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Landslides are one of the most prevalent natural geological disasters, causing
significant economic losses, damaging public environments, and posing severe
threats to human lives. Landslide displacement, influenced by various triggering
factors, best reflects the landslide evolution process; when displacement
reaches a certain threshold, a landslide may occur. Consequently, predicting
landslide displacement has become a focal point in engineering research.
This study employs the Long Short-Term Memory (LSTM) neural network
and Support Vector Regression (SVR), combined with the Variational Mode
Decomposition (VMD) algorithm, to construct predictive models. Initially, the
VMD algorithm decomposes the landslide displacement time series into trend,
periodic, and stochastic components. A novel Variational ModeDecomposition-
Long Short-Term Memory (VMD-LSTM) hybrid model is then proposed for
single-step landslide displacement prediction, followed by the application of
a new Variational Mode Decomposition-Support Vector Regression (VMD-
SVR) model for time series forecasting of landslide displacement. The results
indicate that the VMD-SVR-LSTM model, with an RMSE of 0.0328 and an R2 of
0.8487, demonstrates the best predictive accuracy and fitting capability. The
methodology proposed in this paper offers a viable approach for landslide
disaster prevention and early warning systems.
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1 Introduction

Landslides, as a type of natural geological hazard, are marked by their sudden
onset, immense destructive power, high frequency of occurrence, and rapid movement,
often triggering secondary disasters such as floods and debris flows (Chang et al., 2020;
Huang et al., 2020a; Dou et al., 2020). Between 2017 and 2021, geological disasters
across the country resulted in economic losses totaling billions of yuan, causing not
only extensive damage to buildings and infrastructure but also significant casualties,
thereby imposing a substantial economic burden on both the nation and its people.
Consequently, analyzing the influencing conditions of landslide disasters is essential
(Huang et al., 2020b; Steger et al., 2021; Dai et al., 2023; Mousavi et al., 2024). Landslide
displacement directly reflects the evolutionary process of landslides and is influenced by
factors such as geographical location, geological conditions, and controlling elements,
which collectively contribute to the occurrence of landslide disasters. When displacement
reaches a certain threshold, a landslide may be imminent (Yin et al., 2021; Feng et al.,
2025). Therefore, accurate and reliable displacement prediction is critical for establishing
effective landslide early warning systems, which can help prevent massive casualties
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and alleviate economic burdens. Landslide prevention and control
have long been a topic of significant concern for both the
government and the public (Di Napoli et al., 2020).Thedevelopment
of landslide displacement prediction has roughly gone through four
stages: empirical models, mathematical statistical models, nonlinear
models, and integrated models (Saito, 1969; Yang et al., 2019).
Currently, the conventional process for displacement prediction
involves using time series analysis methods in combination with
other approaches to decompose landslide displacement, predicting
each component separately, and then summing them up to obtain
the final result. Commonly used decomposition methods include
the moving average method, exponential smoothing method,
Empirical Mode Decomposition (EMD), wavelet analysis, and
others (Cervantes et al., 2020). Although these methods have
achieved favorable results in prediction, issues such as inadequate
decomposition or unclear physical meanings of the components still
persist. In contrast, Variational Mode Decomposition (VMD) offers
advantages like adaptive decomposition, strong noise resistance, and
more intuitive physical interpretations, providing more reliable and
interpretable decomposition results for predictivemodels (Zhu et al.,
2025; Hu et al., 2025; Zhao et al., 2024).

In modern times, numerous researchers have employed
various methods to predict landslide displacement (Zhu et al.,
2025; Hu et al., 2025). These predictive approaches can be
broadly categorized into two main forms: the first primarily relies
on statistical models, while the second is based on machine
learning techniques, such as artificial neural networks, various
optimization algorithms, and classification models (Zhao et al.,
2024; Huang et al., 2021; Casagli et al., 2023). Statistical models
for landslide displacement prediction typically focus on identifying
the most relevant inducing factors to optimize mathematical model
calculations, sometimes even establishing coupled relationships
between mathematical and neural network models. Commonly
used statistical models include the Grey System Model and the
Autoregressive Integrated Moving Average (ARIMA) model,
among others (Huang et al., 2021).

In recent years, deep learning models have been widely applied
across various domains (Casagli et al., 2023). Both domestically
and internationally, artificial neural network models have been
extensively utilized for landslide displacement prediction. In real-
world scenarios, time series data collected often contain noise,
which can interfere with model predictions. Consequently, data
preprocessing is indispensable (Scherzer et al., 2019). Many scholars
have employed various methods for data processing, including
signal decomposition techniques that break down the original
series intomultiple subsequences before applying predictivemodels.
Approaches such as Empirical Mode Decomposition (EMD),
Ensemble Empirical Mode Decomposition (EEMD), and Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN) have proven effective in processing raw sequences
and enhancing the accuracy of predictive models. These methods
underscore the critical role of data preprocessing in improving
model performance (Smith et al., 2021). Therefore, preprocessing
time series data can significantly enhance the precision of model
predictions. In recent years, Long Short-Term Memory (LSTM)
networks have been employed to address time series problems,
particularly for predicting surface deformations in landslide-prone
areas. For instance, Xu et al. conducted a study on surface

deformation monitoring of the Fanjiaping landslide in the Three
Gorges Reservoir area using SBAS-InSAR time series data and
an LSTM model (Barman et al., 2023). The results demonstrated
that the LSTM model achieved correlation coefficients of 0.9455
and 0.9829, significantly outperforming Back Propagation (BP)
neural networks and Support Vector Regression (SVR) models
(Huang et al., 2020c). Similarly, Chen et al. utilized SBAS-InSAR
technology and an LSTM model to monitor surface deformations
along the Yangtze River in Nanjing, revealing high consistency
between the LSTM model’s deformation predictions and InSAR
monitoring results, with a maximum absolute error of 2.66 mm. Liu
et al. applied an AT-LSTM model to monitor land subsidence in
the Pingshuo mining area of Shanxi Province, demonstrating that
the model’s predicted spatial distribution closely aligned with actual
conditions (Dou et al., 2023).

Landslide displacement is influenced by numerous external
fluctuating factors. Therefore, enhancing the accuracy of landslide
prediction not only requires improving prediction methods but
also selecting appropriate influencing factors. However, during the
process of a landslide, the changing trend of surface displacement
continuously varies both temporally and spatially. Consequently,
using a single time series algorithm based on a neural network for
surface displacement prediction has certain limitations (Buia et al.,
2020; Hong et al., 2020). To address these issues, in recent
years, deep learning methods combined with signal decomposition
techniques have gradually become a research hotspot in landslide
prediction (Steger et al., 2024). Therefore, this study takes the
displacement monitoring data from the Baishuihe landslide in the
Three Gorges region as the research object. The VMD algorithm is
employed to decompose the monitoring data into trend, periodic,
and random components. A combined SVR-LSTM model is then
used to predict each component separately. Finally, the cumulative
prediction of landslide displacement is achieved by summing up the
predicted results of each component.

The main contributions of this paper are as follows:

(1) Data Preprocessing: Given the characteristics of landslide
displacement data, the preprocessing phase primarily
involves data decomposition. By applying Variational Mode
Decomposition (VMD), the quality of input data for themodel
is improved, as the decomposed subsequences capture both
high-frequency and low-frequency features, optimizing model
inputs and enhancing predictive performance.

(2) Model Optimization: To address the limitations of standalone
LSTM models, which often exhibit large prediction errors and
low accuracy, a VMD-LSTM hybrid model is proposed for
landslide displacement sequence prediction. By decomposing
the original sequence using VMD and integrating it with the
LSTM model, prediction errors are significantly reduced,
and the LSTM’s predictive capabilities are optimized.
Additionally, LSTM-SVR hybrid models are developed
for each decomposed component, combining the LSTM’s
strength in extracting time series features with SVR’s ability
to handle nonlinear problems, thereby compensating for
LSTM’s shortcomings.

While traditional models like ARIMA and BP are commonly
used for landslide displacement prediction, their optimization via
decomposition algorithms has yielded limited improvements in

Frontiers in Built Environment 02 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1630201
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Wang et al. 10.3389/fbuil.2025.1630201

predictive performance. Some studies have employed particle swarm
optimization (PSO) to refine predictive models, but these methods
often rely on a priori knowledge, lacking flexibility, and fall short in
dynamic landslide displacement prediction. In contrast, recurrent
neural networks (RNNs), which are often used for time series
processing, suffer from gradient explosion or vanishing problems
in long sequences. Long Short-Term Memory (LSTM) networks
effectively mitigate these RNN issues, demonstrating superior
accuracy in time series prediction. To address the complexity of
existing hybrid models, this paper introduces a novel VMD-SVR-
LSTM model for landslide displacement time series prediction.
Compared to traditional LSTM models, the VMD-SVR-LSTM
model captures more frequency-domain features within the raw
data, offering enhanced predictive accuracy. The effectiveness
and feasibility of the VMD-SVR-LSTM model are validated
using the Baishuihe landslide displacement data in the Three
Gorges Reservoir area.

2 Method for predicting landslide
displacement

The main steps of the landslide displacement prediction process
based on the VMD-SVR-LSTM model are as follows:

(1) Influencing Factor Analysis: Based on prior research, nine
factors affecting periodic displacement were extracted,
including: Maximum monthly rainfall, Cumulative monthly
rainfall, Cumulative rainfall over the past 2 months,
Monthly reservoir water level, Monthly reservoir water
level change, Reservoir water level change over the past
2 months, Cumulative monthly displacement increment,
Cumulative displacement increment over the past
2 months, Cumulative displacement increment over the
past 3 months.

(2) Data Decomposition: Using Variational Mode Decomposition
(VMD) combined with time series analysis, the total landslide
displacement was decomposed into three components:
Trend displacement、Periodic displacement、Random
displacement.

(3) Dataset Construction: The influencing factor components
served as input variables, while the corresponding
displacement components acted as output variables to
construct the dataset. Each dataset was further divided into
training and testing subsets.

(4) Model Training and Prediction: The training set was fed
into the SVR-LSTM model for iterative optimization of
model parameters, establishing an optimal prediction
model. Subsequently, the testing set was input into the
model to generate predicted values for each displacement
component, which were then compared against actual
displacement data.

(5) Result Evaluation: The predicted values of individual
displacement components were summed to obtain the
cumulative landslide displacement prediction. Accuracy
and reliability of the model’s predictions were evaluated
through comparative analysis with actual displacement
measurements.

2.1 VMD

Time series decomposition is a crucial preprocessing technique
that enables the handling of nonlinear and nonstationary signal
data in real-world applications, allowingmodels to effectively extract
both high-frequency and low-frequency information from raw data,
thereby enhancing the accuracy of predictivemodels (Talukdar et al.,
2020; Youssef et al., 2016; Dong et al., 2023). Landslide displacement
time series exhibit nonlinear and nonstationary characteristics, with
general nonstationary data typically composed of components such
as trend, seasonality, periodicity, or random noise (Min et al., 2019).
By decomposing the original series, characteristic information
at different frequencies can be extracted, facilitating the model’s
analysis of each component in the raw data and uncovering
underlying data patterns and developmental trends (Alabi et al.,
2022). Applying predictive models to each decomposed component
significantly improves the model’s predictive performance. This
paper primarily employs the Variational Mode Decomposition
(VMD) algorithm for this purpose.

Variational Mode Decomposition (VMD) is a novel method
for decomposing complex signals, introduced by K. Dragomiretskiy
and D. Zosso in 2014 as an advancement over Empirical Mode
Decomposition (EMD) (Manibardo et al., 2022). Unlike EMD,
VMD redefines the IntrinsicMode Function (IMF) as an amplitude-
and frequency-modulated (AM-FM) signal, denoted as uk(t), with
the following mathematical representation in Equation 1:

uk(t) = Ak(t)cos(ϕk(t)) (1)

In this formulation, Ak(t) represents the instantaneous
amplitude, and ϕk(t) denotes the phase.

In Variational Mode Decomposition (VMD), the signal sifting
approach used in Empirical Mode Decomposition (EMD) is
abandoned for decomposing Intrinsic Mode Functions (IMFs).
Instead, after configuring parameters such as the number of
modes K, penalty parameter a, and update step size τ, VMD
decomposes the signal by solving an optimization problem within
a variational framework. The mathematical formulation for this
model is given in Equation 2:

min
{uk},{ωk}
{

K

∑
k=1
‖∂t[(σ(t) +

j
πt
)uk(t)]e−jωkt‖

2

2
}

s.t. 
K

∑
k=1

uk = f(t)

}}}}}
}}}}}
}

(2)

In the equations: {uk} represents the decomposed components
obtained through the final decomposition process; {uk} = {u1, ...,uK};
{ωk} corresponds to the actual center frequencies of each
Intrinsic Mode Function (IMF) component; {ωk} = {ω1, ...,ωK};
[σ(t) + j/(πt)]uk(t) denotes the analytic signals derived for each IMF
component; e−jωkt signifies the estimated center frequencies of these
analytic signals; f(t) represents the original input signal.

To solve for the optimal solution of this constrained
variational model, Equation 4 must be reformulated into an
unconstrained optimization problem:

a∑
k
‖∂t[(σ(t) +

j
πt
)uk(t)]e−jωkt‖

2

2
+‖ f(t) −∑

k
uk(t)‖

2

2
+⟨λ(t), f(t) −∑

k
uk(t)⟩ (3)
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In the equations: λ represents the Lagrange multiplier.
The Alternating Direction Method of Multipliers (ADMM)

is utilized to compute the saddle point of the unconstrained
model derived earlier, which corresponds to the optimal solution
of the constrained variational model described in Equation 3.
This process decomposes the original signal into K Intrinsic
Mode Function (IMF) components. By employing this
approach, each IMF component inherits distinct scale-
dependent characteristics, thereby better preserving its inherent
structural information. Consequently, this study adopts
Variational Mode Decomposition (VMD) to analyze landslide
displacement-time curves, leveraging its capacity to isolate
meaningful components that reflect the underlying dynamics of
slope deformation.

2.2 LSTM

LSTM (Long Short-Term Memory) networks safeguard and
regulate the information within their memory cells through three
gates, with the manipulation of this information achieved via
element-wise multiplication by activation functions. A set of
parameters, trained through gradient descent, is employed to control
the state of each gate (Zhang et al., 2024). Each gate in an LSTM
serves a distinct and specific function. The forget gate, denoted
as f, determines which pieces of information to discard from the
previous state ht−1 . After the input xt and ht−1  are processed by
the update gate u, they, in conjunction with the adjusted forget gate
f, decide the weightage to be given to the candidate state ̃ht for
updating the current state ht. To generate the output yt, the network
first filters its current state using a nonlinear function g2, and then
combines it with the output of the output gate ο to produce yt. Here,
a portion of the state yt is fed back as the next input yt−1. Each gate’s
operation hinges on the current external input xt and the previous
output (or more accurately, the previous hidden state yt−1, but again,
adhering to the original text’s phrasing). Figure 1 provides a detailed
illustration of the LSTM’s structural principles, and the equation
governing the update of the LSTM’s state is presented in Equation 4.

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

forgetgate: ft = σ(W fxt +R fyt−1 + b f)

candidate state: ̃ht = g1(W fxt +R fyt−1 + b f)

update state:ut = σ(Wuxt +Ruyt−1 + bu)

cell state:ht = ut ⊗ ̃ht + ft ⊗ ht−1
output gate:οt = σ(Wοxt +Rοyt−1 + bο)

output:yt = οt ⊗ g2(ht)

(4)

In the equation, xt represents the input vector at time step t;W f ,
Wh,Wu and Wο are weight matrices associated with the input units
and connections to the hidden layer; R f ,Rh,Ru and Rο are weight
matrices for the connections within the hidden layer; b f ,bh,bu and
bο are bias vectors; the activation function σ is either the sigmoid or
tanh function; g1 and g2 are nonlinear activation functions; and ⊗
denotes element-wise multiplication.

FIGURE 1
Structure of LSTM.

2.3 Evaluation metrics

The effectiveness of predictive models is evaluated and
compared using the Root Mean Square Error (RMSE) and the
coefficient of determination (R2) (Praveen et al., 2025; Zhang et al.,
2021; Huang et al., 2017). The primary formulas for these metrics
are as follows in Equations 5, 6:

(1) RMSE

RMSE = √ 1
N

n

∑
i=1
( ̂xi − xi)

2 (5)

(2) R2

R2 = 1−
∑N

i=1
( ̂xi − xi)

∑N
i=1
(xi − xi)

(6)

Where, ̂x represents the predicted values, x denotes the actual
values, x is the mean of the actual samples, and N indicates the
total number of samples. A smaller RMSE value indicates stronger
predictive capability of the model, while an R2 value closer to 1
signifies better model fitting performance.

2.4 Normalization processing

Normalization is a critical preprocessing step in data analysis,
particularly for time series prediction tasks like landslide
displacement forecasting. The primary objective of normalization
is to rescale the input data to a standardized range (typically
[0, 1] or [-1, 1]), thereby eliminating the influence of varying
magnitudes among different features or samples. This process
ensures that all variables contribute equally to the model’s training
and prevents dominant features (e.g., large-scale displacement
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values) from overshadowing others (e.g., subtle rate-of-change
indicators) (Naemitabar and Asadi, 2021).

In the context of landslide displacement time series, raw
displacement data often exhibit significant variations in scale due to
factors such as sensor precision, environmental noise, or cumulative
displacement effects. Without normalization, models like LSTM or
hybrid VMD-SVR-LSTM architectures may struggle to converge
efficiently or could produce biased predictions. For instance, if
displacement values range from 0 to 1,000 m while rate-of-change
values range from 0 to 1 m/day, the model might disproportionately
prioritize displacement magnitude over temporal trends. The most
commonly used normalization technique is Min-Max Scaling,
defined as in Equation 7:

y =
(xi − ximin)
(ximax − ximin)

(7)

In the formula: ximax represents the maximum value of variable
i; ximin represents the minimum value of variable i; xi denotes the
original value; y denotes the normalized value.

3 Landslide displacement time series
prediction based on the
VMD-SVR-LSTM hybrid model

3.1 Study area

The Baishuihe landslide is located on the southern bank of the
Yangtze River, approximately 56 km downstream from the Three
Gorges Dam site, within Baishuihe Village, Shazhenxi Township
(Figure 2). Its geographical coordinates are 110°32′09″ longitude
and 31°01′34″ latitude (Dou et al., 2019). The landslide mass is
situated in a broad river valley section of the Yangtze, characterized
by a monoclinic bedding slope that dips in the same direction as
the slope face. The terrain slopes downward from south to north,
exhibiting a stepped profile toward the river. The trailing edge of the
landslide reaches an elevation of 410 m, bounded by the geotechnical
interface, while the leading edge extends to the Yangtze River. The
eastern and western boundaries are defined by bedrock ridges,
with an overall slope gradient of approximately 30°. The landslide
measures 600 m in north-south length and 700 m in east-westwidth,
with an average slide mass thickness of about 30 m and a total
volumeof 1,260× 104 m3. Classified as a colluvial landslide, the slope
exhibits a dip-slope orientation.

Since June 2003, professional monitoring of the Baishuihe
landslide has been conducted, with numerous monitoring stations
deployed across the site. Among these, the ZG118 station, located in
the central portion of the landslide mass, is capable of capturing the
entire evolutionary process of the landslide. This station also boasts
relatively comprehensive monitoring data, facilitating data-driven
modeling efforts. Given these two advantages—central location and
robust datasets—the monitoring data from the ZG118 station were
utilized to validate the effectiveness and superiority of the proposed
methodology in this study. Figure 3 illustrates the cumulative
displacement, reservoir water level, and rainfall curves monitored at
the ZG118 station from January 2007 to December 2012. Notably,
rapid movement episodes are observed at the onset of the rainy
season (May to September annually) and toward the end of reservoir

FIGURE 2
Location of the study area and landslide
inventory map (Rodrigues et al., 2021).

water level drawdowns (June and July). Moreover, these rapid
movement periods typically conclude before the rainy season’s end.
It is evident that fluctuations in both reservoir water levels and
rainfall significantly influence cumulative landslide displacement,
suggesting that precipitation and reservoir water level variations are
primary factors driving deformation and failure at the Baishuihe
landslide.

3.2 Prediction of cyclical displacement

Based on prior research, nine influential factors affecting
cyclical displacement were extracted: maximum monthly rainfall,
cumulative monthly rainfall, cumulative rainfall over a two-
month period, monthly reservoir water level, monthly change
in reservoir water level, two-month change in reservoir water
level, monthly cumulative displacement increment, two-month
cumulative displacement increment, and three-month cumulative
displacement increment. These nine factors have demonstrated
high effectiveness in predicting cyclical displacement. For the
experiments, data from January 2007 to December 2011 were used
as the training set, while data from January 2012 to December
2012 served as the testing set. Predictive models were developed
using both Support Vector Regression (SVR) and Long Short-Term
Memory (LSTM) networks.

To address the challenge of insufficient data volume for direct
modeling of the raw landslide displacement series, this study first
employed Variational Mode Decomposition (VMD) to decompose
the displacement series into several components, each with a unique
central frequency. This decomposition indirectly resolved the data
scarcity issue by enabling modeling of individual components
rather than the raw series. The cumulative landslide displacement
is decomposed into trend and periodic displacements, as shown
in Figure 4. From Figure 4, it can be observed that the trend
displacement obtained using VMD effectively reflects the changing
trend of the cumulative landslide displacement. The periodic
displacement is primarily influenced by cyclical precipitation and
reservoir water level fluctuations. Therefore, before establishing a
predictive model for periodic displacement, it is necessary to extract
the factors affecting the periodic displacement of the landslide.
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FIGURE 3
Monitoring curves of cumulative displacement, reservoir water level (a), and rainfall (b).

FIGURE 4
Decomposition results of cumulative displacement time series rainfall.

Subsequently, the study leveraged the LSTM network’s strength
in extracting temporal sequence features and the SVR’s capability
in nonlinear regression to create a hybrid modeling approach,
compensating for the limitations of single-model regression
performance. This combined strategy effectively tackled the
data-driven landslide displacement prediction problem.

The experiments were conducted on the deep learning
framework PyTorch-CPU, with the model optimized using the
Adam optimizer. Based on the size of the dataset, the number of
network training epochs was set to 300, and the batch size was
set to 8. The LSTM network had an input layer size of 4, a time
window size of 5, a step size of 1, and a hidden layer size of 50. The
optimal hyperparameters for the SVR model were determined to be
C = 1.015 and g = 0.01. The VMD-LSTM-SVR modeling workflow
is illustrated in Figure 5, where the blue box represents the hybrid
modeling process and the red box denotes the individual component
modeling phase. As shown in Figure 5, the VMD-LSTM-SVR
modeling approach can be broken down into the following steps.

In the first step, the landslide displacement cycle data are
proportionally divided into training, validation, and testing sets
in sequence. The training set is used to train the landslide
displacement prediction model, the validation set is employed to
tune hyper parameters and validatemodel performance (specifically
during LSTM model training), and the testing set is reserved
for forecasting the landslide’s future displacement behavior. The
modeling data collectively refers to the datasets utilized during both
training and validation phases. The specific proportional splits are
illustrated in Figure 6.

In the second step, each sequential component of the training
and validation sets is normalized and structured into time-series
vectors to enhance convergence speed and prediction accuracy
during model training.

In the third step, the degradation feature sequences,
standardized using Variational Mode Decomposition (VMD),
are decomposed into multiple components, each with a limited
bandwidth and a unique central frequency.
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FIGURE 5
VMD-LSTM-SVR modeling flowchart.

FIGURE 6
Dataset partition ratio.

In the fourth step, a hybrid LSTM-SVR predictive model is
constructed for each decomposed component. Since the LSTM and
SVR models operate in parallel, their respective parameters are
optimized independently.

In the fifth step, the weights of the hybrid model are optimized
based on the principle of minimizing the sum of squared prediction
errors (SSPE), expressed mathematically as in Equation 8:

{{{
{{{
{

min
N

∑
t=1
(yt − β1 ̂yLSTM,t − β2 ̂ySVR,t)

2

s.t.β1 + β2 = 1 (β1,β2 ≥ 0)

(8)

where β1 and β2 represent the predictive weights assigned to the
LSTM and SVR models, respectively. The predicted output ̂yt of the
hybrid model at time t is calculated as in Equation 9:

̂yt = β1 ̂yLSTM,t + β2 ̂ySVR,t (9)

In the sixth step, the LSTM-SVR predictive results for all
decomposed components are aggregated, and inverse normalization
is applied to obtain the final forecasted landslide displacement time
series. The predictive performance is then evaluated by comparing
the forecasted series with the ground truth (actual displacement
data) on the testing set.
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TABLE 1 Central frequencies for different numbers of VMD components.

k ωk γ

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

2 1.28 4.54 4.39

3 2.53 8.69 25.68 5.86

4 0.25 3.82 9.75 13.28 5.09

5 0.24 3.67 4.28 10.39 13.57 4.24

6 0.08 2.28 4.39 8.45 10.78 16.89 3.39

3.3 VMD decomposition

Variational Mode Decomposition (VMD) requires prior
specification of the number of decomposed components (Zhu et al.,
2025). An excessively high number of components risks introducing
modal aliasing and noise interference, while an insufficient number
may fail to fully decompose the landslide displacement sequence,
thereby hindering the extraction of meaningful information. Thus,
an optimal number of VMD components must be determined.
This study leverages the property that VMD components possess
unique central frequencies, which progressively converge as
the number of components increases, to guide the selection of
the component count. Table 1 presents the central frequencies
of VMD components for K = 2 to 6, where γ quantifies the
distinctness (or separation) of the components under different
values of K.

γ can be expressed as in Equation 10:

γ = 1
k− 1

k−1

∑
k=1
|ωk+1 −ωk| (10)

A higher value of γ indicates greater distinctness among the
decomposed components. As shown in Table 1, γ peaks when K =
3 and gradually stabilizes around 0.0339 as K increases to 6. For
example, when K = 6, the differences between the components are
minimal and significantly smaller than the disparities observed at
K = 3. Consequently, K = 3 is determined as the optimal number
of components for decomposition. The zero-crossing rate (ZCR),
defined as the ratio of zero-crossings to the sequence length, is
used to distinguish high-frequency and low-frequency components
at K = 3. Empirically, a ZCR threshold of 5% is applied to classify
components as either high-frequency or low-frequency. The ZCR
values for Components 1–3 are 0%, 5.98%, and 16.43%, respectively,
clearly identifying Component 1 as low-frequency and Components
2–3 as high-frequency. Low-frequency components capture the
overall trend of the data, while high-frequency components
reflect short-term fluctuations. Thus, by applying VMD to the
original frequency-aliased data, the prediction task is simplified
into forecasting the trend and fluctuation sequences separately,
enabling the model to better capture underlying data patterns.
The IMF1 component can be regarded as reflecting a long-term
deformation trend influenced by internal control factors such as the
landform, geological structure, etc., of the landslide itself—that is,

TABLE 2 Model performance comparison.

Model RMSE R2

SVR 0.0557 0.2321

LSTM 0.0526 0.3004

LSTM-SVR 0.0518 0.3061

VMD-SVR 0.0307 0.6312

VMD-LSTM 0.0418 0.4763

VMD-SVR-LSTM 0.0304 0.6412

the trend displacement. The IMF2 component can be considered
to represent periodic fluctuations in landslide displacement caused
by cyclical external influencing factors like rainfall and reservoir
water level fluctuations—that is, the periodic displacement. The
IMF3 component is typically induced by sudden, short-term
influencing factors, including random factors such as human
activities and microseisms. This type of displacement manifests
as relatively irregular fluctuations in the time series—that is, the
random displacement.

Model ablation experiments in data-driven modeling involve
systematically removing certain components or factors to
assess their impact on the overall model performance. To
evaluate the effectiveness of the proposed model, comparative
performance analyses were conducted across six models: SVR,
LSTM, LSTM-SVR, VMD-SVR, VMD-LSTM, and VMD-
LSTM-SVR. The experimental results are summarized in
Table 2.

When comparing the three models (SVR, LSTM, and LSTM-
SVR) without VMD integration, LSTM demonstrates superior
feature extraction capabilities for time-series data compared to
SVR, which does not inherently account for temporal dependencies.
By combining LSTM and SVR in a weighted ensemble (LSTM-
SVR), the strengths of both models are synergized, leading
to improved predictive performance. After incorporating VMD,
all models exhibit substantial performance enhancements, with
RMSE values dropping from 0.05 to the range of 0.03–0.04.
Notably, the R2 score for the VMD-LSTM-SVR model surpasses
0.6, indicating strong alignment between predicted and actual
trends. At this stage, the VMD-SVR and VMD-LSTM-SVR
models outperform the VMD-LSTMmodel significantly, suggesting
that VMD enables SVR to leverage its nonlinear regression
strengths effectively for time-series forecasting. Figure 7 illustrates
the ablation experiment results, highlighting stark differences in
predictive performance between models with and without VMD.
This disparity arises because VMD decomposes the original
sequence into trend andfluctuation components, which aremodeled
separately and then aggregated. Consequently, VMD-enhanced
models capture both the overarching trends (via trend component
learning) and fine-grained fluctuations (via fluctuation component
learning), yielding substantial performance improvements across all
tested architectures.
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FIGURE 7
Comparison of predictive performance in ablation experiments.

The improvement effects are illustrated in Figure 8. Compared
to the single LSTM and SVR models, the LSTM-SVR model
demonstrates a reduced residual range and a residual mean
closer to 0, indicating improved prediction performance. After
applying VMD to the original sequence, the residual range is
significantly narrowed down to −0.04 to 0.1. The quartiles in
the boxplot and the residual mean also notably approach 0.
Therefore, the VMD-LSTM-SVR model not only captures the
underlying trend effectively but also exhibits smaller prediction

errors and a narrower residual range, resulting in more robust
prediction outcomes.

3.4 Algorithm experiment comparison

Both EMD (Empirical Mode Decomposition) and EEMD
(Ensemble Empirical Mode Decomposition) are algorithms for
sequence decomposition, sharing a modeling and prediction
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FIGURE 8
Boxplot of prediction residuals for different models.

TABLE 3 Comparison of model predictive performance.

Model RMSE R2

EMD-LSTM-SVR 0.0534 0.3658

EEMD-LSTM-SVR 0.0473 0.7926

VMD-SVR-LSTM 0.0328 0.8487

workflow similar to VMD (Variational Mode Decomposition).
However, they fundamentally differ from VMD by relying on
envelope and extremum-based principles, which do not inherently
guarantee modal or spectral separation between decomposed
components. This limitation often leads to modal/frequency
aliasing, hindering improvements in model predictive performance.
To effectively demonstrate the advantages of the VMD algorithm,
this study establishes comparative models EMD-LSTM-SVR and
EEMD-LSTM-SVR for performance evaluation. The experimental
results are summarized in Table 3.

A comparative analysis of Tables 2, 3 reveals that, compared
to the R2 value of 0.3061 achieved by the LSTM-SVR model in
the ablation experiments, the LSTM-SVR models integrated with
sequence decomposition algorithms (e.g., EMD, EEMD, VMD)
demonstratevaryingdegreesof improvement inR2.Thisenhancement
stems from the inherent properties of sequence decomposition
algorithms,which isolate components representing trend sequences to
varying extents, thereby boosting predictive performance. However,
theremainingcomponentscapturingfluctuationsequencescontribute
differentially to themodel’spredictivecapacity.For instance, theEMD-
LSTM-SVR model shows no improvement or even a slight decline in
RMSE compared to the standalone LSTM-SVR, suggesting that the
fluctuation components extracted by EMD may not provide as much
predictive value in this context.

4 Discussions

This paper has conducted a series of studies on the Baishuihe
landslide disaster, achieving some progress in fields such as

deformation and failure monitoring of landslide disasters and time
series prediction of landslide displacements. However, due to the
author’s limited expertise and the short timeframe during the paper’s
preparation, in-depth and meticulous research on many landslide
disaster issues remains lacking, and the depth of research on several
geological hazard issues needs to be enhanced.Therefore, the author
intends to conduct further exploration in the following areas in
future research:

(1) Continuous monitoring of deformation characteristics of
individual landslide disasters using advanced remote sensing
technologies such as INSAR, LIDAR, and others. Although this
paper has employed high-resolution remote sensing imagery
and GPS for monitoring the Baishuihe landslide disaster
and achieved some results, these monitoring techniques have
already been maturely applied in multiple fields. Therefore, it
is necessary to consider other more advanced technological
means for landslide monitoring and improve the temporal
frequency and accuracy of monitoring.

(2) Continuous monitoring of regional landslide deformation
and failure characteristics. This paper has focused on
monitoring the Baishuihe landslide, with a limited monitoring
scope, making it difficult to apply the obtained results
to a broader landslide-affected area. Therefore, in future
research, real-time monitoring of regional landslides can
be considered using INSAR and large-scale high-resolution
imagery.

(3) Further exploration of landslide instability mechanisms and
processes using numerical simulation techniques. This paper
has only analyzed the deformation and failure mechanisms
of landslides based on monitoring data such as surface
deformation, rainfall, and reservoir water level changes,
lacking simulation and tracking of the landslide deformation
and failure processes. Therefore, in future research, various
numerical simulation techniques such as Flac 3D can be
considered to simulate and analyze the instability mechanisms
and processes of landslides.

(4) Improvement of existing landslide displacement prediction
models. For instance, to fully explore the changing patterns
of landslide displacement time series, longer landslide
sequences should be utilized for model training as much
as possible. Predictions of landslide displacement time
series at different scales, such as daily, weekly, and monthly
displacement predictions, can be made according to actual
needs. In-depth research on the mechanisms of landslide
deformation should be conducted to obtain as many
influencing factors of landslide deformation as possible,
such as thrust forces and groundwater levels, to enrich the
information content of the models. Additionally, various novel
artificial intelligencemodels, such as deep learning techniques,
VOLTERRA series adaptive models, and semi-supervised
regression models, can be attempted to improve prediction
accuracy by reducing the difficulty in selecting model
parameters.

(5) Acquisition and screening of regional landslide environmental
factors using multiple technical methods. In future research,
more environmental factors, such as slope structure, human
engineering activities, and surface moisture indices, can
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be considered, and variable screening techniques such
as rough set theory can be employed for input variable
selection.

(6) Furthermore, there is a lack of research on regional landslide
risks. Therefore, in future research, the hazard and risk
of landslides in the Three Gorges Reservoir area will
be evaluated.

5 Conclusion

By combining individual predictive models, the resulting
ensemble prediction model can fully leverage the strengths of each
individual model, enhancing prediction accuracy while significantly
improving the applicability of the predictive model. Integrating
predictive models into monitoring and early warning systems is
not only a crucial step in transitioning from theory to application
but also an urgent need in practical engineering. With the
goal of accurate landslide early warning, this paper delves into
landslide displacement prediction methods starting from predictive
models, providing robust support for geological hazard prevention
and control. The main work and achievements of this paper
are as follows:

(1) A comprehensive review and summary of the current
research status of landslide prediction models were
conducted, aiming to achieve landslide displacement
prediction. The implementation principles and processes of
the VMD (Variational Mode Decomposition) time series
data decomposition method were elaborated. Additionally,
the modeling principles of LSTM (Long Short-Term
Memory) and SVR (Support Vector Regression) models were
thoroughly analyzed.

(2) A displacement feature time series prediction method based
onVMD-LSTM-SVRwas proposed for landslide displacement
prediction. The model decomposes feature time series using
the VMD algorithm to obtain different trend and periodic
displacements, thereby more accurately extracting time series
patterns and reducing the difficulty of displacement prediction.
Subsequently, a combined model is established by leveraging
the time series feature extraction advantages of the LSTM
network and the strong nonlinear problem-solving capabilities
of the SVR, thereby enhancing prediction accuracy.

(3) Thenumber of components extracted byVMDwas considered,
and ablation experiments were conducted to compare the
model’s predictive performance. This paper validated the
effectiveness on a landslide dataset, demonstrating that VMD
outperforms other sequence decomposition algorithms in
effectively decomposing sequences. Establishing a VMD-
LSTM-SVR model for the landslide displacement dataset
resulted in an increase in R2 to 0.8487 and a decrease in
RMSE to 0.0328 compared to other models, thereby more
accurately reflecting the landslide state. However, due to the
lack of relevant devices and experimental equipment, it was
not possible to determine the failure threshold of landslide
displacement in practical use and thus assess the landslide
state. Therefore, how to effectively select failure thresholds and
mine more effective features based on landslide displacement

characteristics will be the primary research issues in the field
of landslide displacement prediction in the future.
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