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The condition of road pavements significantly impacts transportation systems, 
affecting driving comfort, road safety, vehicle durability, and fuel consumption. 
Consequently, effective road maintenance represents a crucial task for 
governmental agencies, necessitating reliable, scalable, and preferably 
cost-effective assessment tools. Commonly employed indices, specifically 
the Pavement Condition Index (PCI) and the International Roughness 
Index (IRI), exhibit distinct limitations. Particularly, accurate IRI calculation 
requires expensive instrumentation, thus limiting its scalability. Regarding PCI 
computation, which is based on the type, number, and severity of pavement 
anomalies, 3D reconstruction methods, although accurate, are costly and 
complex, whereas visual-based methods are sensitive to environmental 
conditions and computationally intensive. Conversely, vibration-based methods 
are economical and typically involve low computational demands. However, 
they face challenges in anomaly classification and necessitate precise calibration 
for each vehicle used. Consequently, PCI calculation also suffers from limited 
scalability. In this paper, an innovative and cost-effective vibration-based 
approach is proposed for monitoring road surface quality. The proposed 
approach relies on a home-made low-cost acquisition unit combined with 
a novel algorithm that employs the Hilbert transform to calculate a new index, 
called Road Surface Quality Index (RSQI). The proposed methodology allows 
to perform large-scale data collection via cloud connectivity and generates 
intuitive grayscale maps that highlight road segments with poor surface quality. 
Experimental validations conducted along the Palermo-Altofonte route using a 
plug-in hybrid vehicle, together with comparative analyses against both IRI and 
visual-based approaches, confirm the effectiveness of the proposed approach 
that can be considered reliable for supporting targeted and sustainable road 
maintenance strategies.
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 1 Introduction

The condition of road pavement significantly influences several critical aspects 
related to transportation systems, including road safety, vehicle durability, and 
energy efficiency. Specifically, deteriorated road surfaces considerably compromise 
driving safety, increasing the probability of accidents due to diminished vehicle

Frontiers in Built Environment 01 frontiersin.org

https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org/journals/built-environment#editorial-board
https://doi.org/10.3389/fbuil.2025.1656913
https://crossmark.crossref.org/dialog/?doi=10.3389/fbuil.2025.1656913&domain=pdf&date_stamp=
2025-09-05
mailto:salvatore.russotto01@unipa.it
mailto:salvatore.russotto01@unipa.it
https://doi.org/10.3389/fbuil.2025.1656913
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fbuil.2025.1656913/full
https://www.frontiersin.org/articles/10.3389/fbuil.2025.1656913/full
https://www.frontiersin.org/articles/10.3389/fbuil.2025.1656913/full
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Russotto et al. 10.3389/fbuil.2025.1656913

stability, reduced traction, and impaired handling capabilities 
(Sattar et al., 2021; Al-Masaeid et al., 2025; Lebaku et al., 2025). 
Additionally, poor conditions of road pavements accelerate the 
degradation of key vehicle components, such as suspension systems, 
resulting in higher maintenance costs and decreased vehicle lifespan. 
Furthermore, low quality of road surfaces negatively affect vehicle 
fuel efficiency, causing increased fuel consumption and consequent 
economic and environmental impacts (Celaya-Padilla et al., 2018).

From an economic perspective, the proportion of road networks 
maintained in optimal condition serves as a reliable indicator 
of a country’s economic strength, infrastructural effectiveness, 
and overall competitiveness (Martinez-Ríos et al., 2022; Ivanova 
and Masarova, 2013). Indeed, countries characterized by well-
maintained transport infrastructures typically exhibit high 
economic productivity, greater logistic efficiency, and improved 
standards of living, all of which contribute to sustained economic 
growth and enhanced social wellbeing.

Given the aforementioned considerations, adopting targeted and 
intelligent road maintenance strategies, supported by tools capable 
of assessing pavement conditions and prioritizing maintenance 
interventions, represents a fundamental task for government 
agencies (El-Wakeel et al., 2018). Therefore, the successful 
formulation and implementation of strategic pavement maintenance 
decisions require comprehensive and accurate monitoring of road 
surface conditions. Such monitoring should rely on advanced 
diagnostic techniques, characterized by scalability, accuracy, ease 
of implementation, and preferably, low costs, thus facilitating 
widespread application and sustainable road infrastructure 
management. In particular, diagnostic techniques that combine 
scalability and low costs, thereby enabling broad deployment and 
long-term sustainability, include approaches based on connected 
vehicles equipped with low-cost sensors, which can be exploited 
for crowdsensing applications to continuously collect and analyze 
road condition data over extensive transportation networks 
(Mahlberg et al., 2023; Lebaku et al., 2025). In order to assess the 
quality of road surfaces, various types of sensor-equipped vehicles 
can be employed. Among these, recent applications have involved 
the use of all-terrain vehicles (Guerra et al., 2024), e-scooters 
(Virin et al., 2025), and bicycles (Zang et al., 2018; Lee et al., 
2025). Nevertheless, passenger cars remain the most commonly 
used vehicles to date.

The condition of road pavements is commonly evaluated using 
either the Pavement Condition Index (PCI) or the International 
Roughness Index (IRI) (Dela Cruz et al., 2021), both of which are 
influenced by several factors, including the structural characteristics 
of the pavement (Xiaoyan et al., 2023). Although some studies 
have sought to establish a correlation between PCI and IRI (Rijal 
and Medis, 2019), also incorporating approaches based on genetic 
algorithms or artificial neural networks (Hanandeh et al., 2022), 
typically only one of these indices is used.

The PCI, originally developed by the U.S. Army Corps, evaluates 
pavement quality based on the number, type, and severity of road 
surface anomalies, disregarding road roughness in segments without 
anomalies. Conversely, the IRI, proposed in 1986 (Sayers et al., 
1986), is calculated by simulating the response of a standardized 
vehicle, known as quarter-car and also called golden car, traveling 
at a speed of 80 km/h over a road profile (Múčka, 2017). 
Therefore, IRI calculation requires the knowledge of the road profile, 

which is obtained with direct or indirect measurements. Direct 
measurements involve the use of high-performances profilometers, 
like laser profilometers, to directly measure the road profile elevation 
with high accuracy. Such instruments, which must have a precision 
at least of 0.38 mm and that have to be able to acquire samples 
with a maximum distance of 25 mm, make the direct measurements 
very expensive. On the other hand, although indirect measurements 
based on signals acquired by using accelerometers mounted on a 
moving vehicle are cheaper than direct measurement, they require 
precise calibrations and the road profile cannot be obtained with 
the same accuracy of direct measurements. Therefore, indirect 
measurements may lead to inaccurate estimation of the IRI. 
Moreover, although simplified methods for the direct estimation of 
IRI from vibration measurements without employing the quarter-
car model have been developed and used for different type of 
vehicles (Setiawan and Nurdin, 2019; Zang et al., 2018; Guerra et al., 
2024), innovative approaches combining vibration measurements 
with Kalman filtering have been proposed (Li J. et al., 2025), specific 
maintenance thresholds applicable to particular regions have been 
suggested (Chen et al., 2020), speed-dependent thresholds for road 
surface condition assessment have been introduced (Yu et al., 
2006), and even original convolutional neural network models 
for long-term IRI trend prediction have been created (Wu et al., 
2025), estimating IRI solely from vibration measurements remains 
challenging.

As for computation of the PCI, detailed knowledge of 
existing pavement anomalies is required. These anomalies, 
defined as variations from standard road surface conditions 
(Luo et al., 2020), include potholes, cracks, bumps, bridge 
joints, and manholes. Several methodologies to identify the 
anomalies of the road surfaces can be found in literature. These 
methodologies, also including those based on machine learning 
or deep learning approaches (Radwan et al., 2025; Afridi et al., 
2025; Magdy et al., 2025), are classified into three distinct 
categories: 3D reconstruction methods, visual-based methods, and 
vibration-based methods (Sattar et al., 2018).

3D reconstruction methods typically involve advanced sensing 
technologies, such as laser scanners, to achieve highly detailed 
monitoring of road surfaces. These approaches not only allow 
accurate identification and classification of pavement anomalies, 
but also enable precise retrieval of three-dimensional geometric 
properties with a high level of resolution (Kim et al., 2022). 
Although this type of methodology has been extensively studied by 
various authors and provides exceptional accuracy, it is generally 
characterized by high operational costs, substantial computational 
complexity, and limited suitability for large-scale crowdsensing 
applications (Sattar et al., 2021; Kim et al., 2022).

Visual-based methods, which rely on image-processing 
techniques and texture-extraction algorithms, employ 
georeferenced images captured using cameras or video recorders 
typically mounted within vehicles. Although extensively 
investigated by numerous researchers (Kim et al., 2022; Koch 
and Brilakis, 2011; 2018; Varona et al., 2020; Wang et al., 2017) 
and further enhanced through approaches like those based on 
deep learning (Ibragimov et al., 2024) and mask region-based 
convolutional neural network (Li D. et al., 2025), visual-based 
methods, while generally less costly than 3D reconstruction 
techniques, remain computationally intensive. Additionally, their 
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reliability and robustness are often negatively impacted by variable 
lighting conditions, shadows, and environmental factors affecting 
image quality (Sattar et al., 2018). Therefore, their applicability to 
large-scale crowdsensing-based assessments remains significantly 
constrained.

Vibration-based methods involve acquiring and analyzing 
vibrational signals produced by vehicles in transit. Specifically, 
vehicle vibrations exhibit higher amplitudes when traversing 
pavement segments characterized by poor conditions and surface 
anomalies. Although these vibration-based approaches typically 
face challenges regarding the precise classification of specific 
anomalies and the detailed extraction of their geometric features, 
they have become increasingly attractive due to their relatively 
low implementation costs compared to both 3D reconstruction 
and visual-based methods (Sattar et al., 2021). The economic 
feasibility and accessibility of these methods have significantly 
improved, particularly following the widespread adoption of 
micro-electromechanical systems (MEMS) accelerometers, which 
offer high performance at significantly reduced costs. Moreover, 
vibration-based methodologies exhibit low computational 
complexity.

Vibration-based methods can be divided into threshold-based 
methods and learning-based methods. The first ones allow to detect 
both the position of road surfaces anomalies and their severity. 
Specifically, the presence of a road anomaly is detected when changes 
in the amplitude of the accelerations acquired in vertical direction 
exceed a certain value. Among these techniques, the most used are 
those based on sliding windows (Nguyen et al., 2019). Although 
these methods are very cheap, they struggle to precisely classify 
anomaly types. Moreover, they require specific calibrations for each 
vehicle, complicating their adoption in widespread crowdsensing. 
Conversely, advanced vibration-based methods employing deep-
learning or machine learning algorithms provide effective anomaly 
classification but necessitate computationally intensive model 
training and extensive datasets acquired from various vehicle types 
across diverse road conditions.

Vibration-based methods have also been used to analyze data 
collected from smartphones, enabling widespread crowdsensing 
(Sattar et al., 2018; Setiawan and Nurdin, 2019; Zang et al., 
2018; Lee et al., 2025). However, the use of smartphones 
introduces uncertainties related to sensor variability and 
differences in the positioning of the smartphones within vehicles, 
potentially compromising the accuracy of road pavement quality 
assessment (Martinez-Ríos et al., 2022).

Due to the aforementioned reasons, achieving a comprehensive, 
cost-effective, and crowdsensing-compatible assessment of 
pavement quality remains challenging. Therefore, in this paper, 
an alternative approach for pavement quality assessment is 
proposed. It is based on a low-cost acquisition unit, developed 
at the Experimental Dynamics Laboratory of the University of 
Palermo, and an innovative algorithm that employs both the 
Hilbert transform and a georeferenced random variable, obtained by 
originally combining georeferenced segments of the first derivative 
of the Hilbert transform of the accelerations, to compute a novel 
index called the Road Surface Quality Index (RSQI). Notably, 
since the low-cost acquisition unit allows to send the acquired 
data to a cloud server, the proposed approach is not only very 
cheap, but also suitable for widespread crowdsensing applications. 

Moreover, the proposed approach generates a grayscale map as 
output, wherein darker shades correspond to road segments with 
poorer quality, thus facilitating a straightforward and intuitive 
interpretation of the results. Such maps can therefore effectively 
support governmental agencies in adopting sustainable mobility 
strategies based on intelligent and targeted road maintenance 
interventions. The reliability of the proposed approach is assessed 
through experimental tests performed in situ, with a plugin hybrid 
vehicle, along the Palermo-Altofonte route. Comparisons with IRI 
and classical visual-based methods are also reported. 

2 Proposed algorithm

In this section, the proposed algorithm for the assessment of 
the road surface quality is presented and described in detail. It 
is structured in different sequential steps, each contributing to 
achieving an accurate mapping of the road surface conditions.

The first step of the proposed algorithm consists of signal 
acquisition. Specifically, two distinct types of signals must be 
acquired: accelerometric signals and position data. Regarding 
accelerometric signals, their acquisition should be carried out by 
means of an accelerometer capable of accurately capturing vibrations 
over a broad range of amplitudes and frequencies. A wide amplitude 
range is necessary in order to detect road surface conditions that 
may induce significantly high accelerations, such as severe surface 
irregularities or potholes. Similarly, an extensive frequency range is 
essential for capturing impulsive effects that typically result from 
vehicle interactions with anomalies or discontinuities on the road 
surface. It is to be stressed that a high sampling frequency fc allows 
to have a little time sampling step ΔtA = 1/ fc. The accelerometer 
should be positioned inside the vehicle, preferably under the seat, 
to ensure safe driving conditions by preventing any interference 
of the measurement instrumentation with the driver’s movements 
or actions during vehicle operation. This strategic positioning 
ensures minimal intrusion into the cabin space and maintains 
driver comfort and safety. Furthermore, the sensor must be firmly 
attached to the vehicle structure to guarantee accurate and consistent 
measurements. Finally, the accelerometer should be configured to 
acquire acceleration data along the vertical axis, as this direction is 
critical for effectively capturing vibrations generated by road surface 
irregularities.

Regarding the acquisition of the vehicle’s position, it must 
be recorded using a GNSS receiver. The recording of positional 
data should be carefully synchronized with the acceleration 
data acquisition through appropriate instrumentation and 
synchronization procedures, ensuring temporal consistency 
between the acquired signals. Although no stringent technical 
specifications are strictly required for the GNSS receiver, it is 
advisable to select a device capable of providing sufficient positional 
accuracy. Moreover, it is recommended that the GNSS receiver 
should have a sampling frequency of at least 1 Hz, that corresponds 
to a time sampling step ΔtP = 1 s. This minimum frequency ensures 
an adequate spatial resolution of measurements during vehicle 
movement, thus ensuring accurate alignment between the acquired 
acceleration data and the corresponding geographic positions.

Once the accelerometric signals, denoted as ̈zu(t) (being t the 
time), and the corresponding position data in terms of latitude 
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and longitude, denoted respectively as lat(t) and lon(t), have 
been simultaneously acquired, it is possible to proceed to the 
subsequent step.

The second step of the proposed algorithm is the signal 
filtering. Specifically, a band-pass filter ranging from 0.5 Hz to 
the 40% of the sampling frequency is applied to the acquired 
acceleration ̈zu(t) in order to remove both high-frequency noise 
components, that do not carry meaningful information about the 
road-induced vibrations, and low-frequency components associated 
with gravitational acceleration. To perform this step, various types 
of filters can be employed, such as Butterworth or Chebyshev filters, 
with the possibility of selecting different filter orders. Furthermore, 
signal filtering can be carried out either in the time domain, as 
a convolution between the acquired acceleration and the filter’s 
impulse response function, or in the Laplace domain, as a simple 
product between the Laplace transform of the acceleration and the 
filter’s transfer function.

After the signal filtering, the Hilbert transform of the filtered 
acceleration ̈z(t), labeled as Z ̈z(t), is calculated as

Z ̈z (t) =
1
π

PV∫
∞

−∞

̈z (τ)
t− τ

dτ (1)

in which PV represents the principal value. This linear operator, 
that represents the convolution between the signal ̈z(t) and the signal 
1/(πt), is employed in the proposed algorithm because it has been 
demonstrated to exhibit high sensitivity to minimal variations in 
signal characteristics, which are often imperceptible when classical 
signal analysis techniques are used (Pirrotta and Russotto, 2023; 
Di Matteo et al., 2021; Cottone et al., 2008; Lo Iacono et al., 2012).

After computing Z ̈z(t), and in order to further emphasize the 
variations within the processed signal, the first derivative with 
respect to time of Equation 1 is calculated as

Ż ̈z (t) =
d
dt
[ 1

π
PV∫
∞

−∞

̈z (τ)
t− τ

dτ]. (2)

This differentiation step enhances the sensitivity of the analysis 
to rapid temporal changes and transient features in the signal, 
thereby improving the capability to clearly highlight localized 
variations associated with road surface anomalies. The use of the first 
derivative thus contributes significantly to increasing the resolution 
and effectiveness of the proposed approach for the assessment of the 
road surface quality.

After computing Ż ̈z(t), lat(t) and lon(t) are re-discretized using 
a time sampling step equal to ΔtA. Subsequently, the signal segment 
contained within a sliding window of duration Tseg is treated as a 
random variable. Specifically, the signal Ż ̈z(t) is initially considered 
within the interval t ∈ [0,Tseg]. This segment is associated with a 
specific time instant t0 = Tseg/2 and a corresponding spatial location 
(lat(t0), lon(t0)). The window is then shifted by ΔtA, and the next 
segment of the signal Ż ̈z(t) is considered for t ∈ [ΔtA,Tseg +ΔtA], 
corresponding to both a time instant t1 = Tseg/2+ΔtA and a location 
(lat(t1), lon(t1)). In general, for each segment Ż ̈z(t) within the 
interval t ∈ [jΔtA, Tseg + jΔtA], a time instant tj = Tseg/2+ jΔtA and a 
corresponding location (lat(tj), lon(tj)) are assigned. This procedure 
is iteratively applied for all values of j until the entire signal Ż ̈z(t)
is covered.

At this point, the construction of a spatial grid in which the 
segments of Ż ̈z(t) will be collected can be performed. To accomplish 

FIGURE 1
Construction of the spatial grid.

this, all signals acquired throughout a single day by various vehicles 
must be taken into account. Specifically, the four vertices defining 
the grid are determined by calculating the minimum and maximum 
recorded latitude values, denoted respectively as minlat and maxlat, 
and the minimum and maximum recorded longitude values, 
denoted respectively as minlon and maxlon. Then, the grid can be 
constructed by choosing the sampling steps Δlat and Δlon (Figure 1). 
The aforementioned sampling steps have to be selected depending 
on the spatial resolution desired. Finally, each cell of the grid is 
individuated by a value r = 1,2,…,m, that indicates the row, and a 
value s = 1,2,…,n, that indicates the column. It is to be stressed that 
m and n are the number of the grid’s rows and the number of the 
grid’s column, respectively.

Following the construction of the spatial grid, all the segments 
of Ż ̈z(t) and their corresponding geographical positions located 
within each individual grid cell must be collected. Once this step is 
completed, further analyses can be performed within each specific 
cell. In particular, considering multiple data acquisitions carried 
out using different vehicles during a single day, a generic grid cell 
positioned at row r and column s will contain a number of segments 
equal to Nrs, each associated with a specific geographical position 
defined by latitude and longitude.

At this stage, denoting by ̃Zirs the i-th random variable obtained 
from segments of Ż ̈z(t) within the cell positioned at row r and 
column s, associated with the geographical coordinates latirs and 
lonirs (where i = 1,2,…,Nrs), it is possible to compute the average 
geographical position coordinates within the cell, indicated as LATrs
and LONrs (Figure 2), as

LATrs =
1

Nrs

Nrs

∑
i=1

latirs (3)

and

LONrs =
1

Nrs

Nrs

∑
i=1

lonirs. (4)
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FIGURE 2
Mean of the geographical positions inside each cell and introduction of the random variable ̃Yrs.

Once that the average geographical position coordinates within the 
cell have been calculated, a new random variable is defined, for the 
cell positioned at row r and column s, as

Ỹrs =
1

√Nrs

Nrs

∑
i=1

̃Zirs. (5)

The random variable Ỹrs plays a crucial role, as it encompasses 
all the information derived from the individual signal segments 
associated with geographic positions falling within the cell located 
at row r and column s. In particular, crowdsensing applications 
involving a large number of vehicles help mitigate the effects 
related to vehicle speed and specific vehicle characteristics, thereby 
obviating the need for stringent calibration procedures, which may 
otherwise limit the feasibility of large-scale deployment. Staring 
from Ỹrs, the proposed index for the assessment of the road surface 
quality can be calculated, for the cell positioned at row r and column 
s, as

RSQIrs = σỸrs
= √ 1

M

M

∑
k=1
(Ỹ(k)rs − μỸrs

)
2

(6)

in which

μỸrs
= 1

M

M

∑
k=1

Ỹ(k)rs (7)

is the mean value of the random variable Ỹrs, M = Tseg/ΔtA

represents the number of realizations of Ỹrs, while Ỹ(k)rs  is the k-th 
realization of the random variable Ỹrs.

The results obtained in terms of RSQI are subsequently 
plotted into the spatial grid using a monochromatic scale 
(grayscale), where darker shades, corresponding to higher 
RSQI values, indicate poor road surface quality, while lighter 
shades, associated with lower RSQI values, reflect good surface 
conditions. 

3 Proposed low-cost acquisition 
system

For the acquisition of the data, a low-cost acquisition system, 
that consists of different parts, has been properly designed. 
Specifically, for the acquisition of the accelerations, a tri-axial digital 
MEMS accelerometer (model ADXL345) has been used (Figure 3a). 
This sensor allows to acquire a wide range of acceleration 
magnitudes (up to ±16 g) as well as a wide range of frequencies 
(up to 3,200 Hz). As far as the acquisition of the geographical 
position is concerned, a GNSS receiver (model NEO8MV2) has 
been used (Figure 3b). The selected GNSS receiver allows to acquire 
the position with a sampling frequency up to 5 Hz, i.e., a value 
every 0.2 s. Both the sensors have been connected to the low-cost 
acquisition unit (model Raspberry Pi 4B) depicted in Figure 3c. 
Finally, two auxiliary components have been used: a 7” touchscreen 
display for user interface visualization (Figure 3d) and a 3D-printed 
support for the accelerometer realized, using FDM technology, with 
PLA material (Figure 3e). The entire low-cost acquisition system, 
having a total cost of less than 200€and housed in a home-made 
3D-printed cover realized in PLA, is depicted in Figure 4. For the 
acquisition and the storage of the data, a home-made software, 
properly designed, has been developed. Specifically, the software 
architecture consists of a primary process implemented in Python, 
which supervises two subsystems: an optimized C++ module 
responsible for managing the ADXL345 triaxial accelerometer via 
the I2C interface, and a Python component dedicated to acquiring 
positioning data from the GNSS receiver through the UART serial 
protocol. The implementation leverages a carefully selected set of 
specialized libraries: the C++ subsystem employs low-level libraries 
(including i2c-dev.h and chrono) to enable direct hardware access 
and ensure precise timing control, whereas the Python subsystem 
makes use of libraries such as numpy, scipy, pandas, and tkinter. 
Furthermore, the system incorporates a storage mechanism that 
locally saves the acquired data in CSV format and subsequently 
transfers them to a cloud storage via scheduled synchronization, 
implemented using the rclone utility.
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FIGURE 3
Components of the proposed low-cost acquisition system. (a) Tri-axial MEMS accelerometer (mod. ADXL345), (b) GNSS sensor (mod. NEO8MV2), (c)
Acquisition unit (mod. Raspberry PI 4B), (d) 7″ touchscreen display, (e) 3D-printed support.

FIGURE 4
Proposed low-cost acquisition system.

Although designed with cost-effectiveness as a primary 
objective, the vibration measurement system underwent rigorous 
evaluation in terms of reliability and accuracy. Experimental 
testing was conducted at the Experimental Dynamics Laboratory 
of the University of Palermo by means of a comparative analysis 

against a conventional high-cost reference measurement system. 
The reference setup consisted of a PCB393B04 piezoelectric 
accelerometer interfaced with a NI PXIe-4497 data acquisition 
module, housed within an NI PXIe-1082 chassis. This equipment 
is widely recognized and commonly employed in high-precision 
vibration measurement applications.

To guarantee a reliable and consistent evaluation, both the 
ADXL345 accelerometer, connected to the Raspberry Pi 4B, and the 
PCB393B04 accelerometer were mounted on a properly designed 
holder. This configuration ensured that both devices were subjected 
to identical vibrational input. The vibration signals were generated 
by using an APS400 shaking table, connected to a PA 800M amplifier, 
in turn connected to the NI PXIe-1082 chassis. Such a configuration 
ensured uniform experimental conditions, eliminating potential 
variability in environmental factors. The complete experimental 
setup is illustrated in Figure 5.

A series of vibration signals was generated to evaluate the 
reliability of the proposed system. In particular, harmonic signals of 
30 s were generated at various frequencies (0.5 Hz, 1.0 Hz, 2.0 Hz, 
10.0 Hz, 20.0 Hz, and 50.0 Hz) using the APS 400 shaking table 
and were simultaneously acquired by both accelerometers with a 
sampling frequency equal to 500 Hz. Before the comparison, a pre-
processing of the data acquired has been performed. Specifically, 
the signals simultaneously acquired by both accelerometers have 
been filtered by using a low-pass filter (Butterworth-type) of 
8th order with a cut-off frequency Ωc equal to the 40% of the 
sampling frequency (Ωc = 200 Hz). The comparative results showed 
strong agreement between the signals recorded by the ADXL345 
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FIGURE 5
Experimental setup.

FIGURE 6
Comparison between a segment of signal recorded by the ADXL345 accelerometer (dashed line) and those obtained from the PCB393B04 
accelerometer (continuous line).

accelerometer and those obtained from the conventional reference 
system, as illustrated in Figure 6.

This concordance is particularly noteworthy given the 
substantial cost difference between the two measurement systems. 
Consequently, the results highlight the significant potential of the 
proposed low-cost solution as a viable alternative for vibration 
measurement applications, especially in scenarios constrained 
by limited budgets but still demanding reliable measurement 
performance.

4 In-situ test

In this section, the in situ test performed in order to prove 
the reliability of the proposed approach is described in detail. 
Specifically, in Section 4.1 the information on both the experimental 
setup and the experimental investigation are reported, in Section 4.2 
the methodology adopted is described in detail, while in Section 4.3 
the results obtained are discussed also considering a comparison 
with IRI and classical visual-based techniques. Finally, Section 4.4 
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FIGURE 7
Plug-in hybrid vehicle used for the in situ test.

includes a discussion of the current limitations of the proposed 
approach, along with possible future developments aimed at 
enhancing its accuracy and robustness. 

4.1 Setup and experimental investigation

For the in situ test, a Kia Xceed plug-in hybrid vehicle has 
been used (Figure 7).

The choice of this specific vehicle allows for the minimization of 
vibrations induced by the engine, thereby enabling the acquisition of 
signals that are less affected by vibration sources unrelated to road 
surface quality.

The vehicle has been equipped with the acquisition system 
described in Section 4.1 in order to acquire, simultaneously, 
accelerations and position (Figure 8). Specifically, the accelerometer 
ADXL345 has been positioned under the seat (Figure 8a), while 
the acquisition unit and the GNSS receiver have been placed so 
as not to disturb the driver while driving (Figure 8b). Finally, a 
camera has been used to record video during the experimental 
tests, allowing to perform a comparison with visual-based 
methods (Figure 8c). The test route selected was the SS 624, 
specifically a 6.55 km section between Palermo and Altofonte, 
two localities in Sicily, Italy (Figure 9). This section of the 
road was selected for its variety of surface conditions. In fact, 
different types of road anomalies, such as speed bumps, potholes, 
bridge joints, and other surface irregularities, are present in the 
selected route.

The route was traversed eight times in direction Altofonte and 
eight times in direction Palermo. Therefore, a total distance of 
104.8 km has been traveled. Considering that the mean velocity of 
the vehicle was equal to 57.48 km/h, the total traveling time was 
6,540 s (1 h and 49 min). 

4.2 Methodology

The signals acquired in terms of vertical acceleration and 
geographic position, respectively acquired with a time sampling 

step ΔtA = 0.002 s and ΔtP = 1 s, were initially transmitted to a 
cloud server for data storage and subsequently analyzed using 
the proposed algorithm described in Section 2. Specifically, 
the acquired acceleration signals were first filtered using a 
Butterworth band-pass filter of 8th order with a passband 
ranging from 0.5 Hz to 200.0 Hz (corresponding to 40% of 
the sampling frequency). This filtering step was performed 
to remove both high-frequency noise components, which 
do not carry information related to road-induced vibrations, 
and low-frequency components associated with gravitational 
acceleration.

Subsequently, the Hilbert transform was applied to the filtered 
acceleration signals (Equation 1), and its first derivative with 
respect to time was computed (Equation 2). After re-discretizing 
lat(t) and lon(t) using a temporal sampling step equal to ΔtA, 
the signal Ż ̈z(t) was segmented into georeferenced intervals 
with a duration Tseg of one second. This duration was selected 
to ensure that each segment corresponds to a road section 
shorter than 50 m. Indeed, considering the maximum speed limit 
on highways (i.e., 130 km/h), a 1-s segment corresponds to a 
road length of slightly more than 36 m. For the case study 
considered, the resulting segments represent road sections with an 
average length of approximately 16 m and a maximum length of 
about 26.5 m.

As for the spatial grid, a 150× 150 grid with Δlat = 3.0816×
10−4 and Δlon = 2.4689× 10−4 has been used in order to obtain an 
adequate spatial resolution.

For each grid cell, identified by row r and column s, the 
georeferenced signal segments falling within the cell were collected, 
and the average position within the cell was computed using 
Equations 3, 4. These segments were then treated as random 
variables, and the final random variable Ỹrs associated with the cell 
(r, s) was computed using Equation 5. Finally, the RSQI for each cell 
was calculated, taking into account Equation 7, by using Equation 6 
and then the final map was plotted. A flowchart of the adopted 
approach is shown in Figure 10.

It is important to highlight that the proposed approach was 
initially applied to each individual run performed during the 
experimental tests, in order to conduct a statistical analysis aimed 
at quantifying the variability of the obtained results. Subsequently, 
two runs (specifically the second and the fifth) were excluded 
from the analysis due to the presence of outliers. These outliers 
were caused by isolated road surface anomalies located at two 
distinct points along the test route. In one run, the vehicle passed 
over the first anomaly, while in the other run it encountered the 
second. Since the vehicle did not traverse these anomalies during the 
remaining runs, the results exhibited inconsistencies that hindered 
a reliable interpretation of the variability across the rest of the 
route. Therefore, the two affected runs were removed. However, 
it is worth noting that in large-scale crowdsensing applications 
involving a high number of vehicles, the removal of such samples 
would not be necessary, as even isolated anomalies are likely 
to be detected by multiple vehicles. After removing the outliers, 
the statistical analysis was repeated by reapplying the proposed 
approach separately to each of the remaining runs, in order to assess 
result variability. Finally, the proposed method was applied once 
to the entire set of non-excluded runs combined, to obtain the 
final results. 
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FIGURE 8
Setup for the experimental investigation. (a) Low-cost acquisition unit, (b) ADXL345 accelerometer, (c) Camera.

4.3 Results and comparison with IRI and 
visual-based methods

To evaluate the reliability of the proposed approach, a 
comparison was performed with both the IRI computed for the same 
road segment and conventional visual-based methods. Specifically, 
the visual inspection was carried out by analyzing the video 
recordings acquired during the tests using the camera mounted on 
the vehicle, while the IRI was calculated from the filtered vertical 
acceleration using a simplified procedure available in the literature 
(Zang et al., 2018). The results obtained in terms of RSQI and IRI are 
presented in Figure 11.

From the results in terms of RSQI reported in Figure 11, three 
distinct zones characterized by darker color shades can be identified, 
indicating higher RSQI values and, consequently, lower road surface 
quality. However, when comparing the results in terms of RSQI 
with those in terms of IRI, also shown in Figure 11, significant 
discrepancies can be immediately observed. These differences are 
further confirmed by the Pearson correlation analysis between the 

RSQI and IRI results, which yields a p-value of 0.4. Specifically, the 
first zone, located in the lower-left part of the plots in Figure 11, 
corresponds to the area closest to Altofonte and, as evidenced by 
the visual inspection results shown in Figure 12, it is characterized 
by several deteriorated bridge joints. These defects are distributed 
throughout almost the entire zone, as also indicated by the results in 
terms of RSQI. Conversely, the results in terms of IRI suggest that 
only few points within the same area are in poor condition, which 
contrasts with the findings from the visual inspections.

The second zone, located approximately midway along the route, 
is also characterized by the presence of several bridge joints. As 
shown in Figure 13, these joints are in very poor maintenance 
conditions, a finding that is also confirmed by the RSQI results 
reported in Figure 11. In contrast, the IRI-based results suggest that 
this area is in relatively good condition if compared to those of the 
first zone, which is inconsistent with the observations from the visual 
inspections presented in Figure 13.

The third zone, which is closest to Palermo, is characterized by 
severe road surface anomalies of various types, such as potholes, 

Frontiers in Built Environment 09 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1656913
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Russotto et al. 10.3389/fbuil.2025.1656913

FIGURE 9
Palermo-altofonte route.

FIGURE 10
Flowchart of the adopted approach.

manholes, cracks, and asphalt discontinuities (Figure 14). In this 
case, both the RSQI and IRI results highlight the poor condition of 
the road surface, although the IRI-based results appear to slightly 
underestimate the severity of the actual conditions.

Finally, visual inspections conducted in the areas between the 
first and second zones and between the second and third zones 

revealed the presence of only a few minor anomalies. This finding is 
confirmed by the RSQI results and, for the area between the second 
and third zones, also by the IRI-based results. However, for the area 
between the first and second zones, the IRI results suggest road 
conditions comparable to, or even worse than, those observed in the 
second zone.
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FIGURE 11
Results obtained in terms of RSQI (left) and IRI (right).

FIGURE 12
Deteriorated bridge joints of the first area.

FIGURE 13
Deteriorated bridge joints of the second area.
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FIGURE 14
Anomalies of the road surface in the third area.

FIGURE 15
Standard deviation of RSQI (left) and IRI (right).

Based on the results obtained, it can be stated that the proposed 
approach is more effective than the IRI computed using low-cost 
methods based on accelerometric signal acquisition in detecting 
zones characterized by poor conditions of the road surface.

Further analyses were conducted to investigate the variability 
of the results obtained across multiple runs over the same road. In 
particular, Figure 15 reports the standard deviations of both RSQI 
and IRI computed from repeated runs.

From Figure 15, it can be observed that both RSQI and IRI 
exhibit the largest variations in the third zone, as this area is 
characterized by several localized anomalies. The same figure also 
shows that, in the first zone, the variations in IRI, when compared 
with the values reported in Figure 11, are greater than those 
observed for RSQI, particularly at the terminal point. In the second 
zone, IRI exhibits smaller variations than RSQI. Finally, in the areas 
between the first and second zones and between the second and 
third zones, IRI shows slightly greater and slightly smaller variations, 
respectively, compared to RSQI. Overall, however, IRI appears to 
exhibit slightly smaller variations than RSQI.

Although the IRI computed using low-cost methods exhibits 
slightly smaller overall variations compared to the RSQI, the RSQI 

appears to be more effective in identifying areas characterized by 
poor road surface conditions. 

4.4 Discussion

The results obtained, described in the previous section, confirm 
the reliability of the proposed approach for the low-cost assessment 
of the road surfaces quality. Nonetheless, certain aspects of the 
current implementation could be further improved to enhance 
the robustness and generalizability of the method. At present, the 
gravitational component is attenuated by applying a band-pass 
Butterworth filter to the accelerations. While this filtering strategy 
has proven effective in isolating the dynamic content associated 
with road-induced vibrations, it does not fully correct for the 
influence of road geometry and vehicle attitude, such as the effects 
of superelevation, sudden slope variations, or body roll during 
cornering. Future developments may address this aspect through 
the integration of IMU-based orientation correction or the use 
of compensatory mechanisms such as inclinometer data, which 
would allow for a more precise estimation of the true vertical 
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component of acceleration regardless of the vehicle’s instantaneous 
orientation.

Similarly, the dynamic response of the vehicle to surface 
irregularities inherently depends on factors such as speed, 
suspension configuration, tire stiffness, and chassis damping. 
Although these dependencies are not explicitly modeled in the 
current RSQI formulation, their impact is expected to be mitigated 
by the crowdsensing strategy. Aggregating data from a wide and 
heterogeneous fleet of vehicles can help average out vehicle-
specific dynamics and reduce individual biases. Nevertheless, 
future studies could explore the introduction of vehicle-specific 
calibration procedures or correction factors, allowing for a more 
refined normalization of the acceleration data and, consequently, a 
more consistent estimation of surface quality across different vehicle 
types and operating conditions.

Moreover, although the results obtained suggest that RSQI 
values greater than 90 indicate poor road surface conditions, it 
should be emphasized that future studies involving crowdsensing 
applications performed on a wide range of vehicles would be 
valuable for establishing more precise threshold values.

Finally, the proposed method currently relies on GNSS data for 
spatial referencing and trajectory segmentation. While this solution 
proves effective in most scenarios, its accuracy can be reduced in 
urban environments or areas with limited satellite visibility. Future 
enhancements may consider the integration of Assisted GNSS 
(A-GNSS) techniques to improve satellite signal acquisition and 
reliability, particularly under challenging conditions. In addition, 
the incorporation of topological constraints and map-matching 
algorithms could further increase positional accuracy by aligning 
the estimated trajectory with known road network geometries.

In light of these considerations, the proposed methodology 
provides a solid and scalable foundation for road surface quality 
assessment, and its current limitations, although present, do not 
compromise the validity of the approach. Instead, they offer clear 
opportunities for future enhancement through targeted extensions 
aimed at increasing accuracy, robustness, and applicability across a 
broader range of operational conditions. 

5 Concluding remarks

This study presented an innovative, cost-effective methodology 
for the assessment of road surface quality based on vibration signals 
acquired using a custom-designed low-cost system. The proposed 
approach introduces the Road Surface Quality Index (RSQI), a 
novel metric derived from the Hilbert transform and its first time 
derivative, enabling enhanced sensitivity to surface irregularities. 
The introduction of georeferenced signal segments, combined in an 
original way to derive random variables representative of specific 
spatial points, enables the proposed approach to be ideally suited for 
crowdsensing applications involving a large number of connected 
vehicles, while the generation of intuitive grayscale maps supports a 
rapid identification of deteriorated road segments.

The good agreement between signals acquired with the low-cost 
system and those obtained using a high-end reference setup supports 
the reliability of the acquisition unit.

Experimental validations conducted along a test route 
in Sicily using a plug-in hybrid vehicle demonstrated the 

system’s capability to assess the road surface quality and the 
comparisons with both International Roughness Index (IRI) 
and visual-based methods confirmed the effectiveness of the 
proposed approach.

Thanks to its affordability, scalability, and suitability for 
crowdsensing applications, the proposed approach represents a 
promising solution for large-scale low-cost monitoring of the road 
surface quality. It can serve as a valuable decision-support tool for 
governmental agencies in the context of sustainable and data-driven 
road maintenance strategies.
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