
TYPE Brief Research Report
PUBLISHED 11 August 2025
DOI 10.3389/fbuil.2025.1651919

OPEN ACCESS

EDITED BY

Yu Qian,
University of South Carolina, United States

REVIEWED BY

Lin-Shuang Zhao,
Shantou University, China
Feng Guo,
Shandong University, China

*CORRESPONDENCE

Hui Wang,
hwang12@udayton.edu

RECEIVED 22 June 2025
ACCEPTED 25 July 2025
PUBLISHED 11 August 2025

CITATION

Wei X and Wang H (2025) Stochastic
stratigraphic simulation using image warping
from sparse data.
Front. Built Environ. 11:1651919.
doi: 10.3389/fbuil.2025.1651919

COPYRIGHT

© 2025 Wei and Wang. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in
other forums is permitted, provided the
original author(s) and the copyright owner(s)
are credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Stochastic stratigraphic
simulation using image warping
from sparse data

Xingxing Wei1,2 and Hui Wang3*
1School of Smart Construction and Energy Engineering, Hunan Institute of Engineering, Xiangtan,
China, 2Hunan Provincial Engineering Research Center for Disaster and Reinforcement of Disease Risk
Engineering Structures, Hunan Institute of Engineering, Xiangtan, China, 3Department of Civil and
Environmental Engineering, University of Dayton, Dayton, China

Quantifying stratigraphic uncertainty is crucial for reliable risk assessment
and informed decision-making in geotechnical and geological engineering.
However, accurately modeling complex stratigraphy—especially in
heterogeneous settings influenced by irregular deposition—remains a challenge,
particularly with limited site data. This study introduces a novel solution,
modeling stratigraphy as a categorical random field and using image warping
to transform non-stationary random fields into stationary ones, facilitating fast
and realistic stochastic simulation. The method demonstrates high accuracy
and computational efficiency in capturing complex stratigraphic profiles with
quantified uncertainty. Validation through synthetic and real-world cases
confirms the approach’s reliability and applicability.
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1 Introduction

Ensuring safety in the design and construction of underground structures and
geosystems remains a major challenge, largely due to limited stratigraphic data (Wang et al.,
2018). Inferring stratigraphic information and accurately quantifying its uncertainty are
essential, as inherent stratigraphic variability greatly impacts the performance of geosystems
(Zhang et al., 2022). Despite its importance, obtaining complete stratigraphic information
at a site is practically unfeasible due to limitations in site exploration data (Shi and Wang,
2023). The lack of stratigraphic data increases the risk of incidents during construction
due to unexpected geological conditions (Ioannou, 1988). Understanding stratigraphic
uncertainty and its impact on the design and construction of geosystems remains a persistent
challenge (Wang et al., 2018).

Quantifying stratigraphic uncertainty, particularly in 3D subsurface modeling,
remains an emerging field. Various stochastic modeling frameworks address this
challenge. For cone penetration testing (CPT) data, methods like CPT-based
modeling using the Robertson chart (Robertson, 1990) and Bayesian compressive
sampling (Wang and Zhao, 2017) show promise. For borehole log data, techniques
such as coupled Markov chain (CMC) models (Qi et al., 2016; Zhang et al.,
2022), and IC-XGBoost (Shi and Wang, 2023) are used. However, these methods
have certain limitations. Classical CMC models, relying on vertical and horizontal
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transition probabilitymatrices, may produce inaccurate soil profiles,
requiring mitigation (Li et al., 2019). IC-XGBoost depend on
training images tied to specific engineering contexts, posing
challenges with limited prior data. Stochastic stratigraphicmodeling
continues to be a dynamic research area in geotechnical engineering
and engineering geology.

Recent advancements in Markov random field (MRF)-based
stochastic simulation offer a robust framework for capturing spatial
constraints, effectively modeling the anisotropy and heterogeneity
of stratigraphic formations (Wei and Wang, 2022). Consequently,
MRF models have gained prominence in addressing stratigraphic
uncertainty. However, existing implementations (Gong et al., 2020;
Li et al., 2016; Wang et al., 2017) often face challenges, such
as subjective parameter definition and unrealistic soil profile
generation. While the innovative MRF model by Wei and Wang
(2022) addresses some limitations, it struggles with non-stationary
spatial heterogeneity, such as tectonically distorted or irregularly
deposited strata.

This study introduces a novel approach integrating image
warping with an advanced stochastic stratigraphic simulationmodel
to address challenges in modeling non-stationary stratigraphic
fields. The image warping technique, using thin plate splines,
transforms complex non-stationary fields into stationary ones. An
in-house stochastic model, combining the MRF approach with a
discriminant adaptive nearest neighbor-based k-harmonic mean
distance (DANN-KHMD) classifier (Wei and Wang, 2022) in a
Bayesian framework, is then applied. This enhances stratigraphic
uncertainty estimation from sparse borehole data, improving the
robustness and accuracy of MRF-based methods. The approach
excels in handling complex non-stationary stratigraphy with limited
data, offering two key benefits: simplifying non-stationary fields into
stationary ones and enabling unsupervised sampling and updating
of stratigraphic configurations.

2 Methods

The proposed model consists of four components: a)
Markov random field, b) Bayesian machine learning, c)
unsupervised classifier, and d) image warping technique. In our
previous work (Wei and Wang, 2022), a model for stationary fields
was developed using components a), b), and c). In this work, new
component d) is introduced and integrated, allowing the model to
handle non-stationary categorical random fields.

2.1 Review of previous work

2.1.1 Markov random field
The domain of a two-dimensional stratigraphic profile can

be discretized into pixels through a uniform square lattice. An
undirected graph, derived from the lattice grid, can facilitate the
construction of an MRF. The joint probability of soil types at all
lattice grid points P(x) can be expressed by Equation 1:

P(x) =
exp (−U(x)/T)

∑
x∈Ω

exp (−U(x)/T)
(1)

in which, U(x) is the energy of the soil type configuration x =
{xi|i ∈ S,xi ∈ L}, in which xi, S = {1,2,3, ..., s} and L = {1,2,3, ..., l}
represent the grid points and all soil types, respectively. Ω =
{x = {xi}|i ∈ S,xi ∈ L } is a configuration space that contains all
possible soil profiles. The symbol T can be straightforwardly
configured as a constant unit (Geman and Geman, 1984). Locally,
the conditional probability can be expressed as the following
Equation 2:

P(xi|x∂i) =
P(xi,x∂i)

∑
xi′∈L

P(xi′,x∂i)
=

exp[−U(xi,x∂i)]

∑
xi′∈L

exp[−U(xi′,x∂i)]
(2)

whereU(xi,x∂i) is the local energy of the local neighborhood system
∂i, and xi

′ indicates any possible label at pixel i, which loops over L.
The local energyU(xi,x∂i) is characterized by the Potts model using
Equation 3 (Koller and Friedman, 2009):

U(xi,x∂i) = Vi(xi) +∑
j∈∂i

Vi,j(xi,xj) (3)

Within this equation, Vi(xi) represents the potential function
uniquely associated with pixel i. Vi,j(xi,xj) measures the potential
indicating the local contextual constraint between adjacent
pixels using Equation 4:

Vi,j(xi,xj) = {
0 if xi = xj
βd if xi ≠ xj

(4)

Herein, βd ∈ β = {β1,β2,β3,β4} is granularity coefficient,
indicating the contextual constraint in four independent directions.

2.1.2 Bayesian machine learning
All pixels in the modeling domain are categorized into two

groups: a) pixels with known soil type indicating sparse borehole
information xBH, and b) pixels with unknown labels xunknown
elsewhere. Both xunknown and β need to be inferred given xBH.
A Markov Chain Monte Carlo (MCMC) technique is employed
to sample xunknown and β iteratively via two conditional posterior
distributions P(xunknown|xBH,β ) and P(β|xunknown,xBH ).

During the sampling process, the local energy at any pixel
is calculated using Equation 3, based on the current label field.
Equation 2 measures the likelihood for selecting each soil label at
this pixel. Iterations of P(xunknown|xBH,β ) are simulated using a
parallel approach, designated as the chromatic sampler (Wang et al.,
2017). Following updating xunknown, β can be derived from
P(β|xunknown,xBH ) by Equation 5:

Post(β) ∝ Prior(β)L(xunknown,xBH|β) (5)

where Post(β) and Prior(β) are posterior and prior distributions of
β, respectively; L(xunknown,xBH|β ) is the likelihood function of the
simulated soil profile given β as expressed by Equation 6:

L(xunknown,xBH|β) = ∏
xi∈{xunknown,xBH}

P(xi|x∂i ;β)

= ∏
xi∈{xunknown,xBH}

exp[−U(xi,x∂i)]

∑
xi′∈L

exp[−U(xi′,x∂i)]
(6)

Prior(β) is modeled as a multivariate Gaussian distribution,
encompasses a mean vector μ = [μ1,μ2,μ3,μ4] and a diagonal
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covariancematrix∑β = diag(σ
2
1,σ

2
2,σ

2
3,σ

2
4), where μi and σi symbolize

the preliminary estimates and standard deviation of the respective
β. The Metropolis-Hastings (M-H) algorithm (Hastings, 1970) is
employed to implement the MCMC sampling process for updating
β.

2.1.3 DANN-KHMD classifier
The DANN-KHMD classifier is employed to initialize xunknown.

The spatial constraint metric Ψi at pixel i can be evaluated following
the approach proposed by (Hastie and Tibshirani, 1996). Then, the
DANN distance D(j, i) between pixels j and the center pixel i can be
calculated using the local metric Ψi as expressed by Equation 7:

D(j, i) = (vj − vi)
TΨi(vj − vi) (7)

Then, the harmonic mean distance (HMD) is calculated using
the Equation 8 (Pan et al., 2017):

HMD(m)i =
k

∑k
j=1

1
D(j,i)

,xj =m (8)

The HMD is then integrated into the local energy U(xi,x∂i) =

HMD(xi)i + ∑
j∈∂i

Vi,j(xi,xj) and the conditional probability Equation 2

for a local neighborhood system is updated as Equation 9:

P(xi|x∂i) =
exp[−(HMD(xi)i +∑j∈∂i

Vi,j(xi,xj))]

∑
xi′∈L

exp[−(HMD(xi
′)

i +∑j∈∂i
Vi,j(xi′,xj))]

(9)

More details about Markov random field, Bayesian machine
learning and DANN-KHMD classifier are shown in the authors’
previous work (Wei and Wang, 2022).

2.2 Image warping technique

2.2.1 Thin plate spline warping algorithm
This section delineates the methodology for implementing

the image warping technique in the context of stratigraphical
modeling by leveraging a sparse array of control points, denoted
as (xi,yi) and accompanied by their respective displacements,
(Δxi,Δyi). The objective is to derive a transformation mapping,
f:(x,y) → (x′,y′), which facilitates the transition of pixels from the
initial image to those in the deformed or warped image. This
ensures the warped control points, (xi

′,yi
′), align closely with their

intended targets, (xi +Δxi,yi +Δyi), while ensuring the deformation
of adjacent points maintains maximal smoothness. Figure 1a,b
illustrates this concept, where red crosses and blue dots represent
the control points (xi,yi) and their corresponding target points
(xi +Δxi,yi +Δyi), respectively, within the initial image framework.
The subsequent goal is to ascertain a smooth function, capable
of yielding discrete displacements along the X-direction and Y-
direction, thereby facilitating a comprehensive and smoothmapping
of all points from the initial to the warped image.

The Thin Plate Spline (TPS) warping algorithm is selected for
addressing the two-dimensional image warping challenges, given
its proficiency in facilitating smooth interpolation among a set
of control points. TPS methodology interpolates a surface that

seamlessly integrates each control point, implying that a triad of
points would suffice to constitute a flat plane. Conceptually, the
control points serve as positional constraints upon a flexible surface,
where the optimal surface configuration is characterized byminimal
bending. Illustratively, the Δx and Δy displacements between points
(xi
′,yi
′) and (xi,yi) can be visualized as the elevation of a three-

dimensional smooth surface, which is mandatorily constrained to
intersect all six control points, as depicted in Figures 1c,d.

This least bent surface is given by the following Equation 10 (i.e.,
the smooth function) (Bookstein, 1989;Donato andBelongie, 2003):

f(x,y) = a1 + axx+ ayy+
N

∑
i=1

ωidist(‖(xi,yi) − (x,y)‖) (10)

in which the first three coefficients (a1,ax,ay) correspond to the
linear part which defines a flat plane that best approximates all
control points. The last term corresponds to the bending forces
provided by N control points. There is a coefficient ωi for each
control point i, which denotes the weight of control point i to
the final displacement in X-direction or Y-direction. The smooth
function gives us the warped points (xi

′,yi
′) given origin grid points

(xi,yi) in the initial image. The terms ‖(xi,yi) − (x,y)‖ represents
the distance from a control point (xi,yi) to a position (x,y). This
distance is used in the function dist(r) defined by Equation 11
(Bookstein, 1989; Donato and Belongie, 2003):

dist(r) = r2 log (r) (11)

In addition to the smooth function Equation 10, we need
additional constraints to the system following Bookstein
(1989) and Donato and Belongie (2003):

N

∑
i=1

ωi = 0 (12)

N

∑
i=1

ωixi =
N

∑
i=1

ωiyi = 0 (13)

Having Equations 10, 12 and 13, a linear system can be yielded
for the TPS coefficients:

[
K P
PT O
]×[

ω
a
] = [

v
o
] (14)

in which O is a 3× 3 matrix of zeros, o is a 3× 1 column vector
of zeros. ω and v are column vectors formed from ωi and vi,
respectively, and a is the column vector with elements a1, ax, ay.
Thematrix K evaluates the function dist(rij)where rij is the distance
between two points i and j. MatrixK is expressed using Equation 15:

K = [[

[

dist(r11) dist(r12) ...
dist(r21) dist(r22) ...
... ... dist(rnn)

]]

]n×n

(15)

Matrix P contains the position information of all control points,
as expressed by Equation 16:

P =
[[[[[

[

1 x1 y1
1 x2 y2
...
1 xn yn

]]]]]

]3×n

(16)
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FIGURE 1
Illustrations for Thin Plate Spline warping algorithm. (a) Control points in initial image; (b) Control points in warped image; (c) Displacement surfaces in
X direction; (d) Displacement surfaces in Y direction.

Given a few control points and the corresponding warped
control points (say target points), the matrices K, P and vector v
are known since K can be calculated only using control points.
Therefore, the vector [ω a]T containing the weight ωi for each
control point i and coefficients (a1,ax,ay) can be solved according
to Equation 14. As a result, the warped position of any point in the
initial image can be computed via the smooth equation Equation 10.

2.2.2 Inverse warping
To address potential gaps from forward warping—such as

pixel discontinuities or overlaps due to stretching/compression—we
employ inverse warping. This method remaps pixels from the
warped to the initial image, ensuring accurate correspondence. The
inverse warping process is defined as Equation 17:

(x,y) = f−1(x′,y′) (17)

where f −1 iteratively assigns each warped point (x′,y′) its
corresponding value from the initial image based on the TPS

transformation, minimizing discontinuities. A flowchart of this
process is provided in Figure 2.

2.3 Uncertainty quantification

The MRF model, as described by Wei and Wang (2022),
incorporates local and global stratigraphical uncertainty. Epistemic
uncertainty is introduced in the context of global uncertainty
within an integrated image warping methodology. According to
Steno’s law of superposition (Dominici et al., 2021), undeformed
sedimentary stratigraphy is typically horizontal, with older layers
underlying newer ones due to consistent depositional conditions.
However, external forces and varying sedimentary conditions can
deform these sequences, creating non-stationary stratigraphic fields.
In engineering applications, regional geological knowledge from
surveys, expert insights, and historical records, combined with
on-site borehole data, enables the transformation of deformed
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FIGURE 2
Flowchart of inverse warping.

stratigraphic sequences into undeformed profiles using image
warping with selected control points. The MRF model then infers
the undeformed stratigraphic profile, which is subsequently warped
back to reconstruct the deformed profile.

Epistemic uncertainty, arising from subjective control point
placement based on regional geological knowledge and borehole
data, is addressed by assigning operational positions from a
Gaussian distribution centered on preliminary positions.

To ensure statistical convergence of the global uncertainty,
batch simulations are employed, with control point positions
varying across simulations according to the predefined probabilistic
distribution. Additionally, due to the uncertain burn-in period
for granularity coefficients, a preliminary single simulation is
recommended to determine the iteration count for the burn-in
period before batch simulations (Wei and Wang, 2022).

After batch simulation, the robust majority vote (RMV) soil
profile is determined using the majority vote principle (see
Equation 18):

RMV(i) = argmaxm(MP(m)i ;m ∈ L) (18)

where the MP(m)i is the mean value of P(m)i across the batch
simulation, in which P(m)i is the probability of unknown pixel
i chooses label m within a single simulation and has the
following Equation 19:

P(m)i =
N(m)i

Nite
(19)

in which Nite is the total number of realizations in a single
simulation, and N(m)i is the number of realizations in which label m
is assigned at pixel i.

Global uncertainty at pixel i is quantified using robust
information entropy (RIE) defined by Equation 20 (Li et al., 2016):

RIEi = −∑
m∈L
[MP(m)i logMP(m)i ] (20)

Higher RIEi indicates greater uncertainty, making it harder to
assign a soil label based on nearby borehole data. The RIE accounts
for model uncertainty, cognitive uncertainty, and granularity
coefficient uncertainty.

Simulation accuracy, when ground truth is available, is
evaluated as Equation 21:

Acc =
∑s

i=1
IN(xi(R) = xi(T))

s
(21)

where IN(·) = 1 if the simulated label at pixel i (i.e., xi(
R)) matches the

ground truth label (i.e., xi(T)), and s is the total number of pixels in
the modeling domain.

3 Synthetic case studies

This section demonstrates the proposed methodology through
a synthetic case, based on a 100 × 100-pixel “template profile”
generated via Gibbs sampling with β = [4.50, 0.15, 0.15, 0.15]. In this
case, the profile is placed in an expanded spatial domain (Figure 3a)
to simulate deformation. Five parallel series of control points (red
points in Figure 3a) are set horizontally across the profile, with
corresponding target points along five sinusoidal paths (Figure 3b).
Image warping using these points produces a deformed soil profile
(Figure 3c).The area within the white dotted box in Figure 3c serves
as the “ground truth” profile. Four equidistant virtual boreholes
(dashed lines in Figure 3d) are used to infer “unknown” pixel
configurations.

3.1 Warping of borehole information

Using regional geological data from surveys, expert insights, and
historical records, the stratigraphic pattern is identified as having an
approximately sinusoidal deformation.Three series of control points
are placed on borehole pixels, aligned with this sinusoidal pattern
(red dots on boreholes in Figure 3a). Additional control points
(red dots off boreholes in Figure 3a) adjust the sinusoidal tangents
to a horizontal orientation at the domain’s boundaries, based on
geological inferences. Figure 3b shows the target points in standard
space, illustrating the warped borehole information derived from
these control and target points via image warping.

To account for epistemic uncertainty, operational positions of
control points, drawn from a multivariate Gaussian distribution,
are used for warping borehole information instead of preliminary
positions. This distribution is defined by a mean vector
μCP = {μ

i
CP | i ∈ {1,2,3,…, NCP}}, where NCP is the number

of control points, and a diagonal covariance matrix ΣCP =
diag((σ1CP)

2, (σ2CP)
2, (σ3CP)

2, ..., (σNCP
CP )

2
), with each σiCP representing

the standard deviation for the row indices of control points.
Figure 3c shows a sampled instance from this distribution,
displaying operational positions (red dots) alongside preliminary
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FIGURE 3
The deformation process of soil profile of the sinusoidal case. (a) Template profile (b) Five sinusoids (c) Warped soil profile (d) Original profile.

positions (blue dots). Figure 3d illustrates the target points and
warped borehole information in standard space, based on the
operational positions in Figure 3c.

3.2 Pre-test

As outlined in Subsection 2.4, a pre-test is required before
conducting batch simulations.The prior distribution for granularity
coefficients β is set as μ = [1,1,1,1], σ = [10, 10, 10,10], as
posteriors are insensitive to priors and the interval [μ− 3σ ,μ+ 3σ]
covers reasonable values of β (Wei and Wang, 2022). The inferred
posterior distribution of μ and σ , post-burn-in, are μ = [4.87,
0.21, 0.17, 0.08], σ = [0.34, 0.36, 0.33, 0.28]. This posterior
distribution serves as the prior for batch simulations, eliminating
the burn-in period by enabling rapid convergence of theMetropolis-
Hastings sampler (Wei and Wang, 2022).

To investigate the impact of initial β values on the converged
posterior values, we conduct an additional test using an initial value

set of μ = [6,6,6,6], σ = [10, 10, 10,10].The resulting posterior values
are μ = [4.72, 0.18, 0.19, 0.11], σ = [0.34, 0.26, 0.36, 0.31], which
are nearly identical to those obtained previously and remain closely
aligned with the “true values” [4.50, 0.15, 0.15, 0.15]. The two tests
demonstrate that when the prior σ is set to a relatively large value,
the posterior β values consistently converge to the vicinity of the
“true values” during the MCMC sampling process, irrespective of
the initial mean value.

3.3 Simulation outcomes analysis

The batch simulation, consisting of 100 Markov chains, yielded
results shown in Figure 4. Convergence of global uncertainty is
confirmed by the stabilization of total RIE after approximately
40 simulations (Figure 4f). The RMV profile (Figure 4c) closely
matches the original profile (Figure 3d), with discrepancies mainly
at stratigraphic formation interfaces. Despite only 4 boreholes
providing 4% of the total data, the RMV profile achieves 89.76%
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FIGURE 4
Boreholes and simulation results. (a) Boreholes in physical space; (b) Warped boreholes in standard space; (c) RMV via image warping; (d) RMV via no
image warping. (e) RIE via image warping; (f) Total RIE versus number of simulations.

accuracy, remarkable given the complex synthetic soil configuration.
The uncertainty map (Figure 4e) shows low uncertainty in core
formation areas and higher uncertainty along interfaces, aligning
with expected geological uncertainty patterns.

In contrast, the RMV profile without image warping (Figure 4d)
significantly deviates from the original, underscoring the
effectiveness of the proposed methodology in accurately modeling
complex, non-homogeneous stratigraphic patterns.
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FIGURE 5
Case information and simulation results when #5 is the validation borehole. (a) Collected boreholes; (b) RMV (c) RIE.

To evaluate the impact of the epistemic uncertainty, we
conducted experiments with different standard deviations (σCP)
for the control points, specifically values of 1, 2, and 3. The
resulting stratigraphic profiles exhibited comparable accuracy (i.e.,
89.76%, 90.11%, 89.96%) across these settings, suggesting that
the model’s performance is not highly sensitive to variations in
the probabilistic distribution of control points. These findings
support the model’s applicability under different parameter
configurations.

4 Real-world case study

In this section, we investigate a geotechnical dataset extracted
from the state of Kentucky, United States, referred to as the Kentucky

case. This dataset serves as a practical illustration for assessing
the effectiveness of the proposed approach within the realm of
engineering applications. Figure 5a shows the collected borehole
data (13 boreholes, four distinct soil types, no complete soil profile)
of the Kentucky case.

To evaluate the model’s efficiency, a cross-validation approach
is used, designating one borehole as the validation borehole
and the remaining twelve as testing boreholes for stratigraphic
estimation. Figures 5b,c show the RMV profile and corresponding
RIE using borehole #5 for validation and boreholes #1–#4 and
#6–#13 for testing, illustrating inferred slope stratigraphy within the
region enclosed by lines connecting the slope surface to borehole
bottom ends. The stratigraphy displays a tilted distribution aligned
with the slope gradient, with low overall uncertainty but higher
uncertainty at stratigraphic boundaries.
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FIGURE 6
Australia case study. (a) Original field. (b) Known Boreholes. (c) Warped boreholes (d) RMV via image warping. (e) Corresponding RIE. (f) RMV via
conventional MRF. (g) Reported profile (IC-XGBoost).

Cross-validation accuracies for all boreholes as validation
boreholes are [0.83, 0.73, 0.78, 0.62, 0.74, 0.83, 0.82, 0.82, 0.94,
0.72, 0.90, 1.00, 0.96]. Most boreholes show satisfactory accuracy,
with only borehole #4 below 70%. These results highlight the
proposed approach’s strong performance in the Kentucky case,

demonstrating its effectiveness in handling non-stationary fields in
practical applications.

To further illustrate the performance of the proposed approach
and compare the proposed approach with existing approaches,
the published case from Shi and Wang (2021) extracted from
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a tunnel project in Australia (referred to as Australia case)
are studied.

Figure 6a presents the complete soil profile and knownboreholes
(dashed lines) for the Australia case from Shi and Wang (2021).
Eleven control points are placed at the formation boundaries along
the boreholes, as shown in Figure 6b. Based on these points, two
cubic curves and one quadratic curve are fitted to define the
boundaries. Additionally, six control points are set on the curves at
the left and right side of the modeling domain to adjust boundary
tangents, ensuring horizontal tangents consistent with geological
knowledge. These additional points are marked as red dots off the
boreholes in Figure 6b Accordingly, one situation of the warped
boreholes is shown in Figure 6c.

After simulation, the accuracy of RMV profile is 96.68% (see
Figure 6d), which is, a remarkable result for this case with very
sparse borehole information. The RIE image is shown in Figure 6e.
It shows the high uncertainty level areas are concentrated at the
boundaries and the pixels located in interior of each formation
have extremely low uncertainty level. The results inferred with the
conventional MRF-based model (Wei and Wang, 2022) and IC-
XGBoost model (Shi and Wang, 2021) are shown in Figures 6f,g
Showing the accuracy 94.8% and 91.2%. Obviously, the proposed
approach, integrating image warping techniques, demonstrates
superior performance with higher accuracy and produces strata
lines that more closely align with the true boundary.

5 Concluding remarks

This study presents a novel approach integrating image
warping with an advanced stratigraphic stochastic simulation
model to characterize non-stationary fields and quantify associated
stratigraphic uncertainties.The imagewarping technique, using thin
plate splines and regional geological knowledge, transforms non-
stationary fields into stationary ones, enabling the application of an
in-house stratigraphic stochastic simulation model. The integrated
approach effectively handles complex non-stationary stratigraphic
conditions with limited data.

The synthetic and real-world cases validate the methodology’s
effectiveness. Results show high accuracy in inferring complex
non-stationary stratigraphy, with low and rationally distributed
stratigraphic uncertainty, considering both local and global
uncertainties, including model and cognitive uncertainties. The
approach demonstrates strong applicability and potential for
practical engineering applications.
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