problem can be formulated 
as follows (Konak et al., 2006):

Minimize:Y(x) = [ f1(x), f2(x),…, fn(x)], x ∈ θ

Subject to:h(x) ≤ 0
(9)

where fi represents the ith objective function, n is the number of 
objective functions, x denotes the set of design variables within 
a feasible parameter space θ, and h(x) represents the constraint 
function, which defines the boundaries of this feasible space by 
imposing restrictions that the design variables x must satisfy. 
Specifically, h(x) ≤ 0 encompasses all the inequality constraints 
necessary to meet performance, safety, and regulatory requirements 
for the design, for example, h(x) = pIDR(x) − pIDRlimited ≤ 0. These 
constraints ensure that each feasible solution meets structural and 
functional standards within the parameter space θ.
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FIGURE 10
Seismic performance of selected designs under the effect of DBE level: (a) pIDR of EW direction; (b) pIDR of NS direction; (c) pFA of EW direction; (d)
pFA of NS direction.

This study employs the Non-dominated Sorting Genetic 
Algorithm II (NSGA-II) to solve the multi-objective optimization 
problem. NSGA-II features a fast, non-dominated sorting 
procedure, a parameterless niching operator (the crowding 
distance), and an elitist-preserving approach that preserves the best 
solutions across generations. The fundamental principles of NSGA-
II include selection, recombination, and mutation, which are used 
to generate new populations until an optimal solution is achieved 
(Deb et al., 2002). NSGA-II is particularly effective in determining 
the Pareto front, as it ensures a well-distributed set of solutions that 
converge to the non-dominated front while maintaining diversity 
among solutions (Erbas et al., 2006).

In the context of NSGA-II, the Pareto front represents a set 
of optimal non-dominated solutions. The domination relation is 
illustrated in Figure 3 for a two-objective case. Solution A is said to 
dominate solution B if either of the following conditions is met: (1) 
solution A is superior to solution B in both objectives, or (2) solution 
A is better than solution B in at least one objective while not worse in 
the other (Mishra and Harit, 2010). Solutions that do not dominate 
each other collectively form the Pareto front.

The shape of the Pareto front can vary, manifesting as 
concave, convex, mixed (partially convex and concave), or 
discontinuous, depending on the nature of the trade-offs between 
objectives (Parsopoulos and Vrahatis, 2002). This shape visually 
represents the level of compromise required to improve one 
objective at the expense of another. As solutions approach the 
extreme points of the Pareto front, the level of compromise typically 

decreases. In our formulation, all three metrics of optimization 
objectives are aimed to be minimized, resulting in a Pareto front 
that generally displays a monotonically decreasing shape. 

4 Case study: steel moment-resisting 
frame with fluid viscous dampers

4.1 Numerical model of the steel frame

The proposed conceptual framework is applied to a four-
story office building designed as a steel moment-resisting frame. 
The prototype building is a special moment resisting frame 
with fully restrained reduced beam sections, which is designed 
to withstand vertical and lateral loads following the Load and 
Resistance Factor Design (LRFD) specifications and complies with 
the design provisions from IBC-2003, ASCE 7-02, and AISC-2005. 
This structure was previously evaluated in (Lignos, 2008) and is 
assumed to be located in the Los Angeles area, characterized by soil 
type D and risk category II. The MCE spectral response acceleration 
at short periods (SMS) and at 1 s period (SM1) are assumed to be 1.5g 
and 0.9g. The DBE spectral response acceleration at short periods 
(SDS) and at 1 s period (SD1) are 1.0g and 0.6g.

A three-dimensional numerical model of the steel frame was 
developed using OpenSees (McKenna et al., 2000). In this model, 
all beams and girders are represented as linear elastic elements. In 
the presented modeling approach, beams are expected to remain 
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FIGURE 11
pIDR of each floor under the effects of MCE level: (a) Design a (EW direction); (b) Design a (NS direction); (c) bare frame (EW direction); (d) bare frame 
(NS direction).

elastic under service and design-level seismic demands and are thus 
modeled as linear elastic elements, whereas columns–being critical 
for frame stability and susceptible to axial–flexural interaction, P–Δ 
effects, and buckling with distributed inelasticity–are modeled using 
the “non-linear beam-column” element that capture both material 
and geometric nonlinearities in frame members by combining 
kinematic and equilibrium transformations with flexible modeling 
of cross-sectional and material behavior (Scott et al., 2008). All 
structural components are assumed to be made of A992 grade 50 
steel. The columns are selected from standard W24 sections. On 
the first and second floors, columns in the middle two spans use 
W24 × 131 sections, while the outer spans use W24 × 117. For 
the upper two floors, all columns are W24 × 76. Beams are W27 
× 102 on the first and second floors, and W21 × 93 on the upper 
floors. The first three dominated natural periods of the steel frame 
are: 1.258s, 1.039s, 1.022s. To enhance seismic performance, a total 
of 24 FVDs are symmetrically placed in the exterior frames. The 
FVDs are arranged on the exterior of the building and do not 
occupy its internal space. The symmetrical arrangement of FVDs 
makes the stiffness and weight even as well as the seismic capacity 
of each story, as illustrated in Figure 4. The layout of the FVDs is 
determined using the story shear strain energy distribution method 
that considers both the seismic energy demand and capacity of 
each story, while also ensuring compatibility with architectural
design constraints. 

4.2 Application of the RMO-PBSD 
framework to steel frame building

The proposed multi-objective optimization framework is 
applied to the four-story office building. In this framework, three 
design variables are considered: the stiffness of the brace and damper 
portion (Kd), the velocity exponent (α), and the damping coefficient 
(Cd). Among these three parameters, Kd plays a critical role in 
balancing the structural stiffness and the damping effectiveness. 
A proper Kd ensures that the dampers can effectively dissipate 
energy without excessively increasing structural stiffness, which 
could otherwise lead to undesirable dynamic responses or reduced 
flexibility during seismic events. Constraining Kd ensures that the 
damper systems contribute to the lateral load resistance without 
becoming the sole source of stiffness and strength in the structure. 
Additionally, FVDs located on the same floor and within the same 
horizontal direction are assigned identical values for the design 
variables to maintain consistency in the optimization process.

This study uses the far-field record dataset in FEMA P-695 
in the Pacific Earthquake Engineering Research Center (PEER) 
Next-Generation Attenuation (NGA) database, which includes 22 
biaxial ground motions (Applied Technology Council, 2009). These 
records are selected to capture far-field effects and allow for statistical 
evaluation of record-to-record variability. For each of the 22 biaxial 
ground motions, the building model undergoes two non-linear time 
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FIGURE 12
pIDR of each floor under the effects of DBE level: (a) Design a (EW direction); (b) Design a (NS direction); (c) bare frame (EW direction); (d) bare frame 
(NS direction).

history analyses, resulting in a total of 44 analyses per hazard level. 
In the first analysis, the two horizontal ground motions are applied 
to the two principal horizontal axes of the building model. In the 
second analysis, the two horizontal ground motions are rotated by 
90° and the building model is re-analyzed. This procedure ensures 
a comprehensive assessment of record-to-record uncertainty across 
all orientations, totaling 44 analyses per hazard level. The pIDR 
for each story is recorded for the 44 time history analyses. For 
each story, the coefficient of variation (COV) of the pIDRs is 
calculated, and the maximum COV of pIDR is used as the robustness 
measure in this study. The optimization objectives are integrated 
into the optimization loop, which aims to minimize three metrics: 
the total cost of FVDs, repair costs, and the robustness measure. 
The final output of the optimization process is the Pareto front, 
which provides a range of optimized designs for decision-makers to 
evaluate and select.

Moreover, the repair cost is expressed as a percentage of the 
total replacement cost of the building. This cost includes the 
repair costs of structural and non-structural components. Non-
structural components considered in this estimate include the 
exterior glass curtain wall, gypsum board partitions with steel studs, 
suspended ceiling, wall finishing, roof covering, and fire sprinkler 
system. Removable equipment and furnishings are excluded from 
this estimation. Table 2 provides critical fragility parameters for 
both structural and non-structural components, in which MEDP
and β are the median and standard deviation of the EDP for 
the corresponding damage state. This critical fragility information 

is referenced and extracted from the Performance Assessment 
Calculation Tool (PACT) fragility database.

This study utilizes the default consequence functions in 
the PACT tool, which are based on the 2011 repair costs 
for structural and non-structural components in Northern 
California (FEMA P58-2, 2018). For the purpose of this case study, 
these costs are assumed to apply to the office building located in 
Southern California, with a cost multiplier of one. The dispersion 
input is set to zero to ensure deterministic unit cost values. The total 
replacement cost of the building is estimated at $8,640,000, equating 
to $200 per square foot. 

5 Optimization results

5.1 Optimization design based on MCE 
level

First, all ground motion records are scaled to the MCE 
level for the intensity-based performance assessment method, 
as shown in Figure 5. In the figure, the grey lines represent the scaled 
response spectrum for the MCE level, the blue line represents the 
design response spectrum (RS), the dashed red line represents the 
mean of the scaled Square-Root-of-Sum-of-Squares (SRSS) RS, and 
the solid red line represents the scaled maximum SRSS RS.

The specific variation ranges for each design variable are 
predefined as follows: 
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1. Kd is varied from 0 to 1500 kips/in with an increasing interval 
of 250 kips/in. This limitation of the stiffness ensures that the 
brace of the supplemental damper is smaller than the size of 
the column [7 options].

2. α is varied from 0.3 to 1.0 with an increasing interval of 0.1 
[8 options].

3. Cd is varied from 0 to 70 kips-sec/in with an increasing interval 
of 10 kips-sec/in [8 options].

The NSGA-II is implemented to solve this multi-objective 
optimization problem with 20 generations and 22 individuals 
in each generation, in the consideration of the effective trade-
off between convergence of the optimization procedure and 
computational feasibility based on preliminary tests. The obtained 
optimized designs form a Pareto front, showing the trade-offs 
among the three optimization objectives, as plotted in Figure 6. 
The red boxes represent the optimized designs along the Pareto 
front, while the gray points denote dominated designs from the 
past 19 generations. The values of the optimized designs along 
the Pareto front, along with the corresponding values of design 
variables, are listed in Supplementary Tables SA1, SA2. The Pareto 
front reveals the trade-offs among the three objectives. Generally, 
the robustness measure (COVD) and repair cost (RC[Crepair_total]) 
are inversely proportional to the FVD cost. The COVD is also 
proportional to the RC[Crepair_total]. Here, the dollar amounts for 
both repair cost and FVD cost are in current dollars (not inflation-
adjusted).

Choosing a suitable, cost-effective design is critical for structural 
designers. Three optimized designs, A, B, and C, are selected from 
the Pareto front (see Figure 6). Design A is the most expensive design 
with the minimum repair cost and COVD value (i.e., the most robust 
among the three designs). Design B is the design closest to the utopia 
point (the theoretical point representing the minimum possible 
value for all objectives simultaneously), representing a design with 
balanced performance across all three objectives. Design C has the 
lowest FVD cost but the highest repair cost. The properties of these 
selected designs are listed in Table 3. While the FVD cost increases 
from $11,450 for Design C to $46,956 for Design B, the post-MCE-
level earthquake repair cost RC[Crepair_total] and COVD decrease 
significantly, from 8.00% to 4.33% of the building replacement value, 
and from 62.43% to 58.38%, respectively. Choosing Design B instead 
of Design C saves approximately $317,000 in post-earthquake repair 
costs, with only about $36,000 additional upfront cost in FVDs. 
In contrast, the FVD cost for Design A ($186,966) is nearly four 
times that of Design B ($46,956), with the post-earthquake repair 
cost estimated to reduce by $95,040 ((4.33%–3.23%) ×  $8,640,000). 
Moving from Design B to Design A requires an increase of 
approximately $140,000 upfront investment, with merely $95,040 of 
potential savings in repair cost post-MCE-level earthquake. A more 
detailed comparison of the seismic performance of these selected 
designs will be presented later. 

5.2 Optimization design based on DBE level

To achieve a more cost-efficient design for earthquake 
occurrences, the same optimization procedure is applied with all 
ground motions scaled to the DBE level. The scale factor of the 

DBE level is 2/3 of the MCE level, and the scaled ground motions 
are shown in Figure 7.

The variation ranges for Kd, Cd, and α remain consistent with 
those defined in the MCE section. NSGA-II is employed to solve this 
multi-objective optimization problem using 20 generations with 22 
individuals in each generation.

All the dominated designs are indicated in gray color and 
drawn in Figure 8. The optimized designs along the Pareto front are 
highlighted using red boxes. The values of the optimized designs 
along the Pareto front and the corresponding values of design 
variables are listed in Supplementary Tables SA3, SA4, respectively.

Similar to the analysis presented in the MCE section, three 
optimized designs, a, b, and c, are selected from the Pareto front 
(see Figure 8). Design a is the most expensive design but has the 
minimum repair cost and COVD (i.e., most robust with the least 
variability in pIDRs). Design b is the design closest to the utopia 
point. Design c has the least FVD cost and the highest repair cost. 
The properties of these selected designs are listed in Table 4.

As shown in Table 4, when the FVD cost increases from $11,962 
(Design c) to $62,462 (Design b), the COVD decreases from 55.83% 
to 62.81%, and the RC[Crepair_total] decreases from 3.35% to 2.60%. 
The FVD cost of Design a is about twice that of Design b; 
however, both COVD and RC[Crepair_total] are effectively reduced. 
The following section will evaluate the seismic performance of each 
selected design. 

5.3 Evaluation and comparison of selected 
designs

To further select the optimal design across multiple hazard 
levels, the seismic performance of each chosen design is evaluated 
under both MCE and DBE levels. The median values of pIDR and 
pFA in the EW and NS directions are plotted in Figures 9, 10. The 
solid black lines indicate the EDPs of the bare frame (a structure 
without any damper devices). The solid and dashed red lines depict 
the EDPs of Design A (MCE level) and Design a (DBE level). The 
solid and dashed yellow lines represent the EDPs of Design B and 
Design b, while the solid and dashed blue lines show the EDPs of 
Design C and Design c.

By analyzing the results, it is evident that Design A achieves 
the optimal pIDR values compared to the bare frame and the 
other designs. The relatively weaker stories, particularly the first 
and third floors, which initially exhibit higher pIDR values, show 
significant improvement. For the bare frame under MCE conditions, 
the pIDR values in the EW direction from the 1st to the 4th story 
are 1.10%, 0.88%, 1.60%, and 1.10%, respectively (Figure 9a). After 
applying Design A, these values are notably reduced to 0.56%, 0.59%, 
0.47%, and 0.24%.

However, in the NS direction, Design a achieves better seismic 
performance in terms of pIDR values. For the bare frame under the 
MCE hazard level, the pIDR values from the 1st to the 4th story in 
the NS direction are 1.77%, 0.79%, 2.06%, and 0.99%, respectively 
(Figure 9b). After applying Design a, these values are reduced to 
0.80%, 0.74%, 0.67%, and 0.40%. Similar optimization results are 
observed under the DBE level (see Figures 10a,b).

Furthermore, the pFA values of Design a are 0.35g, 0.58g, 0.65g, 
and 0.86g (Figure 9c); 0.38g, 0.55g, 0.65g, and 0.72g (Figure 9d); 
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0.23g, 0.39g, 0.43g, and 0.57g (Figure 10c); and 0.25g, 0.37g, 0.44g, 
and 0.48g (Figure 10d), which indicated significant reductions in 
pFA at MCE and DBE levels compared to the bare frame. Notably, 
Design a achieves smaller pFA values, indicating better seismic 
performance even with a lower FVD cost than Design A.

After evaluating the median values of pIDR and pFA for the 
selected designs, Design a is identified as the optimal choice. It 
offers a balanced combination of moderate FVD cost, repair cost, 
and robustness. All the recorded values of pIDR for Design a and 
the bare frame are shown in Figures 11, 12. It can be observed 
that the seismic performance of the steel frame building has been 
significantly improved under both the MCE and DBE levels. 

6 Summary

In this study, a novel Robust Multi-objective Optimization 
framework for Performance-Based Seismic Design (RMO-PBSD) 
has been proposed. The primary contribution of this work is 
the explicit integration of design robustness, economic efficiency 
(FVD retrofit cost), and post-earthquake repair cost into an 
integrated seismic design optimization process. The framework 
utilizes FEMA P-58 methodology for repair cost estimation and 
employs the NSGA-II algorithm to optimize the three conflicting 
objectives: minimizing FVD cost, minimizing repair cost, and 
maximizing robustness. Its effectiveness is validated through a 
case study involving a 4-story steel moment frame retrofitted 
with FVDs, considering seismic uncertainty via multiple ground 
motion analyses.

The case study results highlight three key findings that 
demonstrate the effectiveness of the proposed framework and its 
value for practical seismic design decision-making: 

1. Dominant influence of FVD cost on trade-offs: FVD cost 
generally governs the balance among the three objectives: 
higher FVD costs are often associated with lower repair costs 
and improved robustness. For example, when the FVD cost 
increased from $11,962 to $62,462, the COVD decreased from 
62.81% to 55.83%, and the repair cost ratio dropped from 
3.35% to 2.60%. This influence, however, diminishes near the 
extremes of the Pareto front, where additional cost yields 
limited benefit.

2. Diminishing returns and non-monotonic performance trends: 
Increasing FVD cost does not always produce continuous 
performance improvements; lower-cost solutions can still 
achieve competitive results. For instance, Design a, with a 
cost of $122,299, achieved smaller pFA values (0.35 g–0.86 g), 
indicating better seismic performance than Design A, which 
had a higher cost of $186,966.

3. Identification of optimal designs: Optimal selection of FVD 
design variables is essential for decision-makers. Based on 
MCE and DBE design requirements, six designs were selected 
from each Pareto front, including the extremes and the most 
balanced point, for performance comparison. By analyzing 
representative non-dominated solutions from the Pareto fronts 
generated for both MCE and DBE hazard levels, the framework 
provides a data-driven tool for decision-makers. The findings 
provide practical insights for achieving cost-effective yet 

resilient structural designs, balancing economic efficiency with 
enhanced seismic performance.
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