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Soil water content and dry density are critical parameters for assessing loess 
collapsibility and other geotechnical applications. However, existing time-
domain reflectometry (TDR) calibration methods are often constrained by 
soil-specific limitations. This study aimed to develop soil type-independent 
calibration relationships for TDR measurements of soil water content and dry 
density. Laboratory experiments were conducted on four distinct soil types 
to calibrate and validate the existing TDR models. The results indicated that 
the current models exhibited suboptimal performance, necessitating parameter 
calibration for specific soil types. To enhance the accuracy and applicability of 
TDR measurements, the multi-expression programming (MEP) algorithm was 
employed to develop a soil type-independent calibration relationship for dry 
density. The MEP model demonstrated robust performance in both training and 
validation phases, achieving a slope of 0.925 and an R2 value of 0.88 for the 
training dataset, with most validation data points falling within a ±10% relative 
error range. Additionally, a soil type-independent calibration relationship for 
water content was established based on the dry density model, achieving high 
accuracy, with most predicted values exhibiting absolute errors within ±0.04. 
The developed calibration relationships were further validated using 64 datasets 
from the literature, covering various soil types, and through two field in situ
tests. The validation results demonstrated that the developed model could 
accurately determine dry density, with relative errors of less than ±10% for 
most test points. Water content measurements also showed strong agreement 
with laboratory oven-drying results, with absolute errors within ±0.02 for the 
majority of test points. This work provides a reference for applying TDR to 
rapid in situ measurement of soil water content and dry density, which is of 
significant importance for evaluating loess collapsibility and other geotechnical 
applications.
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1 Introduction

Loess is distributed worldwide, particularly in northwestern 
China, where it covers an area of 640,000 km2 (Li, 2018; Jia et al., 
2020; Ji et al., 2021). It is well-known that many geotechnical 
problems, such as ground subsidence (Rogers et al., 1994; Muñoz-
Castelblanco et al., 2011; Zhang et al., 2022) and slope failure 
(Peng et al., 2018; Wang et al., 2018), occur in loess areas due 
to wetting-induced collapse. Therefore, evaluating the collapsibility 
of loess prior to construction is essential. However, the unique 
structure of loess inevitably becomes disturbed during field 
sampling and subsequent laboratory testing, which compromises 
the accuracy of the collapsibility assessments (Atkinson et al., 1992; 
Mu Q. et al., 2020; Wu et al., 2025). Furthermore, evaluating large-
scale or deep loess sites requires extensive drilling and the collection 
of numerous samples for laboratory analysis, which makes it 
expensive. In the laboratory experiments, conventional compression 
tests at constant water content require 24 h of equilibrium at 
each loading increment, whereas suction-controlled compression 
tests of unsaturated soil need several days (Ng and Pang, 2000; 
Mu et al., 2020a; Mu et al., 2023 Q.; 2023c), rendering the 
evaluation of numerous samples extremely time-consuming. Given 
these limitations of the existing methods, there is an urgent need 
to develop novel techniques for the in situ evaluation of loess 
collapsibility.

Implementing in situ collapsibility evaluation for loess involves 
establishing an evaluation model that comprehensively considers the 
main influencing factors and conducting in situ testing to obtain the 
model parameters. Regarding the evaluation models, Holtz and Hillf 
(1961) proposed a model based on the void ratio at the liquid limit 
state and the natural void ratio, successfully evaluating the collapse 
in various unsaturated soil types. Based on Holtz and Hillf (1961), 
Gibbs and Bara (1962) utilized the dry density at the liquid limit 
state and the liquid limit to define a collapse criterion line, effectively 
assessing collapsibility in loess from a US canal and channel site. 
Basma and Member (1992) investigated the effects of physical 
properties, such as dry density, water content, and overburden 
load, on wetting-induced collapse and subsequently developed an 
empirical model using multiple regression analysis. Lim and Miller 
(2004) proposed a new empirical model based on the study by Basma 
and Member (1992), which was found to have good predictive 
performance in in situ tests. Wang L. et al. (2020) established an 
exponential equation to simulate the one-dimensional compression 
behavior of loess under different moisture conditions. Mu et al. 
(2023b) developed a new and simple method for predicting loading- 
and wetting-induced collapse of intact loess within an elastoplastic 
framework. In conclusion, the current models are mainly related to 
soil dry density and water content, which are consistent with the 
results of a large number of geotechnical tests based on the theory 
of unsaturated soil mechanics (Ng et al., 2024). Consequently, the 
precise and expeditious measurement of soil water content and dry 
density is imperative for evaluating the collapse susceptibility of in 
situ sites.

Time-domain reflectometry (TDR) is a geophysical technique 
widely utilized in geological exploration and soil analysis, enabling 
the measurement of soil apparent permittivity and electrical 
conductivities. Since its initial application for measuring water 
content by Topp et al. (1980), TDR has been extensively studied 

and applied within the field of geotechnical engineering (Lin et al., 
2006; Zhang et al., 2017; Mu et al., 2019; 2020b; 2023b; Bittelli et al., 
2021). For instance, Siddiqui et al. (2000) proposed a two-step 
method to establish a correlation between the apparent dielectric 
constant and soil parameters such as dry density and water content. 
This method requires separate testing of the two soil samples on-
site, which may introduce errors due to inconsistencies in the 
state of the two soil samples. Yu and Drnevich (2004) further 
enhanced the two-step method by incorporating soil electrical 
conductivity, developing a relationship between water content and 
conductivity, and introducing a correction equation to account for 
differences in water conductivity between in situ and laboratory 
conditions. Jung et al. (2013) introduced a new TDR measurement 
parameter, V1, which is termed the first voltage drop, and proposed 
a novel approach using TDR to directly calculate dry density, 
followed by water content determination through a normalized 
apparent permittivity equation, which was validated across various 
soil types. Curioni et al. (2018) improved the model proposed by 
Jung et al. (2013), which enhanced precision and accuracy while 
being less susceptible to multiplexer influence. Bhuyan et al. (2020) 
developed a model utilizing soil apparent permittivity and electrical 
conductivity to compute wet density and water content, which is 
applied for in situ detection of subgrade compaction. These studies 
further emphasize the significant potential of TDR technology 
for measuring soil dry density and water content. However, the 
existing calibration relationships are typically limited to specific soil 
types, requiring different sets of calibration parameters for different 
soil types.

In Northwest China, the wide variety of soil types (e.g., sandy, 
silty, and clayey loess) exhibits substantial differences in physical 
properties. Consequently, it is challenging to use a single set of 
TDR parameters for rapid in situ measurement of dry density 
and water content across different types of soil. The objectives of 
this study are to (1) prepare and test four distinct types of soil 
at different gravimetric water contents and dry densities in the 
laboratory to calibrate and validate the existing TDR theoretical 
models; (2) employ machine learning to develop a soil type-
independent calibration relationship for water content and dry 
density; and (3) validate the applicability of the proposed model 
using two field in situ tests. This study innovatively develops a 
soil type-independent calibration relationship based on the multi-
expression programming (MEP) algorithm, eliminating the need for 
soil-specific calibration parameters. This advancement significantly 
enhances the applicability of TDR technology for rapid in situ
measurements across diverse soil types, thereby providing a more 
efficient and accurate method for assessing soil properties in 
geotechnical applications.

2 Existing calibration relationship for 
measuring ρd and w

The one-step TDR method provides a procedure for the in 
situ measurement of soil water content (w, %) and dry density 
(ρd, g/cm3) using TDR, based on the calibration parameters of a 
specific soil type obtained from laboratory TDR tests. This method 
utilizes the apparent permittivity constant (ε) and the bulk electrical 
conductivity (ECb, S/m) of the soil to predict w and ρd. For a 
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FIGURE 1
Illustration of the TDR in situ measurement.

FIGURE 2
Illustration of a typical TDR waveform.

given probe configuration, ECb can be derived from the measured 
waveform reflection and the characteristic impedance of the cable 
(Giese and Tiemann, 1975; Dalton et al., 1984; Nadler et al., 1991). 
Therefore, Yu and Drnevich (2004) proposed relationships between 
ε, ECb, ρd, and w, as illustrated in Equations 1–3:

√ε
ρw

ρd
= a+ bw, (1)

√ECb
ρw

ρd
= c+ dw, (2)

√ECb,adj = f + g√ε, (3)

where a,b,c,d, f,andg are the soil-specific calibration coefficients 
that are determined from the laboratory calibration tests. The 
parameter ρw represents water density, and ECb,adj represents 

FIGURE 3
Particle size distributions of the tested soil types.

adjusted bulk electrical conductivity. The model proposed by Yu and 
Drnevich (2004) demonstrated satisfactory results across various 
soil types. However, the application of this method may be limited to 
a narrower range of water content due to inadequate modeling of the 
relationship between density-normalized ECb and w. Furthermore, 
the method exhibits sensitivity to variations in compaction energy, 
which constrains its accuracy in the field. Subsequently, Jung et al. 
(2013) introduced a new TDR measurement parameter, termed 
the first voltage drop (V1, V). Utilizing V1 together with the final 
voltage (V f , V) measured by TDR, they established an independent 
relationship relating the voltage- and density-normalized terms to 
the TDR-measured Ka, as expressed in Equation 4:

V1

V f

ρw

ρd
= c1 + d1(ε− 1) − c1 exp[− f1(ε− 1)]. (4)
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TABLE 1  Physical properties of the tested soil types.

Soil parameter Fujian standard sand Qiantang River silt Clayey loess Kaolin clay

Specific gravity 2.67 2.69 2.67 2.65

Plastic limit (%) — 23.2 17.4 33.5

Liquid limit (%) — 31.8 31.8 70.3

Particle-size distribution (ASTM D422-63, 2007) — — — —

Sand (%) 97.2 10.5 0.8 0

Silt (%) 2.8 82.4 84.2 51.8

Clay (%) 0 7.1 15 48.2

Unified soil classification (ASTM D2487-11, 2011) SP ML CL CH

The calibration parameters c1, d1, and f1 are obtained through 
laboratory tests. The soil dry density ρd can be calculated according 
to Equation 4. This value is then combined with the calibration 
parameters a and b to determine w in Equation 1. However, the 
method proposed by Jung et al. was tested only with a specially 
developed probe (MRP). In some tests, the results obtained using 
commercially available three-rod TDR probes indicated that the 
outcomes provided by the method proposed by Jung et al. (2013) 
were not entirely consistent and were affected by the addition 
of the multiplexer. Therefore, Curioni et al. (2018) proposed 
an improved relationship to replace the calibration relationship 
for dry density. This modification enhanced the precision and 
accuracy while being less susceptible to multiplexer influence, 
as shown in Equation 5:

V1

V f

ρw

ρd
= c2 + d2(V1√ε) f2 . (5)

Equation 5 also contains three calibration parameters (c2, d2, 
and f2). As stated before, using the calibrated parameters c2, d2, 
and f2, ρd can be calculated, and together with the parameters a
and b in Equation 1, w can be determined. Curioni et al. (2018) 
experimentally confirmed the accuracy of ±5% for the dry density 
and ±2% for the water content.

In summary, the existing calibration relationships exhibit a 
reasonable capacity for predicting soil dry density and water content. 
However, in practical applications, the soil physical properties can 
vary significantly, which, in turn, may influence their electrical 
properties. As demonstrated by Jung et al. (2013), the parameters 
a,b,c,d, f, and g need to be calibrated separately for different types 
of soil during the laboratory validation of their TDR model. As a 
result, it becomes challenging to accurately calculate ρd and w for 
different soil types using a single set of parameters. This limitation 
may potentially undermine the advantage of TDR in enabling rapid 
in situ measurement of w and ρd. Therefore, a soil type-independent 
calibration relationship needs to be developed to provide a reference 
for applying TDR to the rapid in situ measurement of ρd and w. 

3 Test apparatus and TDR waveform 
processing

As illustrated in Figure 1, the Campbell Scientific TDR200, in 
conjunction with a three-rod TDR probe, was used to measure 
the reflection waveforms of soil specimens. The TDR200 was 
connected to an electric source with a constant voltage of 12 V 
for the power supply. The three-rod TDR probe consists of three 
stainless steel rods with a diameter of 6 mm and a length of 
150 mm. The distance between two neighboring rods (center to 
center) is 30 mm. Based on the numerical method proposed by 
Zhan et al. (2014), Zhan et al. (2015), the sampling area of the three-
rod TDR probe is approximately characterized as an ellipse with a 
major axis of 36.6 mm and a minor axis of 18.3 mm. Furthermore, 
the blue area in the figure indicates 90% measurement sensitivity, 
corresponding to an ellipse with a short semi-axis of 18.3 mm 
and a long semi-axis of 36.6 mm, with an area of approximately 
2,141 mm2. This area is larger than the representative unit of the 
soil under test. A coaxial cable with an impedance of 50 Ω was used 
to connect the three-rod TDR probe to the TDR200. In addition, a 
plastic cylinder with a diameter of 150 mm and a height of 200 mm 
was used to house the soil specimen, where the three-rod probe is 
inserted. Based on the numerical calculation result, the volume of 
the plastic cylinder is sufficient to cover the sampling area of the 
three-rod probe.

During measurement, the TDR200 sends a step voltage pulse 
(i.e., 1 V) that travels along the coaxial cable and the three-rod TDR 
probe. The reflections of the step voltage pulse occur at the sections 
of impedance mismatch and are recorded by the TDR200. A typical 
TDR waveform is illustrated in Figure 2. The points A and B in 
the TDR waveform are associated with the first reflections of the 
step voltage pulse at the surface of the soil specimen and at the 
end of the three-rod TDR probe, respectively. The TDR waveform 
beyond point B represents the subsequent multiple reflections of the 
step voltage pulse in the three-rod TDR probe. Based on previous 
studies, apparent permittivity (ε) can be calculated based on the time 
difference (∆t) between points A and B as follows (Equation 6):

ε = √cΔt/2L, (6)
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TABLE 2  Properties of the soil types used for TDR calibration and validation in this study.

Soil type ρd w V1 Vf ε ρd w V1 Vf ε

Group I: calibration Group II: validation

Fujian standard sand

1.50 11.20 0.04 1.73 7.44 1.50 14.50 0.09 1.68 9.98

1.50 16.80 0.12 1.64 12.39 1.50 25.60 0.19 1.47 20.39

1.55 11.20 0.06 1.72 8.04 1.55 7.90 0.02 1.76 5.68

1.55 14.50 0.10 1.68 10.49 1.55 21.30 0.17 1.57 16.95

1.55 16.80 0.13 1.64 12.37 1.60 11.20 0.06 1.72 8.01

1.60 14.50 0.10 1.68 10.32 1.60 16.80 0.14 1.62 13.14

1.65 14.50 0.11 1.66 9.86 1.65 11.20 0.06 1.70 7.85

— — — — — 1.65 16.80 0.15 1.60 13.07

Qiantang River silt

1.30 9.90 0.06 1.50 4.48 1.30 15.00 0.13 1.37 8.96

1.30 19.90 0.15 1.32 10.17 1.40 9.90 0.08 1.46 5.92

1.40 5.40 0.02 1.64 3.46 1.40 15.00 0.14 1.33 7.84

1.40 23.60 0.25 1.12 18.67 1.40 19.90 0.17 1.30 11.28

1.50 9.90 0.09 1.44 6.17 1.50 5.40 0.02 1.65 3.50

1.50 19.90 0.19 1.23 12.14 1.50 15.00 0.16 1.27 9.18

1.60 19.90 0.21 1.20 14.54 1.50 23.60 0.27 1.03 20.06

Clayey loess

1.30 11.20 0.06 1.58 6.33 1.30 13.90 0.07 1.58 7.28

1.30 15.10 0.09 1.55 8.05 1.35 5.00 0.02 1.72 3.55

1.35 7.90 0.04 1.66 4.78 1.35 11.20 0.08 1.55 6.64

1.35 13.90 0.11 1.50 9.05 1.35 17.00 0.14 1.46 10.85

1.40 5.20 0.03 1.65 4.11 1.40 8.50 0.06 1.59 5.68

1.40 11.40 0.08 1.56 7.10 1.40 13.90 0.12 1.46 8.41

1.40 17.20 0.15 1.41 10.61 1.40 20.10 0.23 1.24 15.84

1.40 32.20 0.28 1.19 24.89 1.45 11.20 0.11 1.49 7.83

1.45 13.60 0.14 1.44 10.08 1.45 16.70 0.17 1.41 12.17

1.50 8.50 0.07 1.54 5.72 1.50 11.40 0.11 1.46 7.89

1.55 16.40 0.18 1.34 12.26 1.55 20.20 0.23 1.24 18.60

1.60 13.10 0.18 1.28 11.04 1.60 16.90 0.21 1.24 13.15

1.60 20.50 0.26 1.14 19.47 — — — — —

(Continued on the following page)
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TABLE 2  (Continued) Properties of the soil types used for TDR calibration and validation in this study.

Soil type ρd w V1 Vf ε ρd w V1 Vf ε

Group I: calibration Group II: validation

Kaolin clay

0.80 14.50 0.02 1.74 3.66 0.80 16.80 0.03 1.72 4.89

0.90 11.20 0.02 1.73 3.87 0.90 14.50 0.03 1.71 4.48

0.90 16.80 0.03 1.70 5.68 1.00 12.00 0.04 1.68 4.86

1.00 8.30 0.02 1.73 3.85 1.00 17.70 0.07 1.64 6.41

1.00 14.90 0.06 1.65 5.84 1.10 11.20 0.07 1.61 5.71

1.00 21.20 0.09 1.61 7.76 1.10 16.80 0.10 1.57 7.91

1.10 14.50 0.09 1.57 6.99 — — — — —

Note: ρd, dry density (g/cm3); w, gravimetric water content (%); V1, first voltage drop (V); V f , final steady voltage (V); ε, apparent permittivity.

FIGURE 4
Calibration results of Equation 1 related to water content from 
laboratory experiments.

where c is the velocity of the electromagnetic wave in free space (i.e., 
3 × 108 m/s), L is the probe length of the three-rod TDR probe, 
which is calibrated based on the method described by Zhan et al. 
(2013). On the other hand, the first voltage drop (V1) and final 
voltage (V f) represent the voltage difference between points A and B 
and the voltage of the step voltage pulse after multiple reflections, 
respectively. These two parameters are related to the electrical 
conductivity of the tested specimen. 

4 Test material and specimen 
preparation

4.1 Test material

To develop the soil type-independent relationship, four soil 
types (i.e., Fujian standard sand, Qiantang River silt, clayey loess, 

and kaolin clay) are used for TDR measurements. The particle 
size distribution curves and physical properties of the tested 
soil samples are shown in Figure 3 and Table 1, respectively. 
The chosen soil types represent a broad range of particle 
size distributions and index properties present in engineering 
practices. The four selected soil types have a clay content ranging 
from 0 to 48.2%, a silt content ranging from 2.8% to 84.2%, 
and a sand content ranging from 0 to 97.2%. On the other 
hand, the plastic limits and liquid limits range from 17.4% to 
35.5% and from 31.8% to 70.3%, respectively. According to 
ASTM D2487-11 (2011), the Fujian standard sand, Qiantang 
River silt, clayey loess, and kaolin clay are classified as SP, ML, 
CL, and CH, respectively. More details regarding the physical 
properties of the tested soil types are provided in previous studies 
(Mu Q. et al., 2023; Mu Q. et al., 2023c). 

4.2 Specimen preparation

The soil samples are first oven-dried and mixed with water 
to generate various moisture contents using a plant mister. The 
prepared wet soils are wrapped in cling film and allowed to 
equilibrate for 48 h. After moisture equalization, the soil samples 
are compacted into plastic cylinders with a diameter of 100 mm 
and a height of 150 mm. The compaction of each specimen was 
divided into five layers (i.e., 30 mm height for each layer). The 
top surface of each layer was scarified before the compaction of 
the subsequent layer to ensure better contact. After compaction, 
the specimen was left for 24 h to allow the equilibration of pore 
water across the specimen prior to the TDR measurement. For 
Fujian standard sand, the compaction dry densities ranged from 
1.50 g/cm3 to 1.65 g/cm3 in steps of 0.5 g/cm3. The compaction 
dry densities of Qiantang River silt and clayey loess ranged 
from 1.30 g/cm3 to 1.60 g/cm3, while the kaolin clay had dry 
densities ranging from 0.80 g/cm3 to 1.10 g/cm3, both in steps 
of 0.1 g/cm3. The soil specimens prepared above were uniformly 
divided into two groups; group I was used for calibration and 
training of the machine learning model, and group II was used for 
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TABLE 3  Summary of the calibration coefficients.

Soli type a b c1 d1 f1 c2 d2 f2

Fujian standard sand 0.85 8.36 −0.024 0.007 0.241 0.004 0.103 0.970

Qiantang River silt 0.80 8.56 −0.001 0.009 0.303 −3.9e-4 0.144 0.788

Clayey loess 1.01 8.05 −0.003 0.008 0.192 −0.002 0.131 0.767

Kaolin clay 1.44 6.61 −0.012 0.012 7.8E-07 2.5e-4 0.169 0.815

FIGURE 5
Calibration results related to dry density in the models of (a) Jung et al. (2013) and (b) Curioni et al. (2018).

TABLE 4  Optimized MEP parameters.

Genetic operator Value

Size of the subpopulation 3,000

Number of subpopulations 2

Number of generations 2,000

Length of the code 30

Probability of crossover 0.9

Type of crossover Uniform

Probability of mutation 0.01

Function set +, −, × , ÷, sqrt

Function probability 0.3

Variable probability 0.3

Constant probability 0.4

validation of both the existing model and the developed machine 
learning model.

Note that the compaction of the soil samples with high water 
contents is unrealistic to achieve the predefined dry densities 
mentioned above. To prepare the specimens with high water 
contents, the relatively dry soil samples were first compacted 
into plastic cylinders to the predefined dry densities. With the 
known water content, the volume of the plastic cylinder, and 
the dry density, the required amount of water was calculated 
and sprayed into the plastic cylinder to achieve the predefined 
high water contents. Similar to the specimens with low water 
contents, the prepared specimens with high water contents were 
also left for pore water equilibration. Based on the targeted water 
contents, the specimens with high water contents need 3–10 days 
for pore water equilibration. To check the uniformity of the 
prepared specimens, three sub-specimens from the top, middle, 
and bottom parts of the prepared specimens were collected. The 
results show that the differences in dry density and water content 
are less than ±0.07 g/cm3 and ±0.1%, respectively. More details 
of the soil physical properties of the prepared specimens are 
provided in Table 2.
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FIGURE 6
Performance in measuring soil dry density using the models proposed by (a) Jung et al. (2013) and (b) Curioni et al. (2018).

FIGURE 7
Performance in measuring soil water content using the models proposed by (a) Jung et al. (2013) and (b) Curioni et al. (2018).

FIGURE 8
Illustration of the computational flow chart of MEP.

Frontiers in Built Environment 08 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1653550
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Zhou et al. 10.3389/fbuil.2025.1653550

FIGURE 9
Soil type-independent calibration relationship for dry density based on MEP: (a) model development and (b) model validation.

FIGURE 10
Soil type-independent calibration relationship for gravimetric water content based on Equation 1: (a) parameter calibration and (b) model validation.

5 Calibration and calculation of the 
existing models

In this research, the calibration relationships proposed by 
Jung et al. (2013) and Curioni et al. (2018) were utilized to assess the 
dry density and water content of soil, respectively. The calibration of 
Equation 1 involves two soil constants, which are denoted as a and b. 
The measured parameters, including water content, dry density, and 
apparent permittivity, were represented in the w−√ερd/ρw plane, 
as depicted in Figure 4. Based on Equation 1, a linear regression 
analysis was carried out and presented in Table 3. It is clear that 
the coefficient of determination (R2) for Equation 1 exceeds 0.95, 
indicating a strong correlation between w and √ερd/ρw across the 
four soil types, with values closer to 1 suggesting a better fit.

The calibration of Equation 4, as proposed by Jung et al. (2013), 
incorporates the three soil parameters c1, d1, and f1. The TDR 
test results for the four soil samples, which have varying water 
contents and dry densities, were computed and plotted in the 
ε− (V1/V f)/ρd plane. A nonlinear fitting was performed using the 
least-squares method in accordance with the relationship defined 
in Equation 4, with the calibration results for the soil parameters 
shown in Figure 5a and Table 4. The R2 values obtained from the 
calibration of Equation 4 during the laboratory experiments are 
greater than 0.94, indicating a robust correlation among dry density, 
apparent permittivity, and voltage drop.

Additionally, the calibration of Equation 5 for dry density, 
as proposed by Curioni et al. (2018), also includes three 
parameters (c2, d2, and f2). The measured dry density, apparent 
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FIGURE 11
Validation of the developed soil type-independent calibration relationships with the data from the literature: (a) dry densiyt; (b) gravimetric 
water content.

permittivity, and voltage drop of the soil were plotted in the 
V1√ε− (V1/V f)/ρd plane, as illustrated in Figure 5b. A subsequent 
nonlinear fitting was performed based on the relationship outlined 
in Equation 5, with the fitting results (R2 > 0.99) summarized
in Table 3.

Once the parameters c1, d1, and f1 (or c2, d2, and f2) have been 
estimated for a specific soil, the measured values of V1, V f , and ε
can be directly utilized to determine the dry density (ρd) of soil 
types. At this stage, Equations 4, 5 could be transformed into the 
following forms:

ρd =
V1/V f

c1 + d1(ε− 1) − c1 · exp[− f1(ε− 1)]
ρw, (7)

ρd =
V1/V f

c2 + d2(V1√ε) f2
ρw. (8)

Once ρd is obtained from Equations 7, 8, Equation 1 can be 
solved for the soil gravimetric water content (w) (Equation 9) using 
the TDR-measured ε and the parameters a and b specific to the 
tested soil.

w = 1
b
(
√ε
ρd
− a). (9)

Figure 6a presents the performance of the models proposed 
by Jung et al. (2013) in measuring the soil dry density. The 
results reveal that the dry densities computed using the model 
proposed by Jung et al. (2013) exhibit suboptimal performance 
compared to the direct measurements derived from the oven-
drying method (ASTM D2216, 2010), with a relative error exceeding 
±20% for 14 out of 33 test points, particularly in the case 
of kaolin clay. This deviation can be attributed to the model’s 
inability to account for the interference effects of the multiplexer, 
which distort the test waveforms and consequently affect the 
precise calculation of electrical properties such as V1, V f , and 

ε, thereby influencing the estimation of ρd. Conversely, the dry 
densities predicted by the model proposed by Curioni et al. (2018) 
demonstrate a higher degree of accuracy, as illustrated in Figure 6b. 
Among the four soil types that were tested, the majority of 
the data points exhibited relative errors of less than ±10%, 
with only two points exceeding ±20%, which indicates a strong 
correlation with the direct measurements obtained through the 
oven-drying method.

The gravimetric water content of the soil was assessed using 
Equation 9 combined with the calculated dry densities from 
Equation 7, as illustrated in Figure 7a. It was found that the 
gravimetric water content derived from the model proposed by 
Jung et al. (2013) demonstrated limited agreement with the results 
obtained from the oven-drying method, exhibiting an absolute 
error greater than ±0.04 at 15 out of the 33 test points. This may 
be attributed to the requirement of integrating the calculated dry 
density from Equation 7 into Equation 9 during the calculation of 
gravimetric water content, which consequently propagates errors 
from the dry density estimation into the outcomes of gravimetric 
water content. Figure 7b illustrates a comparison between the 
gravimetric water content calculated from the model proposed by 
Curioni et al. (2018) and the results obtained from the oven-drying 
method. As shown in Figure 7b, with the exception of a few points, 
most data points fall within an absolute error of ±0.04 relative 
to the results obtained by the drying method. This observation is 
attributed to the improved accuracy of the dry density calculated 
using the model proposed by Curioni et al. (2018) (Equation 8). 
It emphasizes that the application of Equation 9 facilitates a 
more accurate prediction of gravimetric water content when 
underpinned by more reliable dry density estimation. Therefore, in 
the forthcoming development of soil type-independent calibration 
relationships, the primary emphasis will be on refining the model 
of dry density while maintaining the existing model of gravimetric 
water content. 
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FIGURE 12
Overview of the in situ test site: (a) testing site; (b) schematic diagram of the in situ test point in Jingyang; (c) in situ test in Xi’an.

6 Soil type-independent calibration 
relationships and their verifications

Machine learning methods have an advantage in solving 
nonlinear mathematical problems with multiple variables and 
data sources (Yin et al., 2017; Zhang et al., 2021; Qin et al., 
2023; Onyelowe et al., 2024; Velastegui et al., 2024; Vatin et al., 
2025). MEP, a type of genetic algorithm inspired by genetics 
and natural selection principles, is a computational technique 
used for symbolic regression and modeling purposes, and it can 
generate explicit mathematical expressions (Oltean and Groşan, 
2003; Severcan, 2012; Jesswein and Liu, 2022; Rehman et al., 
2022). MEP has been effectively applied in diverse fields such 
as predicting the compressive and tensile strength of concrete 
(Asif et al., 2024), a shallow foundation’s ultimate bearing capacity 
(Zhang and Xue, 2022), air entry value (Wang H.-L. et al., 2020), 
soil compaction parameters (Wang and Yin, 2020), and the collapse 
susceptibility of loess (Mu et al., 2024). Consequently, this study 
proposes using MEP to establish a calibration relationship for dry 

density, given the complex nonlinear relationship between dry 
density and electrical properties within different soil types.

A dataset comprising 67 data points was constructed based on 
the physical and electrical properties of four soil types measured by 
TDR tests and laboratory experiments, as detailed in Section 4. The 
properties include the first voltage drop (V1), final voltage drop (V f), 
apparent permittivity (ε), plastic limit (PL), and clay content (Clay). 
For more details, refer to Tables 2, 3. The first three parameters 
align with those in the models proposed by Jung et al. (2013) and 
Curioni et al. (2018), while the latter two represent the difference 
in soil texture, which significantly impacts the electrical properties 
of soil types (Bhuyan et al., 2020). Furthermore, this study adopts 
the form of V1sqrt(Ka) from Curioni’s model, resulting in four input 
variables for the machine learning model, which are A = V f , B =
V1√ε, C = PL, and D = Clay. As described in Section 4, data in group 
I were used for training the machine learning model, and data in 
group II were reserved for model validation.

This study employed the MEP algorithm as shown in Figure 8. 
The method randomly creates an initial population using the 
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TABLE 5  Physical and electrical properties of the in situ tested soil types.

Soil 
parameter

Xi’an loess Jingyang 
loess

Xi’an sand

Specific gravity 2.70 2.71 2.64

Plastic limit (%) 18.8 17.4 —

Liquid limit (%) 31.1 31.8 —

Particle-size 
distribution 

(ASTM D422-63, 
2007)

— — -

Sand (%) 43.7 0.8 94.6

Silt (%) 31.5 84.2 5.4

Clay (%) 24.8 15.0 0

Unified soil 
classification 

(ASTM D2487-11, 
2011)

CL CL SP

Gravimetric water 
content (%)

14.0∼19.7 14.6∼23.8 4.4∼8.9

Dry density 
(g/cm3)

1.51∼1.78 1.34∼1.43 1.38∼1.58

Apparent 
permittivity

9.83∼16.34 6.50∼17.38 5.00∼8.32

First voltage drop 
(V1)

0.107∼1.565 0.005∼0.572 0.418∼0.331

Final steady 
voltage (V f)

0.376∼0.998 1.721∼1.789 1.458∼1.960

replacement sampling method from the training database. After 
that, two parents are selected from the initial population using a 
fitness-based binary tournament, and two offspring are generated 
from the selected parents through crossover and mutation. 
Following that, the worst individual is replaced with the superior 
one identified in the existing population. Finally, the above steps are 
repeated until the target number of generations is reached (Wang 
and Yin, 2020; Wang H.-L. et al., 2020; Asif et al., 2024).

The effectiveness of establishing a calibration relationship for 
dry density using the MEP model largely depends on parameter 
selection and adjustment (Farooq et al., 2021). Initially, the model 
was trained on the training dataset and was subsequently evaluated 
on the testing dataset. Parameters were iteratively adjusted to 
enhance the model’s performance, enabling it to produce results 
closer to the optimal solution. The process continued until the 
established fitness function (e.g., RMSE or R2) achieved a state of 
standstill. Furthermore, the process was repeated with expanded 
subpopulations, while the model outputs were not accurate. 
Finally, the result with the lowest RMSE and highest R2 was 
chosen as the optimal solution (Asif et al., 2024). The population 
size and code length affect the number of programs generated 

per chromosome and the length of the resulting mathematical 
expression. Although larger values may slow convergence, they 
can yield more accurate results. Table 4 summarizes the optimized 
parameters for the MEP model.

This study used MEPX software to develop a closed-form 
mathematical formula for a soil type-independent calibration 
relationship for dry density, as shown in Equation 10. The parameter 
settings and basic arithmetic operators are listed in Table 4, and 
symbols are defined as before.

ρd = 0.85(1+ 1
A
−B+ 1

5
√1+ 1

A
− 1

10
C− 2BD)− (BD)2. (10)

Figure 9a presents the comparison of the measured and 
predicted values of the MEP model for dry densities of various soil 
types during the training phase. It is widely accepted in the literature 
that an efficient model should exhibit R2 and slope values exceeding 
0.8 (Khan et al., 2023). In this study, the MEP model demonstrated 
a slope of 0.925 and an R2 of 0.88 for the training data, indicating 
a robust correlation between the predicted and actual values. The 
data points were found to closely align with the 45-degree lines (1:1), 
with the majority exhibiting relative errors within ±10%, which is 
a strong indicator of effective model training (Khan et al., 2021; 
Nazar et al., 2022). Figure 9b illustrates the model validation of the 
developed MEP model across different soil types. The findings reveal 
a close alignment between the predicted and measured values, with 
most of the 33 validation data points falling within a ±10% relative 
error, which confirms the performance of the developed soil type-
independent calibration relationship for dry density. Overall, the 
MEP model demonstrated strong performance in both the training 
and validation phases, showing great potential as a reliable tool for 
predicting dry density across various soil types.

As discussed in Section 5, the calibration relationship for water 
content as depicted in Equation 1 could present a good performance 
when underpinned by more reliable dry density estimation. Thus, a 
soil type-independent calibration relationship for water content was 
established using Equation 1. As shown in Figure 10a, the calibration 
parameters for the four soil types were consistent. The calibrated 
a and b values from Equation 1 were 1.01 and 7.99, respectively, 
with an R2 exceeding 0.88, indicating a good fit. Then, the soil 
type-independent calibration relationship for water content was 
developed as follows:

w = 1
7.99
(√ε

ρw

ρd
− 1.01). (11)

The water content of different soil types was calculated based 
on the measured electrical properties and Equation 11. Figure 10b 
shows a comparison of the predicted and measured water content. It 
reveals that only three of the 33 predicted data points had absolute 
errors exceeding ±0.04, which highlights the accuracy of the soil 
type-independent calibration relationship for water content.

Additionally, 64 sets of data from the literature, covering various 
soil types (CL, CI, CH, MH, SW, and GW), were collected to validate 
the developed soil type-independent calibration relationships for 
dry density and water content. Figure 11a shows the comparison 
between the dry densities calculated from Equation 10 and those 
obtained from the literature, showing that most data points 
had relative errors within ±20% of the measured values. This 
demonstrates the applicability of the calibration relationship for dry 
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FIGURE 13
Performance for the developed soil type-independent calibration relationships of (a) dry density and (b) gravimetric water content.

density across different soil types. Figure 11b presents a comparison 
of the results calculated from Equation 11 and measured water 
content. It shows the high accuracy of Equation 11, with most 
data points having calculation errors within ±0.04 compared 
to the measured values. This indicates the good performance 
of the soil type-independent calibration relationship for water 
content across different soil types. In summary, the calibration 
relationships developed using the MEP model can rapidly determine 
water content and dry density for different soil types through 
TDR measurements and physical properties, without the need for 
parameter calibration for a specific soil type. This work provides a 
reference to assist ASTM D6780/D6780M − 19 (2019) in predicting 
soil properties. 

7 Verification of the new model using
in situ measurements

To further verify the practical applicability of the developed soil 
type-independent calibration relationships, this study preformed 
two in situ TDR tests. Specifically, the TDR test sites were situated 
in Xi’an and Jingyang, Shaanxi Province, as illustrated in Figure 12a. 
Notably, at the site in Jingyang, 16 in situ TDR test points and 
corresponding laboratory oven-drying tests were conducted on 
loess specimens from varying depths within an exploratory well 
profile (Figure 12b). The oven-drying results revealed that the dry 
density of the Jingyang loess in the exploratory well profile ranged 
from 1.34 g/cm3 to 1.43 g/cm3, while the gravimetric water content 
fluctuated within the range of 14.6%–23.8%. Notably, the detailed 
physical properties of the tested Jingyang loess are same as that of 
the clayey loess, as mentioned in Table 2. Additionally, a total of 
32 TDR in situ and laboratory oven-drying tests were carried out 
at a site in Xi’an, Shaanxi Province (Figure 12c), including two soil 
types, Xi’an loess and Xi’an sand. The laboratory tests show that 
the dry densities of the loess specimens range from 1.51 g/cm3 to 

1.78 g/cm3, with gravimetric water content spanning from 14.0% 
to 19.7%. Following the ASTM D4318-17 (2010), the liquid limit 
and plastic limit of Xi’an loess were determined to be 31.1% and 
18.8%, respectively. Furthermore, the particle size distribution of 
Xi’an loess was 43.7% sand, 31.5% silt, and 24.8% clay. In contrast, 
the dry densities of the Xi’an sand were observed to vary between 
1.38 g/cm3 and 1.58 g/cm3. Additionally, the natural water content 
of the Xi’an sand was found to be less than 10%, which is attributed 
to a sand content of 94.6%. More details of the physical and electrical 
properties of the in situ tested soil types are summarized in Table 5.

The dry densities derived from Equation 10 and those obtained 
using the oven-drying method are depicted in Figure 13a. It is 
observed that the developed model for calculating dry density 
demonstrates a better performance. At both testing sites, the relative 
error compared to that of the oven-drying results was less than ±10% 
for the majority of the 48 test points, indicating the feasibility of 
soil type-independent calibration relationships for dry density in 
in situ testing. Figure 13b presents the comparison results between 
in situ TDR testing and the laboratory oven-drying method for 
soil gravimetric water content. As illustrated in the figure, the 
gravimetric water content calculated using Equation 11 in this study 
exhibits strong agreement with the results obtained from the oven-
drying method. A total of 41 out of 48 test points have absolute 
errors within ±0.02, indicating that the soil type-independent 
calibration relationship for water content calculated by Equation 11 
has applicability in field testing. 

8 Conclusion

Accurate assessment of soil water content and dry density 
is crucial for evaluating the collapsibility of loess and other 
geotechnical applications. However, existing TDR calibration 
methods are constrained by soil-specific limitations. This 
study successfully developed soil type-independent calibration
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relationships for TDR measurements of soil water content and dry 
density. The following conclusions are drawn: 

1. Laboratory experiments were conducted on four distinct soil 
types to calibrate and validate the existing TDR models. 
Curioni’s model demonstrated superior accuracy for dry 
density measurement, with most data points exhibiting relative 
errors within ±10%. In contrast, Jung’s model showed relative 
errors exceeding ±20% for several test points.

2. A soil type-independent calibration relationship for dry 
density was successfully developed using the MEP algorithm. 
The MEP model exhibited robust performance in both the 
training and validation phases, achieving a slope of 0.925 
and an R2 value of 0.88 for the training database. Most 
validation data points fell within a ±10% relative error range. 
Building upon this model, a soil type-independent calibration 
relationship for water content was established, demonstrating 
high accuracy, with most predicted values exhibiting absolute 
errors within ±0.04.

3. The developed calibration relationships were further validated 
using 64 datasets from the literature, covering various soil 
types, and through two field in situ tests conducted in 
Xi’an and Jingyang, Shaanxi Province. The in situ validation 
demonstrated that the developed model could accurately 
determine dry density with relative errors less than ±10% for 
most test points. Water content measurements showed strong 
agreement with laboratory oven-drying results, with absolute 
errors within ±0.02 for the majority of test points.

This research provides a valuable tool for rapid in situ assessment 
of soil properties, particularly for evaluating loess collapsibility, 
without requiring soil-specific calibration. The proposed soil type-
independent calibration relationships based on MEP and TDR 
technology offer a reference to assist ASTM D6780/D6780M − 19 
(2019) in geotechnical applications.
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Nomenclature

a,b,c,d, f ,g Calibration parameters

ρw Density of water (g/cm3)

ECb Bulk electrical conductivity (S/m)

c Velocity of the electromagnetic wave in free space

(i.e., 3 × 108 m/s)

V1 First voltage drop (V)

L Probe length of the three-rod TDR

Clay Clay content

w Gravimetric water content (%)

ρd Dry density of soil (g/cm3)

ε Permittivity constant

V f Final voltage (V)

∆t Time difference

PL Plastic limit
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