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Introduction: Frequent cracks, potholes, and other defects, as well as a
decline in the durability of asphalt pavements, are specific manifestations
of the deterioration of road performance caused by asphalt aging. The
compatibility between different oil-source asphalts and green high-viscosity
modifiers critically determines the performance and aging resistance ofmodified
asphalt materials.

Methods: This study systematically investigated three representative oilsource
asphalts (noted as BA-A, BA-B, BA-C) combined with a novel green high-
viscosity modifier to prepare chemically toughened high-performance asphalts
(noted as HP-A, HP-B, HP-C). The research employed comprehensive
analytical methods, including physical property characterization, dynamic
shear rheometry, Fourier transform infrared spectroscopy, and gel permeation
chromatography, to evaluate compatibility mechanisms and aging behavior
under both short-term aging (using thin-film oven test) and long-term (using
pressure aging vessel) aging conditions.

Results: The green highviscosity modifier exhibits optimal compatibility with
BA-C asphalt, displaying elevated softening point and Brookfield viscosity with
superior resistance to shear deformation, making it particularly suitable for
high-temperature applications in high-temperature regions and heavy-duty
traffic pavements. Under short-term aging condition, HP-A asphalt has the
minimal softening point increment of 0.4°C, while HP-C asphalt has the lowest
viscosity aging index of 2.6%. Under long-term aging, HP-C asphalt has the
lowest softening point increment and viscosity aging index of 4.2°C and 6.1%,
respectively, indicating good long-term aging resistance. Molecular analysis
reveals that SBS modified asphalt and HP-B asphalt show increased molecular
weight distribution ratios due to oxidative crosslinking, whereas HP-A and HP-
C asphalts show decreased ratios due to chain segment fracture. HP-B asphalt
has the highest sulfoxide aging index increase due to elevated sulfur content,
while HP-C asphalt shows superior antioxidant properties with lower carbonyl
and sulfoxide aging indices, 43.2% and 36.6%, respectively, attributed to its high
aromatic content. And proposed using two crack characteristic parameters,
fractal dimension and crack rate, to describe the extension characteristics of
cracks. The results indicate that the road surface is more prone to cracking
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in negative zero temperature environments, with the number and rate of
cracks generated at −15°C being much higher than the other three low-
temperature environments. Compared to the 15°C environment, the crack rate
increased by 18.26%.

Discussion: It has been confirmed that BA-C asphalt has excellent compatibility
with green high-viscosity modifiers, which are ideal for use in high-temperature
regions and heavy-duty traffic pavements, offering significant improvements in
pavement high-temperature stability and long-term durability.

KEYWORDS

chemically toughened asphalt, multi-source asphalt, compatibility, aging behavior,
rheological properties, functional group index

1 Introduction

Asphalt, as a widely used binder in pavement materials for road
engineering, directly influences pavement service life through its
durability characteristics (Office et al., 2021; Zhang et al., 2020).
During service conditions, asphalt materials experience aging due
to the combined effects of temperature variations, oxygen exposure,
ultraviolet radiation, and other environmental factors. This aging
process leads to significant alterations in physical properties,
rheological behavior, and chemical composition, ultimately causing
pavement distresses such as cracking and rutting (Chen et al., 2021;
Wang et al., 2017; Duan et al., 2024) and resulting in substantial
economic losses (Caputo et al., 2020).

To enhance asphalt durability, researchers have developed
various modification technologies aimed at improving anti-aging
performance. Among these approaches, chemical toughening
modification technology has emerged as a research focus
in recent years due to its capability to achieve molecular-
level modifications through chemical bonding mechanisms
(Wang et al., 2023; Zhang H. et al., 2021). Current research on
anti-aging properties of modified asphalt, both domestically and
internationally, primarily concentrates on three main approaches:
polymer modification, nanomaterial composites, and antioxidant
incorporation.

Recent investigations have demonstrated significant advances
in asphalt modification technologies for enhancing pavement
performance and durability. Chen et al. (2021) conducted
comprehensive studies on styrene-butadiene-styrene (SBS)
modified asphalt, demonstrating that this polymer modifier
substantially improves both high-temperature stability and low-
temperature crack resistance through creating a three-dimensional
network structure within the asphalt matrix. Similarly, Zhao
and Wang (2022) explored nano-SiO2 additives, establishing that
these particles possess exceptional surface activity and adsorption
capabilities, enabling effective capture of volatile molecules and
significantly retarding the aging process by preventing oxidative
reactions. Furthermore, Hu et al. (2017) conducted systematic
research on phenolic antioxidants, revealing that these compounds
function as radical scavengers, effectively neutralizing free radicals
and interrupting chain reactions responsible for asphalt aging by
donating hydrogen atoms to peroxy radicals.

However, existing research predominantly employs single oil
source asphalt as the base material, overlooking compatibility

differences between asphalts from different oil sources and their
respective modifiers. This limitation makes it challenging to meet
the diverse climate conditions and traffic load requirements of
different regions (Zhao et al., 2021). The variation in asphalt oil
sources leads to significant differences in chemical composition
and colloidal structure, resulting in varying compatibility with
modifiers and directly affecting final modification effectiveness and
anti-aging performance (Chen et al., 2022; Wang et al., 2023).
Furthermore, systematic research on environmentally friendly
chemical toughening modification technology remains insufficient
under current green and low-carbon development trends (Xu et al.,
2022; Li et al., 2024; Xing et al., 2020; Zhu et al., 2019).

To address these research gaps, this study employed SBS
modified asphalt as a control and utilized three different oil
source base asphalts of the same 70# grade (BA-A, BA-B, BA-
C) in combination with a self-developed green high-viscosity
asphalt modifier to prepare three chemically toughened high-
performance asphalts (designated as HP-A, HP-B, HP-C) under
identical process conditions.The research objectives were to explore
inter-component interaction characteristics and compatibility, as
well as to investigate physical properties, rheological properties,
molecular weight distribution, and chemical functional group aging
behavior after short-term aging (TFOT) and long-term aging
(PAV) tests.

2 Materials and methods

2.1 Experimental materials

2.1.1 Modifier
The green high-viscosity asphalt modifier used in this study was

a self-developed environmentally friendly modification material.
The modifier was prepared through a two-step method: first,
nano-organic montmorillonite, waste rubber-plastic mixture, and
aromatic oil were sequentially fed into a twin-screw extruder at a
ratio of 1:4:1, melt-mixed and extruded, then pelletized to produce
master batch with particle size of 10–15 mesh; then this master
batch was mixed with waste rubber mixture and aromatic oil
at a ratio of 1:9:1 and fed again into the twin-screw extruder
for secondary melt mixing and extrusion to produce the final
product. During processing, the extruder temperature distribution
was: feeding section 170°C, seven middle sections all at 175°C,
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TABLE 1 Basic performance indicators of different oil source base asphalts.

Performance index Unit BA-A BA-B BA-C Specification requirement

Penetration (25°C) 0.1 mm 79.2 65.1 62.8 60–80

Softening point °C 46.6 49.5 56.5 ≥46

Ductility (5°C) cm 9 46 35.6 —

Four-component ratio

Saturates/% 32.5 28.3 25.8 —

Aromatics/% 35.8 38.9 41.2 —

Resins/% 23.2 24.6 21.7 —

Asphaltenes/% 8.5 8.2 11.3 —

discharge section 170°C, screw speed 120 r/min, pelletizer speed 200
r/min, ensuring sufficient mixing and uniformity of materials. The
basic performance indicators of different oil source base asphalts
are shown in Table 1.

2.1.2 Chemically toughened asphalt
Using SBS modified asphalt (PG76-22) as the control

group, three chemically toughened high-performance asphalts
(HP-A, HP-B, HP-C) were prepared by incorporating a
green high-viscosity modifier into the respective base asphalts
(Wang et al., 2020; Zhang D. et al., 2018).The preparation procedure
was as follows:Thebase asphalts were first heated in an oven at 135°C
for 40 min to achieve complete softening, then transferred to an
electromagnetic heating vessel. Subsequently, 6% (by weight) green
high-viscosity modifier was added to the heated asphalt at 180°C,
followed by 15 min of manual preliminary mixing.Themixture was
then subjected to high-speed shearing (5,000 rpm, 30 min at 180°C)
to ensure thorough dispersion, followed by low-speed mixing
(300 rpm, 15 min at 180°C) to achieve homogeneous distribution of
the modifier. Finally, the modified asphalt was developed in a sealed
oven at 180°C for 70 min to ensure stable modification effects and
complete chemical interaction.

2.2 Performance testing methods

2.2.1 Asphalt aging acceleration simulation
methods

To comprehensively simulate asphalt aging behavior under
actual service conditions, both short-term and long-term
aging tests were conducted on the four asphalt samples
(Chen et al., 2021; Zhang H. et al., 2018). Short-term aging was
performed using the thin film oven test (TFOT) following the
procedure specified in Test Methods of Asphalt and Asphalt Mixtures
for Highway Engineering (JTG E20-2011) T0609, where samples
were aged at 163°C for 5 h to simulate the aging that occurs during
hot mix asphalt production and construction. Long-term aging was
conducted using the pressure aging vessel test (PAV) in accordance
with JTG E20-2011 T0630, where TFOT-aged samples were further
aged at 100°C under 2.1 MPa pressure for 20 h to simulate the

oxidative aging experienced by asphalt pavements during extended
service life.

2.2.2 Asphalt physical property testing
The physical properties of chemically toughened high-

performance asphalts from different oil sources were evaluated
using softening point and Brookfield viscosity as key performance
indicators (Han et al., 2020; Tan et al., 2012). The softening
point was determined using the ring-and-ball method in
accordance with JTG E20-2011 T0606. Brookfield viscosity
measurements were performed following JTG E20-2011 T0625
using a No. 21 spindle at a rotation speed of 20 rpm, with torque
maintained within the range of 10%–98% and test temperature
controlled at 80°C.

2.2.3 Asphalt rheological property testing
According to JTG E20-2011 T0628, dynamic shear rheometer

(DSR) was used to determine asphalt complex modulus (G∗)
and phase angle δ and calculate rutting factor (G∗/sinδ)
(Tan et al., 2020; Vestena et al., 2021). Test conditions were:
temperature range 46°C∼88°C, 6°C intervals, temperature sweep
plate diameter 25 mm, gap 1 mm.

2.2.4 Asphalt microscopic analysis
Fourier transform infrared spectroscopy (FT-IR) was employed

to analyze the chemical structure of asphalt at the molecular level
(Zhu et al., 2018; Zhang S. et al., 2021). The technique was used to
identify functional group positions and monitor intensity variations
in characteristic peaks, with particular focus on the formation
and transformation of oxygen-containing functional groups such as
carbonyl and sulfoxide groups. Spectral data were collected using a
resolution of 4 cm−1 over the wavenumber range of 400–4,000 cm−1

with 64 scans per measurement.

2.2.5 Asphalt aging behavior evaluation
2.2.5.1 Physical property aging behavior

This study used softening point increment (ISP) and viscosity
aging index (VAI) to characterize physical property aging behavior
of asphalt samples. Specifically, softening point (ring and ball
method) and Brookfield rotational viscosity (80°C) of aged asphalt
samples (Zhang D. et al., 2018; Zhao et al., 2021) were measured,
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then ISP and VAI of asphalt at corresponding aging stages
were calculated according to Equations 1, 2. Previous research
(Duan et al., 2025; Wang et al., 2020) has indicated that in
the same aging process, if an asphalt sample has relatively low
softening point increment and viscosity aging index, it indicates
smaller hardness growth amplitude and flow property deterioration
degree during aging, with slower physical property aging behavior
development

Isp = |Asp −Bsp| (1)

VAI = |
Va −Vb

Vb
| × 100 (2)

Where: Asp and Bsp are asphalt softening points after and before
aging respectively;Va andVb are asphalt sample viscosity indicators
after and before aging respectively.

2.2.5.2 Rheological property aging behavior
The rutting factor aging index was employed to characterize

the rheological aging behavior of asphalt samples (Li et al., 2021;
Tan et al., 2020). This index was calculated using the rutting
factor (G/sinδ) values obtained at different aging stages according
to Equations 3. Previous studies (Zhang H. et al., 2018) have
demonstrated that lower rutting factor aging indices indicate
superior aging resistance, characterized by slower elastic modulus
growth and reduced viscoelastic property deterioration during the
aging process.

RAI =
(G∗/ sin (δ))a
(G∗/ sin (δ))b

× 100 (3)

Where: RAI is rutting factor aging index; a indicates after aging;
b indicates before aging.

2.2.5.3 Chemical functional group index aging behavior
Carbonyl aging index (CAI) and sulfoxide aging index (SAI)

were used to characterize chemical functional group index aging
behavior of asphalt (Zhu et al., 2018; Zhang S. et al., 2021): first,
Fourier transform infrared spectroscopy (FTIR) was used to test
infrared light absorption characteristic curves of aged asphalt,
then CAI and SAI at corresponding aging stages were calculated
according to Equations 4, 5. Previous research (Wang et al., 2021;
Zhang S. et al., 2021; Zhu et al., 2018) indicated that in the same
aging process, if an asphalt sample has lower CAI and SAI, it
indicates fewer carbonyl and sulfoxide functional group aging
products generated during aging, with slower chemical functional
group index aging behavior development.

CAI =
AC=O1733

∑AC−H1453
(4)

SAI =
AS=O1032

∑AC−H1453
(5)

Where: AC=O1733 is total area of carbonyl peak at 1733 cm−1;
AS=O1032 is total area of sulfoxide peak at 1,032 cm−1; ∑AC−H1453 is
total area of C-H peak at 1,453 cm−1.

FIGURE 1
Softening point and viscosity of modified asphalt.

3 Results and discussion

3.1 Compatibility analysis of multi-source
asphalt with green high-viscosity modifier

3.1.1 Compatibility characteristics in physical
property

The compatibility between asphalts from different oil
sources and green high-viscosity modifiers is a critical factor
determining the performance of modified asphalt (Xing et al.,
2020; Wang et al., 2020). Figure 1 presents a comparative analysis of
softening point and Brookfield viscosity for four modified asphalts.

HP-C asphalt demonstrated exceptional dual-high performance
characteristics, achieving a softening point of 78.2°C and Brookfield
viscosity of 4.85 Pa·s—representing increases of 17.8% and 32.4%,
respectively, compared to SBS asphalt. This superior compatibility
stems from the unique colloidal structure of BA-C asphalt, where
moderate asphaltene content and high resin content provide
an optimal swelling medium for rubber molecules, facilitating
the formation of robust physical-chemical synergistic networks
(Zhu et al., 2019; Zhang D. et al., 2018).

In comparison, HP-A asphalt exhibited moderate performance
with a softening point of 72.1°C and Brookfield viscosity of 3.42 Pa·s.
This intermediate performance is attributed to the relatively high
saturate content in BA-A asphalt, which, while promoting modifier
dispersion, contributes limitedly to high-strength crosslinked
network formation (Chen et al., 2022; Duan et al., 2023). SBS asphalt
displayed a double-valley phenomenon, indicating compatibility
challenges between the green high-viscosity modifier and existing
SBS polymer networks, likely due to competitive crosslinking
reactions that compromise overall modification effectiveness.

From a molecular perspective, the high aromatic content
(∼41.2%) in BA-C asphalt creates an ideal intercalation
environment for nano-montmorillonite within the modifier. The
π-π interactions between aromatic ring structures and rubber
molecular chains significantly enhance interfacial bonding strength
(Caputo et al., 2020; Zhang S. et al., 2021). This molecular-level
synergistic mechanism underlies the exceptional compatibility
observed in HP-C asphalt.

Frontiers in Built Environment 04 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1638263
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Huang et al. 10.3389/fbuil.2025.1638263

FIGURE 2
Rutting factor index of modified asphalt.

3.1.2 Compatibility characteristics in rheological
properties

Figure 2 illustrates the temperature-dependent rutting factor
behavior of four asphalts. All asphalts exhibited decreasing rutting
factors with increasing temperature, consistent with fundamental
rheological principles, though distinct performance differenceswere
evident among the samples (Tan et al., 2020; Li et al., 2021).

At low temperature (46°C),HP-C asphalt demonstrated superior
performance with a rutting factor of 121.24 kPa, significantly
exceeding the other three asphalts and indicating exceptional
resistance to permanent deformation under high-temperature
loading conditions. As temperature increased, the performance gap
among asphalts gradually narrowed, yet distinct behavioral patterns
emerged: HP-A asphalt maintained the lowest rutting factor below
72°C, while above this threshold, SBS asphalt exhibited the most
pronounced decline, reaching only 0.791 kPa at 88°C.

This complex temperature-dependent behavior can be attributed
to several underlying mechanisms. HP-C asphalt, enriched with
asphaltenes and resins, forms stable crosslinked networks with
modifiers (Zhang H. et al., 2018), providing robust initial resistance
to shear deformation. Conversely, as temperature rises, the styrene-
butadiene-styrene triblock copolymer networks in SBS asphalt
become increasingly active, enhancing molecular chain flexibility
andparadoxically improving high-temperature stability (Wang et al.,
2020). HP-A asphalt, potentially containing higher concentrations
of low molecular weight components, becomes more susceptible to
thermal softening, resulting in rapid deterioration of deformation
resistance.These findings further validate the superior compatibility
between green high-viscosity modifiers and HP-C asphalt,
particularly in enhancing high-temperature performance stability.

3.1.3 Storage stability
Figure 3 demonstrates that all four asphalt samples exhibited

minimal softening point differences, with a maximum variation
of only 2.15°C. Importantly, all three modified asphalts satisfied
the regulatory upper limit of 2.5°C, indicating acceptable storage

FIGURE 3
Softening point difference of modified asphalt.

stability (Han et al., 2019; Lesueur et al., 2013). HP-C asphalt
demonstrated superior storage stability with the smallest softening
point difference (1.3°C), followed by HP-B asphalt (1.65°C). SBS
modified asphalt (1.8°C) and HP-A asphalt (2.15°C) showed
comparatively higher variations, though still within acceptable
limits. These performance differences primarily reflect varying
compatibility between base asphalts and modifiers (Chen et al.,
2021). The pre-existing stable polymer network structure in
SBS asphalt facilitates synergistic interactions with green high-
viscosity modifiers, enhancing mixture homogeneity. Similarly,
the high aromatic content in HP-C asphalt promotes favorable
compatibility with rubber components in the modifiers. Conversely,
the elevated saturated hydrocarbon content in HP-A asphalt reduces
modifier affinity, potentially leading to localized phase separation.
Despite these variations, all four asphalts met engineering
application standards for storage stability, demonstrating the
excellent universality of green high-viscosity modifiers and their
ability to form stable composite systems across different oil
source asphalts.

3.2 Physical property aging behavior

3.2.1 Softening point increment
Softening point increment serves as a sensitive indicator of

molecular structure changes in asphalt (Zhang D. et al., 2018;
Chen et al., 2021). Table 2 and Figure 4 reveal distinct hardening
patterns among different modified asphalts during aging. During
short-term aging, HP-A asphalt exhibited the minimal softening
point increment (0.4°C), attributed to its unique compositional
characteristics. The high resin content in BA-A asphalt primarily
undergoes light component volatilization under TFOT conditions,
with minimal changes in intermolecular association, resulting in
limited hardening effects.

In contrast, HP-C asphalt demonstrated a substantial softening
point increment of 6.0°C during short-term aging, indicating
pronounced oxidation reactions at 163°C. The high aromatic
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TABLE 2 Softening point increment (ISP) of different oil source modified asphalts.

ISP

Asphalt typemets
HP-A HP-B HP-C SBS modified asphalt

Short-term aging 0.4 5 6 2.8

Long-term aging 10.1 7.1 4.2 5.8

FIGURE 4
Softening points of different asphalt and their softening point increments (ISP). (a) Softening points (b) Softening point increment.

content in BA-C asphalt readily forms condensed aromatic
hydrocarbons and quinone compounds under high-temperature
oxidative conditions, intensifying intermolecular π-π interactions
and manifesting macroscopically as significant softening point
elevation.

Long-termaging revealed a reversed performance pattern.HP-C
asphalt showed only a 4.2°C softening point increment, substantially
lower than HP-A asphalt’s 10.1°C increase. This performance
reversal reflects fundamentally different aging mechanisms: under
prolonged aging conditions, resin components in HP-A asphalt
undergo extensive oxidation, generating substantial asphaltenes
and causing dramatic molecular weight increases. Conversely,
HP-C asphalt benefits from the natural antioxidant properties of
aromatics, resulting in slower oxidation rates, while antioxidant
components in the modifiers provide synergistic protection
(Zhang S. et al., 2021).

3.2.2 Viscosity aging index
The viscosity aging index provides a direct measure of asphalt

flow property deterioration during aging (Zhang H. et al., 2018;
Amini and Hayati, 2020). Data presented in Figure 5 and Table 3
demonstrate that SBS asphalt exhibited the most severe viscosity
increase, with an aging index reaching 103.8% after long-term
aging. This dramatic deterioration results from thermally-induced
crosslinking of SBS polymer chains under prolonged oxidative
conditions, forming high-molecular-weight three-dimensional

gel networks that substantially increase system viscosity and
compromise flow characteristics.

HP-C asphalt demonstrated superior aging resistance,
maintaining the lowest viscosity aging indices throughout the
aging process at 2.6% and 6.1% for short-term and long-term
aging, respectively. This exceptional anti-aging performance
stems from synergistic protection mechanisms operating at
multiple levels (Zhang S. et al., 2021; Xu et al., 2022): the
abundant aromatic compounds in BA-C asphalt function as
natural radical scavengers, effectively terminating oxidative
chain reactions; nano-montmorillonite platelets within the
modifier create physical barrier networks that restrict oxygen
diffusion into the asphalt matrix; additionally, carbon black
and other particulate fillers from recycled rubber provide UV
radiation shielding, further retarding photo-oxidative degradation
processes.

HP-B asphalt exhibited intermediate aging behavior with
viscosity aging indices of 3.9% and 8.6% for short-term and
long-term aging, respectively. The moderate resin content in
BA-B asphalt leads to formation of intermediate-molecular-
weight oxidation products during aging, primarily consisting of
resin-asphaltene associates that exert comparatively mild effects
on bulk viscosity properties. This intermediate performance
reflects the balanced compositional characteristics of BA-B
asphalt, which provides reasonable aging resistance without
the enhanced protection mechanisms present in HP-C
systems.
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FIGURE 5
Viscosity of different types of asphalt and their viscosity aging index VAI. (a) Viscosity (b) Viscosity aging index.

TABLE 3 Viscosity aging index (VAI) of different asphalts.

ISP

Asphalt typemets
HP-A HP-B HP-C SBS modified asphalt

Short-term aging 37.2% 3.9% 2.6% 23.8%

Long-term aging 50.2% 8.9% 6.1% 103.8%

3.3 Rheological property aging behavior

Figure 6 showed temperature dependence of rutting factors
for four modified asphalts at different aging stages (Li et al.,
2021; Tan et al., 2020). Aging processes significantly changed
asphalt rheological characteristics, with all samples showing
different degrees of rutting factor increases, but enhancement
mechanisms were essentially different. HP-C asphalt rutting factor
increased significantly after short-term aging, rising from 45.3 kPa
to 67.8 kPa at 64°C, an increase of 49.7%. This enhancement
was mainly attributed to polar groups generated by oxidation
reactions enhancing intermolecular interactions, improving
material elastic modulus (Zhang H. et al., 2018). After long-term
aging, rutting factor further increased to 78.2 kPa, but growth
rate slowed (15.3%), indicating oxidation reactions gradually
approached equilibrium.

SBS asphalt showed different aging characteristics (Wang et al.,
2021). After short-term aging, its rutting factor increased
significantly in low-temperature regions, but high-temperature
performance improvement was limited. This was related to
SBS molecular chain oxidation mechanisms: butadiene chain
double bonds first underwent oxidation, generating crosslinking
points, enhancing low-temperature elasticity; but styrene hard
segment softening still dominated at high temperatures, limiting
high-temperature performance improvement.

HP-A asphalt showed rutting factor decrease during initial
short-term aging, which was temporary softening caused by rapid
volatilization of light components. As aging deepened, oxidation

products gradually accumulated, and rutting factor began to recover
and exceed unaged levels.

3.4 Chemical functional group index aging
behavior

3.4.1 Carbonyl aging index
Figure 7 illustrates the temperature-dependent rutting factor

evolution of four modified asphalts across different aging stages
(Li et al., 2021; Tan et al., 2020). Aging processes substantially
alter asphalt rheological properties, with all samples exhibiting
varying degrees of rutting factor enhancement, though through
fundamentally different mechanisms. HP-C asphalt demonstrated
pronounced rutting factor increases following short-term aging,
rising from 45.3 kPa to 67.8 kPa at 64°C—representing a
49.7% enhancement. This improvement stems from oxidative
formation of polar functional groups (carbonyls, sulfoxides) that
strengthen intermolecular associations and enhance the material’s
elastic modulus (Zhang H. et al., 2018). After long-term aging,
the rutting factor further increased to 78.2 kPa, though at a
reduced rate (15.3%), suggesting that oxidative reactions approach
thermodynamic equilibrium under prolonged exposure.

SBS asphalt exhibited distinctly different aging
characteristics (Wang et al., 2021). Following short-term aging,
significant rutting factor increases occurred in the low-temperature
regime, while high-temperature performance improvements
remained modest. This selective enhancement reflects the sequential
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FIGURE 6
Rutting factor of different types of asphalt and their aging index RAI. (a) Short-term aging (b) Long-term aging.

FIGURE 7
Carbonyl aging index of different asphalts.

oxidation of SBS molecular architecture: preferential oxidation of
butadiene segment double bonds initially generates crosslinking sites
thatenhancelow-temperatureelasticrecovery,whilethermalsoftening
of styrene hard domains continues to dominate high-temperature
response, limiting overall high-temperature performance gains.

HP-A asphalt displayed unique initial behavior, with rutting
factors actually decreasing during early short-term aging—a
phenomenon attributed to temporary softening caused by rapid
volatilization of maltene fractions. As aging progressed, the
accumulation of oxidative products (primarily asphaltenes formed
from resin oxidation) gradually restored and eventually elevated
rutting factors above unaged baseline levels. This biphasic response
reflects the competing effects of volatile loss versus oxidative
hardening that characterize HP-A asphalt’s aging progression.

3.4.2 Sulfoxide aging index
The sulfoxide aging index results presented in Figure 8 provide

critical insights into sulfur compound oxidation pathways within

FIGURE 8
Sulfoxide aging index of different asphalts.

asphalt matrices. Sulfoxide groups (S=O) represent key intermediate
products in the oxidative transformation of sulfur-containing
compounds, with their concentration changes serving as reliable
indicators of oxidative degradation in sulfur-bearing asphalt
constituents (Duan et al., 2025). HP-B asphalt exhibited the
most pronounced sulfoxide aging index increase at 29.28%,
substantially exceeding other samples. This elevated oxidative
susceptibility directly correlates with the inherently high sulfur
content characteristic of BA-B crude oil source, providing abundant
reactive substrates for oxidative transformation.

HP-A asphalt demonstrated a more moderate sulfoxide
increase of 22.78%, consistent with its relatively lower sulfur
content profile. SBS asphalt presented the most dramatic sulfoxide
accumulation, reaching 57.41%, attributed to the oxidative
degradation mechanisms specific to styrene-butadiene-styrene
copolymers. The preferential oxidative cleavage of unsaturated
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butadiene segments generates sulfur-containing radical species
that accelerate sulfoxide formation, while the comparative thermal
stability of styrene domains provides only partial mitigation of this
oxidative cascade.

HP-C asphalt demonstrated superior oxidative stability with
the minimal sulfoxide aging index increase of only 18.5%,
further validating its exceptional anti-aging characteristics. The
abundant phenolic and aromatic compounds inherent in BA-
C asphalt function as effective radical scavengers, intercepting
sulfur-derived free radicals generated during oxidative processes
and effectively terminating propagating chain reactions. This
natural antioxidant network provides comprehensive protection
against sulfur compound oxidation, maintaining chemical stability
throughout extended aging exposure.

4 Conclusion

In this paper, the compatibility between three different
chemically toughened high-performance asphalt components and
SBS-modified asphalt and the effect on the aging behavior were
investigated. The main conclusions are as follows:

• HP-C asphalt demonstrates exceptional dual-high
characteristics with a softening point of 78.2°C and Brookfield
viscosity of 4.85 Pa·s, representing 17.8% and 32.4%
improvements over SBS modified asphalt respectively. It
exhibits the highest rutting factor, strongest shear deformation
resistance, and optimal storage stability, making it ideal for
high-temperature regions and heavy-duty traffic applications.

• HP-C asphalt shows superior long-term aging performance
with the lowest softening point increment (4.2°C) and viscosity
aging index (6.1%), while SBS modified asphalt exhibits poor
long-term resistance with a viscosity aging index of 103.8%.The
abundant aromatics inHP-C asphalt act as natural antioxidants,
effectively retarding oxidation processes.

• Different asphalts exhibit distinct temperature responses during
aging. HP-C asphalt shows increased rutting factor aging above
76°C, SBSmodified asphalt demonstrates improved rheological
properties above 70°C due to molecular network restructuring,
while HP-A and HP-B maintain stable performance across
high-temperature ranges.

• SBSmodified andHP-B asphalts undergo oxidative crosslinking
to form high molecular weight gel networks, while HP-A and
HP-C asphalts primarily experience chain scission reactions.
FTIR analysis confirms HP-B shows the highest sulfoxide aging
index (29.3%) due to sulfur content, while HP-C demonstrates
excellent antioxidant properties with low carbonyl (0.098) and
sulfoxide (18.5%) aging indices.

5 Future research recommendation

Future research is recommend to focus on four key areas:
analyzing the interaction mechanisms between key oil source
components (aromatics, sulfur content) and modifiers to
develop quantitative composition-structure-performance models;
expanding validation across diverse climatic scenarios to assess

system universality; conducting long-term field monitoring to
verify laboratory-field aging correlations; and optimizing modifiers
to enhance performance under extreme conditions and promote
engineering applications.
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