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Artificial intelligence in civil
engineering: emerging
applications and opportunities

Taba Nyokum and Yamem Tamut*

Department of Civil Engineering, North Eastern Regional Institute of Science and Technology, Nirjuli,
Arunachal Pradesh, India

Artificial intelligence (AI) is rapidly transforming civil engineering by harnessing
vast data streams and advanced computational methods. This review provides
a comprehensive survey of AI innovations in civil engineering, covering key
technologies (machine learning, deep learning, natural language processing,
computer vision, robotics, and generative AI) and their applications across
design, construction, monitoring, transportation, geotechnical, environmental,
and asset management domains. This paper discuss how AI-driven models
and systems improve efficiency, safety, and sustainability, while also addressing
challenges such as data limitations, model interpretability, and ethical
concerns. Emerging trends—such as digital twins, smart cities, and quantum
computing—are highlighted, along with the growing need for workforce skills
in AI. By synthesizing recent studies, this article aims to clarify how AI is
reshaping civil engineering practice and to identify opportunities and gaps for
future research.
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1 Introduction

Civil infrastructure must now contend with aging systems, rapid urbanization, climate
change, and sustainability demands. Simultaneously, data from sensors, UAVs, and IoT
devices are proliferating, offering unprecedented insight into infrastructure condition and
usage. Modern AI methods—including data-driven machine learning (ML) and deep
learning (DL)—can capture complex nonlinear relationships in these data, often surpassing
traditional analytical models in predictive accuracy (Harle, 2023; Abioye et al., 2021;
Xu et al., 2021). Despite the construction industry’s large scale, it has been among
the slowest to digitize (Abioye et al., 2021), leaving untapped opportunities for AI-
driven improvements, as highlighted in recent reviews on AI applications in construction
projects (Ali and Sini, 2023). AI has begun to optimize material usage, predict structural
deterioration, and manage traffic flows in real time (Harle, 2023). For example, ML models
are now used to predict soil behavior and foundation performance, while AI-enabled traffic
systems can forecast congestion and adjust signals dynamically (Harle, 2023; Pennetti et al.,
2024). Vision-based AI inspects infrastructure (e.g., bridges, pipelines) for defects via image
analysis, enabling timely repairs and higher reliability (Harle, 2023). Breakthroughs in
convolutional neural networks and large language models are further enabling automated
design exploration and construction reporting.

However, AI adoption in civil engineering faces significant hurdles. Many AI models
require large, high-quality datasets that are often scarce or fragmented on construction sites.
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The “black-box” nature of complex models raises concerns about
trust and interpretability, especially in safety-critical decisions
(Kamolov et al., 2024; Abioye et al., 2021). Ethical issues related
to data privacy, autonomous systems, and workforce impacts are
also paramount (Megdad et al., 2024; Sargiotis, 2024). Integrating
AI with emerging technologies like digital twins, IoT, and
blockchain holds promise for predictive maintenance and resilient
infrastructure, yet practical implementation challenges remain.
While previous reviews have addressed AI in civil engineering
(e.g., Sargiotis, 2024; Baghbani et al., 2022), many do not reflect
the latest AI paradigms such as generative design or large language
models. This review fills that gap by surveying contemporary AI
technologies and their civil engineering applications, highlighting
both achievements and open research directions.

2 AI technologies in civil engineering

This section reviews fundamental AI methods being applied in
civil engineering. We cover broad categories—machine learning,
neural networks, natural language processing, computer vision,
robotics, and generative AI—emphasizing their principles,
capabilities, and limitations.

2.1 Machine learning (ML)

Machine learning (ML) encompasses algorithms that learn
patterns from data to make predictions or decisions without
explicit programming. ML includes supervised learning (trained
on labeled examples), unsupervised learning (finding patterns
in unlabeled data), and reinforcement learning. Common ML
techniques such as regression models, decision trees, support
vector machines, random forests, and neural networks have proven
effective in civil engineering contexts (Sargiotis, 2024; Sargiotis,
2024). ML excels at capturing complex, nonlinear relationships
that traditional models cannot easily represent. In practice, ML
models are used to predict infrastructure service life, forecast traffic
volumes, estimate soil properties from limited tests, predict material
properties such as concrete compressive strength (Costa et al.,
2022; Silva et al., 2023), and classify pavement distress from
sensor data. For instance, convolutional neural networks (a DL
subclass) can detect and classify cracks in concrete images with
high accuracy (Sargiotis, 2024). ML-based risk assessment tools
enable early warning systems that prioritize inspections based
on predicted failure risks. These advances help optimize resource
allocation and maintenance planning.

However, ML models require large, high-quality datasets, which
can be scarce or noisy in construction environments. Incomplete or
inconsistent data (e.g., missing sensor readings) can degrade model
performance. Moreover, many ML models act as “black boxes” that
offer little insight into why they make certain predictions. This
opacity can be problematic in safety-critical infrastructure decisions,
where engineers need interpretable rationale. For example, a deep
neural network may predict a bridge failure risk but cannot
explain the key factors leading to that decision. To mitigate these
issues, models must be rigorously validated with independent
data, and domain expertise should be integrated. Researchers are

also exploring explainable AI techniques to improve trust and
transparency (Megdad et al., 2024). Despite these challenges, ML
remains a powerful tool for modeling civil engineering problems,
provided its limitations and potential biases are carefully managed.

2.2 Artificial neural networks (ANNs)

Artificial neural networks (ANNs) are ML models inspired by
the brain’s structure, consisting of interconnected nodes (neurons)
that adjust weights during training. Deep learning refers to
neural networks with many hidden layers, capable of modeling
highly complex functions. ANNs have been applied in structural
analysis, materials science, and geotechnical engineering, with
numerous applications detailed in recent collections (Hui et al.,
2023). For example, convolutional neural networks (CNNs) are
well-suited for image-based tasks, such as automated inspection
of infrastructure elements to detect cracks, corrosion, or debris.
Recurrent neural networks (RNNs) and long short-term memory
(LSTM) networks are used for time-series data, such as traffic flow
prediction (Abduljabbar et al., 2021) or electrical load forecasting.
By training on historical sensor data, these models can capture
dynamic trends in infrastructure usage.

Deep networks can achieve high accuracies but with heavy
costs. They have a massive demand of computation resource (e.g.,
GPUs) and wasted lots of sample’s concentration in training.
Overfitting is a problem: A network with too many parameters
can do little more than memorize the data unless it is regularized,
and it will not generalize well unless it has been trained on a
lot of data. Both as with all ML techniques, ANNs are largely
of a “black box” nature and provide restricted interpretability.
To avoid these limitations, we can resort to the hybrid models
in which ANN predictions are combined with physics-based
engineering constraints so that the generated outputs are physically
plausible. Visualization methods (attention maps), simplified
surrogate models are also actively studied to make deep learning
more transparent in engineering applications. Overall, ANNs and
deep learning provide powerful predictive capabilities in civil
engineering, enabling tasks like vibration analysis of structures and
automated damage recognition, albeit at the cost of increased data
and resource requirements.

2.3 Natural language processing (NLP)

Natural language processing (NLP) gets computers to
understand, interpret and even measure the quality of human
language. Within civil engineering, NLP is being employed to
automate processing of textual data such as project reports, design
documents, safety logs, or regulatory codes, a domain extensively
reviewed by Wu et al. (2022a) and Wu et al. (2022b). It can
summarize inspection notes, classify incident reports by cause
or severity, or even draft routine forms.” Large language models,
such as BERT or GPT-4, however, are in a league of their own.
For instance, a GPT based model has been applied successfully to
a construction accident reports classification, identifying patterns
helpful for safety analysis (Ahmadi et al., 2024). So-called NLP
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tools might also be used to automatically verify code compliance by
correlating formal specifications (e.g., REVIT) with regulatory text.

Despite its promise, NLP faces challenges in civil engineering
contexts. Technical documents often contain specialized
terminology that general language models do not know by default.
Domain-specific fine-tuning is required to handle engineering
jargon and acronyms. Moreover, ensuring accuracy is critical when
interpreting safety-critical texts; advanced models can “hallucinate”
incorrect outputs if not carefully managed. For instance, an
LLM might infer a wrong citation in a compliance document.
Robust validation and human oversight are therefore necessary.
Nonetheless, NLP greatly expands engineers’ ability to leverage
textual data at scale. Automated document analysis and report
generation are streamlining workflows, and ongoing advances in
multimodal models are poised to integrate textual and sensor data
for richer insights.

2.4 Computer vision

Computer vision (CV) enables machines to interpret visual
data (images and video). In civil engineering, CV has become
indispensable for inspection and monitoring. CV systems are
used to automatically detect structural damage (cracks, spalling,
corrosion) in bridges and buildings from images or video. For
example, CNN-based vision systems can identify concrete crack
patterns with high accuracy (Ahmadi et al., 2024) and specialized
lightweight networks like MobileNetV2 are also effectively used for
crack identification on mobile platforms (Hui et al., 2023). Drones
equipped with cameras use CV algorithms to map infrastructure
and spot defects in hard-to-reach areas. CV is also applied in
traffic monitoring (counting vehicles, detecting incidents) and in
geotechnical applications (monitoring slope stability, identifying
pavement distress from road images).

The key advantage of CV is its ability to process vast amounts
of visual data quickly, enabling continuous, non-contact inspection
that would be impractical manually. When mounted on mobile
platforms or UAVs, CV enables real-time monitoring of large
areas without endangering workers. However, CV models require
carefully curated training datasets that account for variations in
lighting, weather, and environments. A system trained in one
context (e.g., sunny daytime images) may produce false positives or
negatives under different conditions (e.g., shadows or rain). High-
resolution images and video also demand significant computational
resources for analysis. Ensuring reliability often involves techniques
like ensemble modeling or thresholding to reduce false alarms.
In practice, CV systems must be calibrated for specific use cases
and regularly updated with new data. Despite these challenges,
CV is transforming infrastructure inspection by enabling rapid,
automated assessment of structures and roadways.

2.5 Robotics and autonomous systems

TheintegrationofAIwith robotics is revolutionizing construction
and infrastructure maintenance. Autonomous and semi-autonomous
robots are being deployed for tasks such as site surveying, hazardous
inspections, earthmoving, bricklaying, welding, and demolition. For

instance, unmanned aerial vehicles (UAVs) equipped with sensors
can inspect high-rise structures or difficult terrain, (Liu et al., 2024),
and AI-enabled robotic systems are increasingly used for broader
construction inspection and maintenance tasks (Liu et al., 2024).
Collecting data while keeping workers safe (Liu et al., 2024). Robotic
bricklayers and 3D concrete printers demonstrate that machines
can perform repetitive construction tasks with higher precision and
speed than human labor. Even robotic total stations—surveying
instruments—nowuseAI to automatically lock onto and track targets,
optimizing site layout in real time (See Figure 1 and Figure 2 to see the
applications of robotics).

Robots extend monitoring into dangerous or inaccessible areas
and can operate continuously without fatigue, improving efficiency
and safety. However, significant challenges remain. Robotic systems
must be highly robust to withstand construction environments
(dust, rough terrain, weather) and to ensure reliable operation.
Integration of robots into human teams on site requires careful
planning of human-robot collaboration and safety protocols.
There are also regulatory and ethical considerations: for example,
determining liability if an autonomous machine causes damage.
Despite these hurdles, advances in AI and controls are rapidly
enhancing robotic capabilities. As these technologies mature,
intelligent robots are poised to become integral partners in
construction and asset management, handling routine tasks and
augmenting human workers.

2.6 Generative AI

Generative AI refers to algorithms that create new content—such
as designs, images, or text—based on learned patterns. In civil
engineering, generative AI is an emerging tool for automating and
augmenting creative tasks.Onemajor application is generative design,
where algorithms iterate on design alternatives to meet specified
criteria (loads,material limits, safety codes). By learning from existing
designs, a generative model can propose novel structural layouts or
architectural forms that optimize objectives (e.g.,minimizingmaterial
use or maximizing daylight) while satisfying constraints (Liao et al.,
2024). This approach accelerates the early design process, enabling
engineers to explore unconventional yet efficient solutions that may
be overlooked in manual design.

Generative AI is also being used for automation of construction
reporting. For instance, AutoRepo (Pu et al., 2023) is a
system connecting drone images analysis and multimodal LLM
generation for site inspection report automatically. That makes
documentation faster while also guaranteeing that content is
complete and compliant. Generative models also examined
historical accident report data to find patterns and recommend
preventive measures (Ahmadi et al., 2024). Although generative
AI has potential, it is in its early stage of application in civil
engineering. One of the big hurdles is making sure the AI-
generated designs, or documents, are up to all the necessary safety
and regulatory codes. Engineers need to carefully with the AI
outputs, as models can generate unattainable or non-compliant
recommendations at times.

Another concern is interpretability: understanding why the
AI made a particular design choice is critical for trust and
refinement. As generative AI evolves, its role in civil engineering
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FIGURE 1
Robotics research in civil engineering. Engineering students assemble a robotic prototype in a lab. Construction robots and drones (autonomous
vehicles) perform tasks such as material handling, assembly, and inspection, aiming to improve precision and safety (Liu et al., 2024).

is expected to grow—enabling rapid prototyping, intelligent
reporting, and even creative urban planning—but always under the
guidance of human expertise.

3 Applications of AI in civil engineering

AI is now being applied across the civil engineering lifecycle.
In this section, we describe key application areas where AI is
making an impact.

3.1 Design and planning

Ai is revolutionizing the way we design in-house, at the early
stages of projects; AI manifests in the form of optimisation, Data
driven design. Surrogate machine learning models allow a very
fast screening of a multitude of design alternatives with limited
computational effort, thus exploring complex parameter spaces. For
instance, in sustainable building design, AI can examine building
form and materials combination to reduce energy usage or carbon
usea field comprehensively reviewed by Manmatharasan et al.
(2025). Generative design algorithms, utilizing deep learning or
genetic algorithms, can suggest new architectural shapes that meet
specific performance needs such as maximization of daylight or
reduction of steel (Abioye et al., 2021; Manmatharasan et al., 2025).
AI also improves the process of building energy modeling by
integrating data on weather, occupancy, and sensors to optimize
HVAC sizing and control for energy use. Taken together, AI moves
architectural and structural planning from static CAD-based
methods to dynamic, multi-objective optimization. This can reduce
costs and environmental impact by identifying the most efficient
designs early in the process.

3.2 Construction management

In construction management, AI streamlines scheduling,
resource allocation, and risk management. ML models can predict
project durations, cost overruns, and labor productivity by learning
from historical project data. Vision systems based on computer
vision (CV) can monitor sites to track worker movements and
equipment usage, improving safety and productivity, with ongoing
development of AI-based systems for comprehensive construction
safety monitoring (Zhang et al., 2024). Natural language processing
(NLP) tools extract information from contracts, reports, and
manuals, reducing paperwork bottlenecks and aiding in tasks
like the automated analysis of construction accident reports to
identify safety patterns (Ahmadi et al., 2024). Real-time AI-driven
dashboards integrate data from IoT sensors and BIM models with
predictive analytics. For instance, sensor data on material deliveries
can be fed into demand forecasting models to optimize inventory
andworkflows. Robotics and automatedmachinery further augment
operations: self-driving earthmovers, robotic bricklayers, and UAVs
performing surveys all contribute to more efficient construction
processes. By making construction management more data-driven
and predictive, AI helpsminimize delays, reduce waste, and improve
quality (Pu et al., 2023; Pu et al., 2023).

3.3 Infrastructure monitoring and
maintenance

AI plays a critical role in structural health monitoring (SHM)
and maintenance of infrastructure assets. Networks of sensors
embedded in bridges, buildings, and roads continuously collect data
on strain, vibration, temperature, and other indicators. AI models
analyze this streaming data to detect anomalies and predict damage
before it becomes critical. Deep learning (especially CNNs) is widely
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FIGURE 2
Human–robot collaboration. A robotic arm plays chess with a human operator in a controlled environment. This illustrates the potential of AI-driven
robots in construction for tasks that involve both autonomy and human oversight (Liu et al., 2024).

used for image-based inspection: for example, AI algorithms can
automatically identify cracks or corrosion in bridge images with
high accuracy, and similar techniques are applied for the visual
inspection of cultural heritage structures (Mishra et al., 2022).
Studies report detection accuracies around 97%–99% in some
bridge inspection cases. Beyond detection, predictive maintenance
algorithms use historical and real-time data to forecast the
remaining service life of components. This enables proactive
maintenance scheduling, extending asset life and improving safety.
For example, if vibration data indicate accelerated wear on a bridge
bearing, AI models can recommend maintenance before failure. By
providing timely diagnostics and forecasts, AI-based monitoring
helps infrastructure operators prioritize interventions and allocate
budgets more effectively (Plevris and Papazafeiropoulos, 2024;
Plevris et al., 2023).

3.4 Traffic and transportation systems

In transportation engineering, AI enhances traffic forecasting,
signal control, and network planning. ML models, leveraging
techniques such as LSTM networks for spatial-temporal speed
prediction (Abduljabbar et al., 2021), can predict short-term
traffic volumes, travel times, and congestion hotspots more
accurately than traditional time-series methods, as reviewed by
Afandizadeh et al. (2024). These predictions feed into adaptive
signal control systems that adjust timing in real time to optimize
flow. AI also supports transit planning and incident management:
for instance, anomaly detection algorithms flag unusual traffic
patterns or accidents from sensor and camera data. Autonomous
vehicles and connected infrastructure heavily rely on AI for
perception, path planning, and control, improving safety and

throughput. Generative AI is beginning to impact intelligent
transportation systems (ITS) by enabling more efficient scenario
generation and decision support, with applications systematically
reviewed by Rong et al. (2025a) and Rong et al. (2025b). For
example, generative models can synthesize realistic traffic scenarios
for testing control strategies or simulate incident responses
to aid planning. Overall, AI applications in transportation
are making mobility systems more predictive, responsive, and
efficient.

3.5 Geotechnical engineering

AI is transforming geotechnical engineering by improving soil
and ground behavior prediction. ML models (including ANNs and
support vector machines) are used to estimate soil parameters
(such as shear strength and permeability) from accessible data
(borehole logs, sensor readings), reducing the need for extensive
laboratory testsand to predict phenomena such as rock slope
failure (Mnzool, 2024). In earthquake engineering, AI models can
forecast ground motion patterns for given seismic inputs and
classify structural damage post-event, aiding rapid post-disaster
assessment. Hybrid approaches that combine ML with physics-
based simulations are emerging to optimize foundation design and
seismic resilience assessments. For instance, an ML model may
predict settlement for a preliminary design, which is then refined
with finite element analysis. Data scarcity remains a challenge in
geotechnics, but reviews (Abdellah, 2024) indicate that AI tools
are increasingly valuable for interpreting complex subsurface data.
As more monitoring data become available (e.g., from instrumented
sites), AI-driven analytics will continue to improve foundation
design and hazard mitigation.
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3.6 Water resources and environmental
engineering

AI is also applied in water and environmental infrastructure.
In water distribution networks, ML algorithms forecast demand
patterns and detect leaks by learning from flow and pressure
sensor data. AI-driven models integrate diverse inputs—weather
forecasts, soil moisture sensors, topography—to improve flood
prediction accuracy. For example, by combining real-time rainfall
data with terrain models, AI can predict flood extent faster
than conventional hydrologic models. In wastewater treatment
and environmental compliance, AI optimizes process controls
(e.g., adjusting aeration in a treatment plant to save energy).
In environmental monitoring, AI analyzes sensor data to predict
air quality, noise, and pollution trends, supporting sustainable
planning. These AI applications help manage water resources more
efficiently and mitigate environmental risks (Harle, 2023).

3.7 Infrastructure asset management

In asset management, AI enables advanced digital twin
platforms that integrate sensor data, structural models, and
analytics to monitor infrastructure health continuously. Predictive
analytics identify which assets (bridges, pipelines, etc.) are likely
to fail or need maintenance soon, allowing managers to prioritize
interventions and budget effectively. The ethical use of AI is
critical here: data governance and transparency must ensure
that decisions (like closing a bridge) are justified and based on
accurate information. By handling large-scale data and complex
networks, AI-driven management systems are transforming how
public agencies maintain assets. This leads to safer, longer-lasting
infrastructure and more efficient use of limited maintenance funds
(Abioye et al., 2021). See Supplementary Table S1 for case studies of
AI applications in civil engineering, showing domain, AI method,
and performance. These examples illustrate the high accuracy
achieved in practice.

4 Challenges in AI adoption for civil
engineering

Despite its promise, AI adoption in civil engineering faces
several substantial challenges. Data quality and availability are
primary barriers. Construction and infrastructure data are often
sparse, inconsistent, or proprietary, making it difficult to train
robust AImodels. Sensormalfunctions, changes in instrumentation,
and fragmented data systems lead to gaps and noise in the data.
Obtaining sufficient labeled data for training is especially hard for
rare events (e.g., structural failures), limiting supervised learning
approaches (Abioye et al., 2021).

Another challenge is model transparency. Many powerful AI
models (especially deep neural networks) are “black boxes” whose
internal decision processes are opaque. In civil engineering—where
safety is paramount—engineers must trust and understand model
outputs.The field is respondingwith a focus on explainable AI (XAI)
methods that make AI decisions more interpretable. This involves

techniques like feature importance analysis and surrogate models
that approximate complex networks.

Integration and interoperability also hinder deployment. New
AI tools must fit into established engineering workflows, software,
and standards.Often, AI systems developed in research are not easily
plugged into legacy project management or design systems. There
is also cultural resistance: many engineers are trained in traditional
methods and may be skeptical of AI. A shortage of AI-literate
personnel compounds this issue, as training is needed for engineers
to work effectively with AI.

Practical constraints on construction sites add further hurdles.
Reliable computing and connectivity (e.g., for cloud AI services) are
not always available on remote or rapidly changing job sites. The
initial cost of adopting AI technologies (drones, sensors, computing
infrastructure) can be high, and the return on investment may be
uncertain, deterring smaller firms.

Finally, ethical and governance issues are increasingly critical.
Civil engineering projects impact public safety and resources, so
data privacy and algorithmic bias must be managed carefully.
For example, AI models trained on non-representative data could
misjudge risks in certain communities. This underscores the
need for robust standards, transparency, and oversight in AI
systems. Addressing these challenges requires collaboration among
engineers, data scientists, policymakers, and educators to build the
data infrastructure, guidelines, and expertise needed for responsible
AI integration.

5 Future directions of AI in civil
engineering

Looking ahead, AI’s role in civil engineering is poised to expand
in several key directions. Smart cities and urban systems will
increasingly rely on AI to manage interconnected infrastructure
(transportation, energy, utilities, buildings) in an integrated way. AI-
driven digital twins of entire cities will enable planners to simulate
and optimize complex systems in real time, improving sustainability
and resilience. For example, an urban digital twin could optimize
traffic flow, energy usage, and emergency response simultaneously.

Sustainability and resilience will drive AI research. AI will be
essential for designing infrastructure resilient to climate change
(floods, heat, storms) and for optimizing resource use to meet
net-zero goals, reflecting AI’s growing influence on sustainable
development in civil engineering (Manzoor and Chen, 2021). AI-
powered models will better predict climate-related impacts (e.g.,
flood risk under different scenarios) and help integrate renewable
energy into infrastructure (e.g., optimizing solar/wind installations
on buildings and bridges). As a result, AI can reduce carbon
footprints and enhance disaster preparedness.

In advanced computing, quantum computing may become
a game-changer for civil engineering AI. Quantum algorithms
have the potential to solve optimization and simulation problems
that are currently intractable. For instance, quantum-enhanced AI
could dramatically accelerate structural optimization and logistical
planning processes, enabling engineers to solve complex design
problems much faster (Ploennigs et al., 2024).

Meanwhile, developing the workforce and education is crucial
as AI adoption grows. Civil engineers will need new skills in data
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science, machine learning, and AI ethics. Educational institutions
should update curricula to include AI and data analytics topics,
preparing a new generation of engineers who can effectively
employ AI tools (Reid, 2024).

In summary, while AI is already transforming civil engineering
practice, its future promises even deeper integration into smart
infrastructure, climate resilience, and novel computing paradigms.
Meeting this promise will require continued research in AI methods
tailored to engineering needs, development of standards and best
practices, and cultivation of interdisciplinary expertise.With careful
guidance and collaboration, AI can help civil engineers build
safer, more efficient, and more sustainable infrastructure for the
future.

6 Conclusion

Artificial intelligence is rapidly reshaping civil engineering
by providing new data-driven methods for design, construction,
monitoring, and maintenance. Advances in ML, deep learning,
NLP, computer vision, robotics, and generative AI are
enabling tasks that were previously difficult or impossible,
from automated damage detection to generative structural
design. These technologies are improving efficiency, safety, and
sustainability across civil engineering domains (Abioye et al., 2021;
Harle, 2023).

At the same time, practical challenges—data scarcity,
model transparency, integration into workflows, and ethical
concerns—must be addressed for AI’s full potential to be
realized. Future progress will hinge on building better data
infrastructures, developing explainable AI methods, fostering
interdisciplinary collaboration, and training engineers in AI skills.
Emerging trends such as smart cities, resilient infrastructure,
and quantum-enhanced computation point to an exciting
future where AI tools and traditional engineering expertise
work together to tackle society’s infrastructure challenges.
By systematically overcoming adoption barriers and guiding
innovation, the civil engineering community can ensure that
AI becomes an integral and trusted part of building the
world around us.
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