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Introduction: The traditional crack detection method usually requires a tedious
process of sensor installation and removal, which seriously affects the efficiency
of concrete structure management and maintenance.

Methods: For this reason, this paper develops a fast concrete crack detection
method based on percussion with an improved convolutional neural network
(CNN). By utilizing the percussion method, the sensors do not need to be
coupled and installed on the concrete structure, which saves a lot of processes.
The sound signals generated by percussion are collected by acoustic pressure
sensors, while multiple data enhancement techniques are applied to enrich the
data volume and diversity of the collected signals. The Mel-frequency cepstral
coefficient (MFCC) of the sound signals are then extracted as inputs to the
improved CNN model. The CNN used is mainly applied to initialize the weights
by applying the transfer learning technique, and the Squeeze-and-Excitation
Networks (SENet) attention mechanism is embedded to improve the model’s
focus on important features. Finally, comparative experiments with different
frame lengths, different models and different signal-to-noise ratios (SNR) are
conducted using the improved CNN.

Results:The results show that themodel validation process has the least loss and
highest accuracy when the input frame length is 1024. The improved CNN has
good feature learning ability for MFCC of percussion sound signals for effective
recognition of concrete cracks. Compared with Resnet18, random forest and
long short-termmemory networks, the improved CNN has superior recognition
accuracy and stability, and shows better noise robustness in high signal-to-noise
ratio (SNR: −6 db∼6 db) environments.

Discussion: Therefore, the proposed method has a high potential for future
crack detection in concrete structures.

KEYWORDS

concrete, cracking, percussion method, mel-frequency cepstral coefficient (MFCC),
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1 Introduction

It is well known that concrete, as an important construction
material, is one of the most widely used materials in the field of civil
engineering. However, due to various reasons such as environmental
and loading effects, infrastructures composed mainly of concrete
such as roads, bridges and dams are highly susceptible to cracking
(Chen and Mahadevan, 2008). Cracking of concrete, on the one
hand, affects the aesthetics and durability of the structure, and even
reduces the structural bearing capacity and shortens the service
life (Kaufmann and Marti, 1998). On the other hand, moisture
and corrosion factors (chloride ions, etc.) will enter the concrete
interior through the cracks and erode the internal reinforcing bars
(Gowripalan et al., 2000), which accelerates the deterioration of the
overall structural performance (Matallah and La Borderie, 2009)
and brings about costly repair and maintenance as well as serious
safety hazards. Therefore, crack detection in concrete structures
plays a crucial role in damage assessment and post-care of the
structure.

The main concrete crack detection methods include ultrasonic
method (Pahlavan et al., 2018), ground-penetrating radar method
(Rasol et al., 2020), infraredmethod (Tashan andAl-Mahaidi, 2014),
impact echo method (Hsiao et al., 2008), acoustic emission method
(Ohno and Ohtsu, 2010), and image machine vision method (Kim
and Cho, 2018). Although these methods show great potential in
the detection of concrete crack length, depth, width, etc., they
all have certain limitations. Ultrasonic methods often difficult
to accurately characterize cracks qualitatively and quantitatively.
Ground-penetrating radar methods can be used to determine the
shape of crack defects, but the accuracy of detection depends
on the skill level of the inspector and is both time-consuming
and expensive (Tosti and Ferrante, 2020). The infrared method is
unable to detect microcracks within the structure (Sirca and Adeli,
2018). The accuracy of the impact echo method is susceptible to
strength. The acoustic emission method is very sensitive to the
material and susceptible to electromechanical noise interference
(Goszczyńska et al., 2012). The image machine vision method
has been developed in recent years as an intelligent detection
technique, but the image of concrete cracks acquired by the
camera contains a lot of noise that can cause serious interference
with the accuracy of crack recognition, such as uneven lighting,
surface stains and unevenness (Koch et al., 2015). Therefore, it is
necessary to demand a simple, cheap and fast method to detect
cracks in concrete.

The percussion method is easy to operate, does not require
expensive testing equipment, and has been applied to the defect
detection of structures for a long time. In the past, the structural
vibration caused by percussion was mainly used to realize the
accurate assessment of structural damage (Kubojima et al., 2018),
and the sound signal caused by percussion was usually only used
as an auxiliary evaluation index because the discriminative results
based on the sound signal mainly relied on the experience of the
inspectors (Cawley and Adams, 1988). However, with the rapid
development of computer technology and artificial intelligence
algorithms, percussion-induced sound signals have attracted the
attention of more and more scholars. This is mainly because the
development of signal processing technology makes it possible to
extract more acoustic features from the collected sound signals

(Kong et al., 2018) and use artificial intelligence algorithms to find
the complex mapping relationship between acoustic features and
structural damage more easily (Wang et al., 2021a), thus greatly
improving the accuracy of structural detection and evaluation.
Therefore, in recent years, methods using the combination of
percussion sound signals and artificial intelligence have been
developed in many fields. Zheng et al. (2019) used a microphone to
capture thesoundsignalsof thepercussionprocessandextractedthe
Mel-frequency cepstral coefficient (MFCC) as inputs to a Support
Vector Machine (SVM) model to categorize the water content of
concrete. The results showed that the proposed method obtained
more than 98% accuracy. Wang et al. (2021b) developed a bolt-
loosening detection method using MFCC and memory-enhanced
neural network, and initially explored the potential of the method
for automation in the real industry by using a robotic arm to
replace the manual operation for percussion. Further, they also
proposed a new method of convolutional bi-directional long and
short-term memory model combined with MFCC, and verified
the effectiveness of the method in scaffolding loosening detection
through indoor experiments (Wang and Song, 2020). Chen et al.
(2022) conducted a series of percussion tests on wooden posts with
different cavity volumes and environmental variations to classify
wood cavities using sound features and deep neural networks. The
results show that the proposed method has good classification
performanceandgeneralizationregardlessof theknocking location,
wood post-cross-section and environment changes. Recently, Chen
et al. proposed three different recognition methods based on the
percussionmethod,namely, power spectral density (PSD) andSVM
(Chen et al., 2020a), PSD and decision making (DT) (Chen et al.,
2020b), and wavelet transform (WT and improved convolutional
neural network (Chen et al., 2023), respectively, to validate the
potential of the proposed method in improving the accuracy and
efficiency of the detection by carrying out percussion experiments
on steel pipe concretes with different degrees of voids.

This paper explores an innovative method based on percussion
for identifying crack widths in concrete structures. The method
starts by percussing the concrete surface using a hammer, and the
acoustic signals generated by the percussion process are captured
using an acoustic pressure transducer. Then data enhancement
technique is used to increase the data volume and diversity
of the signals. Next, MFCC is extracted as an input feature
and an improved convolutional neural network (CNN) model is
built by introducing transfer learning and Squeeze-and-Excitation
Networks (SENet) attention mechanism to recognize the crack
width. In order to verify the effectiveness of the proposed
method, two concrete specimens encased in steel tubes were
prepared in this paper to achieve different cracking widths by
applying different load displacements. Under different cracking
widths, hammers were used to percuss 150 times respectively,
and the sound signals of the percussion process were recorded.
Multiple data enhancement techniques were utilized to enrich
the data volume and diversity of the signals. Then, the data
with different cracking widths are divided into training, validation
and testing sets according to the ratio of 4:1:5, respectively.
The results show that the proposed method obtains more than
98% recognition accuracy and exhibits good noise robustness in
indoor experiments. The rest of the paper is organized as follows:
Section 2 describes the basic theories used in this paper, including
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MFCC, CNN, transfer learning and SENet. Section 3 describes the
specific structure and workflow of the proposed model. Section 4
presents the validation of the proposed method. Section 5 is
the conclusion.

2 Theoretical foundation

2.1 Mel-frequency cepstral coefficient
(MFCC)

The MFCC characterization describes the ability of the human
auditory system to perceive sound as a linear function of frequency
below 1 kHz and logarithmically above 1 kHz. According to the
auditory excitation of the human ear, the original frequencies are
nonlinearly mapped by a Mel filter bank, so as to transform the
original frequencies to the Mel domain that can be perceived by
human hearing (Murty and Yegnanarayana, 2005). The relationship
between the Mel frequency and the frequency of the sound signal
can be described by using Equation 1, where λ stands for the
frequency.

Mel( f) = 2595 lg(1+ λ
700
) (1)

The computational flow of MFCC includes pre-emphasis,
windowing and framing, and discrete Fourier transform
(DFT) as follows:

(1) Pre-emphasis. For sound signals x(n), 1 ≤ n ≤ N, the
following formula (Equation 2) can be used for
pre-emphasis:

X(n) = x(n) − γx(n− 1) (2)

Where, X(n) is the pre-emphasized output signal;
γ is the pre-emphasis coefficient of the sound
signals.

(2) Framing and windowing. Framing of the sound signal is
to add a window function of finite length to the acquired
sound signal. The commonly used window functions
are usually rectangular window, Hanning window, and
Hamming window, which are used in this paper with
Equations 3, 4:

S(n) = φ(n)X(n) (3)

φ(n) = 0.54− 0.46 cos(2π n− 1
N− 1
) (4)

Where, S(n) is the smoothed signal with Hamming window;
φ(n) is the Hamming window.

(3) Discrete Fourier Transform (DFT). In order to obtain
the linear spectrum of the sound signal, it is necessary
to perform the DFT on the signal after windowing
to obtain the corresponding spectrum, as follows with
Equation 5:

Q(k) =
N−1

∑
0
S(n)e−

j2πnk
N  (0 ≤ k ≤ N− 1) (5)

(4) Mel frequency filtering. Further, the spectrum from step (3) is
passed through the Mel filter bank to obtain a Mel spectrum,
as follows Equation 6:

Hm(k) =

{{{{{{{{{{
{{{{{{{{{{
{

0 k < y(m− 1)
k− y(m− 1)

y(m) − y(m− 1)
y(m− 1) ≤ k ≤ y(m)

y(m+ 1) − k
y(m+ 1) − y(m)

y(m) < k ≤ y(m+ 1)

0 k > y(m+ 1)

(6)

Where, 0 ≤ m ≤ M, M is the total number of filters; y(·) is the
center frequency of the mth filter.

(5) Logarithmic transformation. Next, the logarithmic energy of
the signal is calculated using Equation 7:

S(m) = ln(
N−1

∑
0
|Q(k)|2Hm(k)) (7)

(6) Discrete Cosine Transform (DCT). Finally, the DCT
is performed on the logarithmic energy to obtain
the MFCC by Equation 8:

C(n) =
M−1

∑
1
S(m)cos(

πn(m+ 1/2)
M
) (8)

The specific implementation process is shown in Figure 1.

2.2 Convolutional neural network (CNN)

CNN is a typical deep-learning network with different
functional layers including convolutional, pooling, and fully
connected layers (Yang and Huo, 2022). CNN networks make it
possible to greatly reduce the number of their parameters without
losing feature expressiveness by sharing weights.

2.2.1 Convolutional layer
A convolutional layer is the core module of CNN, which

performs convolution operation on input feature maps by
convolution kernel and computes output feature maps using
the activation function. The convolution operation can be
represented by Equation 9:

yi,j = f(bj +∑ikj ∗ xi) (9)

Where yi,j is the output of the convolutional layer, f(·) is the
activation function, bj is the bias, kj is the convolutional kernel,

∗

is the sign of the convolutional operation, and xi is the input feature
map, i and j represent the input channel index and output channel
index respectively.

2.2.2 Pooling layer
The pooling layer scales and maps the input feature map

through the pooling kernel to extract features while reducing the
data dimensionality. Assuming the size of the pooling kernel is
p∗t and the input features are xi, the output yi can be computed
usually in Equation 10:

yi = fp∗t(xi) (10)
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FIGURE 1
MFCC flow chart.

2.2.3 Full connectivity layer
The fully connected layer fully connects all neurons in the last

pooling layer with the expression by Equation 1:

O(x) = f(wx+ b) (11)

Where x is the input to the fully connected layer, w is the weight
matrix, and b is the bias vector.

2.3 Transfer learning

Conventional methods usually require a large number of labeled
data samples in the process of constructing a deep learning model
and a long and complex tuning process before amodelwith relatively
good performance can be obtained. In this paper, the percussion
sound samples of concrete specimens with different cracking widths
are limited, and the generalization ability of the resulting model is
not high if it is trained directly on the existing samples. For this
reason,we choose to complete the pre-training of theCNNmodel on
the large dataset ImageNet. On this basis, a number of layers close to
the input in the pre-trainedmodel are frozen on theMFCCdataset of
the enhanced percussion sound waves in this paper, and the weights
of the network layers close to the output are fine-tuned to realize the
migration learning and construct the backbone network.

2.4 SENet attention mechanism

In the process ofmachine learning, CNNalso extracts the useless
information in the feature map of the percussion spectrum and
distributes it in certain channels of the feature map, which attracts
the “attention” of the CNN network (Yao et al., 2022) and affects
the recognition accuracy of the model. Therefore, we introduce

the SENet attention mechanism, which can adaptively learn the
importance of each feature channel and assign different weights to
each channel of the feature map to adjust the importance of the
feature channels, so that improves the accuracy of the model in
recognizing the crack width (Yang et al., 2023), and the structure
of the SENet is shown in Figure 2.

In the figure, C is the number of channels, H and W are the
constant and width of the feature map, and X is the input feature
map. SENet obtains the weights of each channel of the input feature
map through two steps. In the first step, each feature channel is
squeezed in the spatial dimensionH×W by a global average pooling
function with Equation 12:

Z = Fsq(Xc) =
1

H×W

H

∑
i=1

W

∑
j=1

Xc(i, j) (12)

Where, Z is the weight generated by the compression operation.
In the second step, an excitation operation is performed

to obtain the correlation between the feature channels. For
this purpose, SENet applies a perceptron with an implicit layer
containing C/L neurons. L is the scaling ratio. By choosing a
suitable value of L, the network parameters can be reduced and the
generalization ability of the network can be enhanced. In this paper,
we drawon the results of the literature (Wang et al., 2019), and set the
value of L to 16. Finally, the Sigmoid function is used to compute the
feature channel weights. The calculation formula of the excitation
operation can be expressed as Equation 13:

Sc = Fex(Z,W) = σ(g(Z,W)) = σ(W2δ(W1Z)) (13)

Where Sc denotes the generated channel attention weights; σ
denotes the Sigmoid function; and δ denotes the ReLU function.

The expressions for the Sigmoid and ReLU functions are shown
in Equations 14, 15, respectively:

σ(x) = 1
1+ e−x

(14)
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FIGURE 2
SENet structural model.

δ(x) =
{
{
{

x,  if x > 0

0,  otherwise
(15)

Where e is a natural constant; x is the input value.
Finally, the generated channel attention weights are added to

the original feature channels to realize the channel importance
adjustment with Equation 16:

XC = Fscale(Xc,Sc) = Xc ⊗ Sc (16)

Where ⊗ denotes element-by-element multiplication; XC
denotes the feature map after SENet processing.

3 Proposed crack identification model

In this paper, based on the traditional CNN model,
transfer learning is used to pre-train the model to improve the
training starting point. Then, the SENet attention mechanism
is introduced to enhance the model’s focus on important
features, proposing a novel concrete crack width recognition
model, the Transfer Learning/SENet Optimised Convolutional
Neural Network (TSCNN). Its network architecture is shown
in Figure 3.

As shown in Figure 3, the TSCNN model is mainly composed
of 2 convolutional layers, 2 pooling layers, 1 SENet module, 2 fully
connected layers and 1 Softmax classifier. The specific workflow
of this model is as follows: firstly, the percussion sound signals
under different crack widths are collected, and the percussion
sound signals are processed with data enhancement; Then the local
correlation features in the MFCC feature map are extracted as input
through the convolutional layer; Then the CNN is used as the base
network, and the enhanced MFCC dataset is utilized to perform
transfer learning on the base network pre-trained on a large dataset,
and the backbone network is constructed to extract the features;
Then the SENet module is embedded in the output part of the
backbone network to adjust the weights of each channel of the
feature map to enhance the utilization of important features and
suppress useless features; Finally, the crack width is identified using
fully connected layers and Softmax classifiers, and the effects of

different frame lengths, different models and different signal-to-
noise ratios on the model performance are comparatively analyzed.

4 Experimental verification

4.1 Specimen preparation and test setups

The specimens used in this paper were two concrete-encased
steel tube specimens with the same dimensions (named A and B,
respectively), and their tapping sounddatawere collected at different
crack widths while testing the bonding properties of the steel pipe to
the over-concrete. The specimen cross-section and dimensions are
shown in Figure 4. The overall size of the specimen is 220 mm ×
220 mm, and the steel pipe is externally wrapped with an exterior
reinforced concrete material consisting of hoop reinforcement,
longitudinal reinforcement and concrete. The steel pipe was Q235
steel with length, inner diameter and wall thickness of 550 mm,
106 mm and 4 mm, respectively. The longitudinal reinforcement
and hoop reinforcement were HRB335 rebar with 12 mm diameter
and HPB300 light round bar with 6 mm diameter, respectively. The
spacing of the hoopbarswas 80 mm, and the compressive strength of
the concrete was 40 MPa.The concretemix ratio and steel properties
are shown in Tables 1, 2, respectively.

For the push-out test, a 1,500 kN low electro-hydraulic
servo actuator was selected, and a displacement control was
used for loading, with a loading rate control of 0.005 mm/s.
As shown in Figure 5, the test setup mainly consisted of an actuator,
a load plate, a steel plate, a rigid base and four displacement gauges.
The size of the steel pad plate is 340 mm × 340 mm × 30 mm, and
a circular hole with a diameter of 135 mm is opened in the center
so that the steel pipe can pass through the circular hole during the
push-out test. Four displacement gauges were placed at the four
corners of the loading plate to check whether the specimen was
under axial compression.

In order to utilize the acoustic characteristics to identify the
cracks, we conducted the percussion tests on the specimens at
different crack widths.The equipment for the percussion test mainly
consisted of a Signal Acquisition Instrument (INV3062SV; COINV
Orient Institute), a computer, a sound pressure sensor (INV9204;
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FIGURE 3
TSCNN crack width identification model.

COINV Orient Institute), and a percussion hammer (INV9313;
COINV Orient Institute) as shown in Figure 6.

The test procedure is as follows: i) First, slowly apply pressure
to the specimen to 30 kN, at this time the specimen is not cracked,
the loading displacement is recorded as 0 cm, to keep the stress
unchanged, the specimen is continuously percussed for 150 times
and the sound data is recorded, and the tapping point is set in the
center of an unpressurized surface. ii) Then, continue to pressurize
until the displacement reaches 5 cm (at this time the concrete has
cracked). iii)Stop loading and slowly decrease the pressure to 30 kN.
iv) Use the crack width meter to measure the cracking width of the
cracked surface of the specimen along the length direction of the
center line. v) At the left position on the center line and not more
than 1 cm away from the crack, perform 150 consecutive taps and

record the sound data. vi) Continue loading until the displacements
reached 10 cm, 15 cm, 20 cm and 25 cm respectively (the final
displacements of both specimens at the time of failure were more
than 30 cm), and then repeat the operations of steps iii) to v) in turn.
Finally, the percussion sound data of two specimens at six different
crack widths were obtained. It should be noted that the results of the
literature (Chen et al., 2022) have shown that the structural surface
stiffness affects the variation of the tapping sound, and for this study,
when the tapping position is changed, due to the inhomogeneity of
the cracks, etc.Will lead to the change of the indicated stiffness of the
tapping position, and thus it can be expected that the identification
results of the model will be decreased, so that the repetition of the
tapping position will not be repeated in this study. The photographs
of the cracks of specimen A under different loading displacements
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FIGURE 4
Schematic diagram and dimensions of test piece. (a) Top plan, (b) Front view.

TABLE 1 The mix ratio of concrete (kg/m3).

Materials Cement Flyash River sand Coarse aggregate Water-binder ratio Water reducer

Unitweights 0.31 0.36 0.38 0.43 0.46 0.50

TABLE 2 The properties of steel.

Type of steel Specification fy (MPa) fu (MPa) Es (MPa)

Steel tube 106∗4 311.6 430.1 1.95 × 105

Longitudinal φ6 315.2 437.8 2.01 × 105

Transverse φ12 348.5 460.2 2.05 × 105

are given in Figure 7. Table 3 summarizes the crack widths in the
middle of the 2 specimens under different loading displacements.

4.2 Sound data acquisition and
pre-processing

The deep learning process usually requires a larger number of
data points for training to prevent the model from overfitting or
poor classification performance. Therefore, many scholars use data
enhancement methods to expand the dataset needed for training
(Chen et al., 2022). However, for the same data sample, they usually
adopt only one technique for processing, failing to fully consider
the diversity of data (Wang et al., 2021a). For this reason, this
paper adopts a combination of multiple enhancement techniques to

enhance the concrete percussion sound data, and the number of data
enhancement is two times in order to fully consider the diversity
and sufficiency of the data. In this case, the first enhancement is
done using shift technique + change volume technique + stretch
technique while the second enhancement is done using shift
technique + change volume technique + zoom technique. As can
be seen from Section 4.1, a total of 900 sound data were collected for
each specimen, and after two data enhancements, the amount of data
was tripled, i.e., 2,700 data points were obtained for each specimen,
which was able to satisfy the training requirements of the model
to a greater extent. The principles of the four data enhancement
techniques are described as follows: i) Shift technique refers to
removing a segment X (n1:n2) of the original signal X(n) and
inserting it into position n3 to realize the movement of the segment.
ii) Change volume technique refers to altering the amplitude value
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FIGURE 5
Schematic diagram of the loading device. (a) Testing photo, (b) Diogram of loading device.

FIGURE 6
Percussion signal acquisition device.

of the original signal X(n), with the mathematical expression Y(n)
= G∗X(n), where G is the gain factor, and when G > 1, it is an
amplified signal, and when 0 < G < 1, it is an attenuated signal. iii)
The stretch technique is a technique to change the playback speed
of an audio signal without altering its pitch, by choosing a stretching
factor β (usually greater than 1.0), it canmake the audio signal faster,
and its mathematical expression is Y(n) = G∗X (n/β). vi) The Zoom
technique is the opposite technique to Stretch, simply set β to a value
less than 1.0.

Figure 8 shows the data augmentation process for the percussion
sound of specimen A. The sound signal was first cut into 0.02 s
segments from the continuous original signal, and each segment had
the same sampling frequency as the original audio.

After completing the data enhancement, MFCC extraction is
required, and theMFCC results corresponding to six different crack
widths are shown in Figure 9.The horizontal coordinate in the figure
is the time and the vertical coordinate is the frequency. It can be
observed that although the MFCC plots correspond to different
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FIGURE 7
Photographs of cracks under different loading displacements: (a)
0 cm; (b) 5 cm; (c) 10 cm; (d) 15 cm; (e) 20 cm; (f) 25 cm.

TABLE 3 Crack widths in the middle of concrete under different loading
displacements (mm).

Load
displacement

(cm)

0 5 10 15 20 25

Specimen number
A 0 2.62 4.34 6.47 7.23 8.51

B 0 2.46 4.55 6.64 7.58 8.73

crack widths, they all have a small number of more prominent
regions, and there is a large overall similarity, making it difficult
to distinguish them directly. Specifically, in Figure 9a, when the
crack width is 0 mm, there are mainly three distinct regions in
the MFCC mapping, which are located in the frequency intervals

of 0 Hz∼1,000 Hz, 1,000 Hz∼2,500 Hz, and 8,000 Hz∼10,000 Hz,
respectively. In Figure 9b, when a crack of 2.62 mm occurs,
the corresponding MFCC map has one more obvious region
between 450 Hz and 5,000 Hz, in addition, the frequency interval
of the original third obvious region has been expanded, from
8,000 Hz∼10,000 Hz–5,100 Hz ∼11,000 Hz. In Figure 9c, when the
crack is enlarged to 4.34 mm, the number of distinct regions and
the frequency interval of the corresponding MFCC map are close
to those of the MFCC map for 2.62 mm, but its color becomes
lighter in comparison. In Figure 9d, when the crack further increases
to 6.47 mm, the frequency interval from 450 Hz to 5,000 Hz
becomes less obvious, and the original obvious region from5,100 Hz
to 11,000 Hz is also compressed. In Figure 9e, when the crack
increases to 7.23 mm, compared with 6.47 mm, only part of the
5,100 Hz ∼ 11,000 Hz region is observed to become darker in
color, and the other changes cannot be effectively identified by
the naked eye. In Figure 9f, when the crack increases to 8.51 mm,
compared with 7.23 mm, a small degree of compression occurs
in the apparent region of 5,100 Hz ∼11,000 Hz, and a section of
color deepening is found in the frequency interval of 1,000 Hz
∼ 2,500 Hz, with the duration of 0 s ∼ 0.035 s. In particular, the
feature areas in the maps are so large that it is difficult to establish
a complex mapping relationship between the large feature maps
and crack widths by manual generalization. A similar phenomenon
was found when specimen B was analyzed. Therefore, a deep
learning network with strong feature learning capability is required
for identification.

For the data at different widths, this paper is divided into
training, validation, and test sets in the ratio of 4:1:5, with a
batch size of 32 and a learning rate of 0.006. For specimen A,
the labels corresponding to crack widths of 0 mm, 2.62 mm,
4.34 mm, 6.47 mm, 7.23 mm and 8.51 mm were set to CW0,
CW2.62, CW4.33, CW6.47, CW7.23 and CW8.51, respectively.
Similarly, specimen B was similarly labeled using the same
approach. The computer configuration used for the experiment
is: CPU is Intel(R) Core(TM) i9-9,900X at 3.50 GHz; the graphics
card is NVIDIA TITAN Xp made by NVIDIA; the development
environment is CUDA10.2, and the network framework
is Pytorch1.11.

4.3 Effect of different sample frame lengths

In this subsection,we evaluate the effect of different input sample
frame lengths on the training performance of the model by setting
the input sample frame lengths to 128,256,512,1024 and 2048,
respectively, and selecting the optimal frame length by analyzing
the accuracy and loss. Taking specimen B as an example, Figure 10
gives the curve of the influence of different input sample frame
lengths on the accuracy and loss of the model validation process.
It can be seen that, with the increase of epoch, the validation
accuracy under different frame lengths first increases, and then
all of them show a significant decrease at epoch = 5, and then
continue to increase, and finally fluctuate up and down around
100%. The corresponding verification loss curve is the opposite.
As the epoch increases, the validation loss curve first gradually
decreases, then abruptly increases at epoch = 5, and then continues
to decrease to near 0. It is worth noting that when the frame
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FIGURE 8
Example of data enhancement of the tapping sound of specimen A: (a) Continuous original signal; (b) Segment original signal; (c) Data enhancement.

length is 1,024, the verification accuracy curve converges faster,
with higher accuracy and smaller final loss values. Therefore, in the
subsequent calculation process, we set the frame length of MFCC
to 1,024 uniformly.

4.4 Ablation experiments

In order to explore the performance improvement effect on
the CNN model brought about by the optimization approach
using the transfer learning and SENet attention mechanism, the
ablation tests were carried out using the data of specimen A as an
example, and the results are shown in Table 4. In the table, No.
1 indicates the original CNN model, No. 2 indicates the method
of transfer learning introduced based on the CNN model, No. 3
indicates the introduction of SENet attention based on the CNN
model, and No. 4 indicates the method proposed in this paper, i.e.,
both transfer learning and SENet attention are introduced based
on CNNmodel.

As can be seen from Table 4, the introduction of transfer
learning in the CNN model improves the accuracy of the model by
3.53 percentage points and the F1 score by 3.5 percentage points.
This indicates that the transfer learning technique initializes the
weights of the model through pre-training, which can effectively
improve the training starting point of the model and thus improve
the accuracy of recognition, which is consistent with the findings
of the existing study (Gupta et al., 2021). After embedding
SENet attention into the basic unit of CNN, the accuracy and
F1 score of the model are both improved to 4.91 percentage
points. This is because SENet attention enhances the model’s
focus on important features of the MFCC input graph, while
suppressing the interference of useless features on the recognition
performance. And after combining the improvements of transfer
learning and SENet attention, the performance of the CNN is
greatly improved, with accuracy and F1 scores of 98.78% and
98.80%, respectively, which are 6.45 percentage points and 6.46
percentage points respectively compared with the original CNN
model. This indicates that the improved method based on transfer

learning and SENet attention is efficient and able to improve the
accuracy of the model in recognizing different degrees of cracking
in concrete.

4.5 Effect of different models

In order to verify the superiority of the proposed method in
concrete crack recognition, it is compared with Resnet18 (Liu et al.,
2023), random forest (RF) (Belgiu and Drăguţ, 2016), and long
short-termmemory (LSTM)network (Song et al., 2020) respectively,
and the results are shown in Figure 11. It can be seen that the
recognition accuracy of both Resnet18 and RF models is not
high. For specimen A and specimen B, the recognition accuracies
obtained by the Resnet18 model are only 82.54% and 80.73%,
respectively, while the RF model is only 78.52% and 82.15%,
respectively. On the other hand, the recognition accuracy of the
LSTM model is relatively higher, with the accuracy of the two
specimens corresponding to 90.94% and 91.47%, respectively. This
indicates that the feature learning ability of LSTM for MFCC
maps with different crack widths is higher than the previous
two models, but the accuracy is still not very satisfactory. The
TSCNN model proposed in this paper, based on CNN, applies
the transfer learning technique to improve the starting point of
model training and introduces the SENet attention mechanism,
which enables the model to enhance the focus on important features
and suppress the interference of useless features, thus effectively
improving the recognition accuracy of crack width. For specimen
A and specimen B, the proposed models achieved 98.78% and
98.45%, respectively. Overall, the average recognition accuracies
of the four different models are ranked as TSCNN > LSTM >
Resnet18>RF. In addition, comparing the magnitude of change
in the accuracy of the four models between two specimens, it
is found that the magnitude of change is 1.81% for Resnet18,
3.63% for RF, 0.53% for LSTM, and 0.33% for TSCNN, which
suggests that TSCNN is the smallest variation among the four
models. Therefore, it can be assumed that the TSCNN model
has better stability. The combined results show that the method
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FIGURE 9
MFCC for different crack widths: (a) 0 cm; (b) 2.6 cm; (c) 4.3 cm; (d)6.4 cm; (e) 7.2 cm; (f) 8.5 cm.
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FIGURE 10
Effect of frame lengths on model validation accuracy and validation loss. (a) Verification accuracy, (b) Verification loss.

TABLE 4 Ablation tests of the TSCNNmodel.

Number Transfer learning SENet attention Accuracy (%) F1 score (%)

1 × × 92.33 92.34

2 ✓ × 95.86 95.84

3 × ✓ 97.24 97.25

4 ✓ ✓ 98.78 98.80

FIGURE 11
The recognition accuracy of different models.

proposed in this paper can effectively identify the crack width of
concrete, and its performance and stability are better than other
traditional methods.

4.6 Effect of different signal-to-noise ratios
(SNR)

Due to the field inspection process, the percussion sound
signal is easily affected by external noise, which may weaken the
performance of the crack width recognition model. Therefore, in
order to verify the noise robustness of the proposed method, noise
is added to the test data for testing in this paper. As shown in
Equation 17, Gaussianwhite noise is added to the test data to achieve
the corresponding SNR (Wang and Song, 2021):

SNR = 10 log10(
A2
0

A2
1
) (17)

Where, A0 denotes the amplitude of the original signal, and A1
denotes the amplitude of the noise. The signal-to-noise ratio ranges
from -9db to 6 db with a spacing of 3 db.The process of adding noise
with a SNR of 6 db is given in Figure 12.

It should be noted that, since the technique proposed in
this study is still at the stage of indoor exploration and fails to
comprehensively consider the complex noise environment in a real
site, Gaussian white noise is analyzed in this paper as a commonly
used tool, and other types of noises, such as mechanical and
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FIGURE 12
The process of adding noise with a SNR of 6 db: (a) original signal; (b) white noise; (c) synthesized signal (SNR = 6 db).

FIGURE 13
Accuracy of different models at different SNR: (a) Specimen A; (b) Specimen B.

electrical noises, are not included in the discussion for the time
being. The recognition results of different models at different SNR
are shown in Figure 13. It can be observed that for specimen A,
in the noise environment of -9db, the recognition accuracies of all
the models are significantly decreased, which is lower than 65%.
During the increase of SNR from -6 db to 6db, the recognition
accuracies of all models show an overall increasing trend, but
only the accuracy of the proposed TSCNN model is always higher
than 90%, and the accuracies obtained by the other models are
basically below 90%. In the noisy environment with SNR equal
to 6 db, i.e., the group with the highest recognition performance,
the accuracy of the TSCNN model increased by 17.09%, 22.1%
and 6.77% compared to Resnet18, RF and LSTM, respectively. For
specimen B, the trend of the four models is basically similar to that
of specimen A, but the overall accuracy is slightly lower. However,
the accuracy of the TSCNN model for crack width identification
is still maintained at 85%–98% under the noise environment of -
6db–6 db. In summary, the proposed TSCNN model has a better
denoising ability than other models in the noise environment with
SNR of -6db∼6 db.

4.7 Visualization

In order to gain insight into the feature learning ability of
the SCNN model in different noise environments, the t-SNE
technique (Kobak and Berens, 2019) is used to visualize the
recognition results. The common patterns of clustering in the t-
SNE technique are divided into three main types: clear boundaries
between different categories, fuzzy boundaries between different
categories and random distribution of different categories. The
first pattern usually indicates that the model has good recognition
accuracy for different labeled categories and is rarely misclassified.
The second pattern corresponds to different recognition accuracies
depending on the degree of boundary blurring, and themore blurred
labels, the worse the accuracy. The third pattern implies that the
model is basically invalid and cannot discriminate different label
categories effectively. Figure 14 shows the visualization results of
TSCNN in specimen A. It can be seen that there are obvious
boundaries between different labels under other SNR noises except
for -9db, which clearly separates different labels, which corresponds
to a recognition accuracy higher than 90% in Section 4.5. The
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FIGURE 14
Visualization of TSCNN in Specimen A. (a) −9 db, (b) −6 db, (c) −3 db, (d) 0 db, (e) 3 db, (f) 6 db.

visualization results for specimen B are shown in Figure 15. It can
be observed that specimen B performs similarly to specimen A
in a -9bd SNR environment, with more serious mixing between
different labels, indicating that the performance of the TSCNN
model is not so good at low SNR. Although there is a small range of
interleaving phenomenon of some labels in -6bd SNR environment,
it does not affect the recognition results. The results show that
the proposed TSCNN method has good feature learning ability for
MFCCmaps corresponding to different crackwidths, and can realize

high-precision recognition of crack widths in high signal-to-noise
ratio (-6db∼6 db) noise environments.

5 Conclusion

In this paper, an innovative method combining MFCC and
improved CNN based on Percussion Detection technique is
proposed to identify the crackwidth of concrete.Themethod is a fast

Frontiers in Built Environment 14 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1627643
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Ge et al. 10.3389/fbuil.2025.1627643

FIGURE 15
Visualization of TSCNN in Specimen B. (a) −9 db, (b) −6 db, (c) −3 db, (d) 0 db, (e) 3 db, (f) 6 db.

and effectivemeans of detection as it does not require the coupling of
installed sensors. A series of indoor exploratory testswere conducted
using the proposed method to demonstrate its effectiveness and
accuracy. The following main conclusions are obtained:

(1) The method of using the combined enhancement technique
to enhance the percussion sound signal can effectively solve
the problems of insufficient data samples and data monotony,
which helps to improve the generalization ability of the model.
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(2) A crack width recognition model based on an improved
CNN network is proposed. The method is pre-trained by the
transfer learning technique, which effectively improves the
training starting point of the CNN model; the embedded
SENet attention enables the CNN model to focus on
important features, which in turn improves the recognition
performance.

(3) The proposed model is accurate and effective. The proposed
model obtains an average recognition accuracy of 98.62% with
a variation of only 0.33% in two different specimen tapping
tests, which is more accurate and more stable than other
conventional models (Resnet18, RF and LSTM).

(4) In a high signal-to-noise ratio (-6db∼6 db) environment, the
proposedmodel shows goodnoise robustness and the accuracy
is maintained between 85% and 98%. Therefore, it can be
concluded that themethod based on percussionwith improved
CNN proposed in this paper has a large potential in the future
field detection of concrete cracks.

The study in this paper verifies the effectiveness of the
proposed method in terms of concrete cracking width. However,
there are still some shortcomings: i) it fails to adequately
consider the impact of additional structural parameters and
quantities on the identification results, such as structural
dimensions, reinforcement ratios, surface cleanliness, etc.,
while the conclusions do not take into account field data or
environmental variability (e.g., ambient noise). ii) Although
the method in this paper validates its effectiveness in surface
crack identification, there is still no discussion on the depth of
cracks, sensor positioning, and variation of structure variability.
In the follow-up research work, we will design tests with
different structural parameters to verify the generalization
ability of the model on more specimens with different
parameters rejected.
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