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In the context of climate change and urban expansion, understanding
unsaturated soil behavior is critical for designing resilient infrastructure.
Soil moisture retention influences stormwater management, structural
performance, and the effectiveness of green infrastructure. This study focuses
on the influence of soil density and water content on soil-water characteristic
curve (SWCC) and soil pore-size distribution. Engineered soil from Astana,
Kazakhstan, was tested under varying compaction conditions: at optimum
water content (OWC), wet of optimum, and dry of optimum. SWCCs were
measured using Tempe cell (0-100 kPa) and WP4C (100-300 MPa). Pore-size
distributions (PSD) were derived using the Fredlund and Xing equation and
analyzed with scanning electron microscopy (SEM), while mineral content was
determined via X-ray diffraction (XRD). Results showed that soil compacted at
OWC and dry of optimum exhibited bimodal SWCCs, while wet-compacted
soil showed unimodal behavior. Increased dry density resulted in reduced
air entry value (AEV) and water content, while lower density led to larger
dominant pore sizes and higher matric suction. These findings offer practical
insights into sustainable urban living. Understanding SWCC behavior supports
the design of climate-adaptive infrastructure, such as bioretention systems,
permeable pavements, and vegetated swales. Optimizing soil compaction can
enhance water retention and reduce flood risk, particularly in semi-arid, climate-
sensitive regions like Astana. Integrating these soil mechanics principles into
urban planning contributes to long-term resilience and more sustainable city
development.

KEYWORDS

geotechnical engineering, landslide, unsaturated soil mechanics, soil moisture, soil
suction

1 Introduction

To build climate-resilient cities, it is essential to understand how urban soils respond
to extreme weather events, such as intense rainfall and prolonged droughts. Adaptation
strategies like slope stabilization, rainwater harvesting, and nature-based solutions rely on
accurate predictions of soil-water interactions. Incorporating unsaturated soil behaviour
into urban planning can improve flood mitigation, erosion control, and green infrastructure,
especially as climate extremes become more frequent (Li et al., 2024; Zhai et al., 2024).
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Unsaturated soils—found above the water table—exhibit
negative pore-water pressure (matric suction), which plays a key
role in maintaining slope stability (Amantay et al., 2023). During
dry periods, suction increases soil strength, but this stabilizing effect
decreases during rainfall, raising the risk of slope failure (Jeong et al.,
2015). This is particularly concerning in tropical and semi-arid
regions where rainfall-induced slope failures are common.

A key tool in evaluating unsaturated soil behaviour is the soil-
water characteristic curve (SWCC), which defines the relationship
between water content and matric suction. The SWCC informs
critical parameters such as shear strength, permeability, and
volume change, vital for climate-resilient geotechnical design
(Zhai et al, 2023). Raghuram et al. (2020) experimentally
investigated the influence of fines content on the hysteretic behavior
of SWCCs of reconstituted soils, developed regression models to
predict SWCC fitting parameters, and proposed a formulation to
quantify hysteresis, with validation against independent soil data.
Raghuram et al. (2024) examined how sample size and dry unit
weight affect the SWCCs and slope stability of expansive soils,
showing that higher dry unit weight significantly increases matric
suction and the factor of safety of unsaturated finite slopes, thereby
underscoring the critical role of compaction in geotechnical design
and slope management. Raghuram et al. (2023) investigated the
influence of anisotropy and remolding on SWCCs of soils with
varying plasticity, showing that combining HYPROP and WP4C
data yields more accurate SWCCs, with remolding and compaction
conditions significantly affecting fitting parameters and finite slope
stability, while anisotropy has minimal impact.

Soil density significantly influences the SWCC: higher dry
density leads to smaller and tightly packed pores, while lower density
results in faster desaturation due to larger pore spaces. Peng et al.
(2020) developed a finite element model that integrates unsaturated
soil mechanics and compaction effects to simulate flexible pavement
performance under varying humidity and stress conditions. Results
showed that moisture distribution significantly alters the resilient
modulus of subgrade soils, leading to notable changes in pavement
deflection, tensile stress, and compressive strain, which directly
influence long-term road performance. Yao et al. (2021) investigated
how stress and compaction influence the soil water retention curve
of granite residual soil and their effects on pavement subgrade
performance. Results showed that stress-dependent water retention
and lower compaction levels amplify suction changes during rainfall
and evaporation, leading to greater ground heave and settlement,
which are critical for reliable pavement design.

Despite its importance, the effect of compaction state (dry
of optimum, optimum, and wet of optimum) on SWCC shape
and hysteresis is not well-documented. Laboratory testing of
SWCC, particularly in fine-grained soils, can be time-consuming
and produce limited data, which increases the likelihood of
interpolation errors.

Closely related to SWCC is pore-size distribution (PSD),
which quantifies soil porosity and controls water movement. PSD
categorizes pores as micropores (<0.2 um), small pores (0.2-2 um),
mesopores (2-50 um), and macropores (>50 pm) (Chua et al,
2022). Micropores retain water, mesopores facilitate capillary
action, and macropores drain quickly. Soil density alters PSD
by reducing macropore volume and shifting the distribution
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toward smaller pores, impacting both permeability and water
retention (Li et al., 2023).

Previous studies often examined SWCC and PSD independently
and lacked integration of pore-scale observations (e.g., SEM) with
hydraulic behaviour. This study addresses that gap by exploring how
soil density and initial water content jointly influence both SWCC
and PSD, aiming to enhance predictive models for sustainable,
climate-adaptive urban geotechnical design.

2 Applicable theories

Various mathematical models have been presented to
best match or forecast SWCC, which
development of unsaturated soils. In this study, Satyanaga et al.
(2013) (Equation 1) was used to model bimodal SWCC while
Satyanaga et al. (2017) (Equation 2) was used to model unimodal

is crucial for the

SWCC since the parameters of their models are able to adequately
represents the variables in the SWCC.
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Where: 8 is 0 at the suction range at or before AEV, and 1 at any
suction beyond AEV; 0, is calculated volumetric moisture content;
is matric suction In view (kPa); 0, is saturated volumetric moisture
content; y,, is the matric suction at inflection point of the SWCC
(kPa); v, is AEV of soil (kPa); S is indicating standard deviation of
the SWCG; 0, is residual volumetric moisture content of soil; v, is
matric suction according to 8, on the SWCC.

The pore-size distribution (PSD) of the soil mixtures can be
estimated from SWCC proposed by Fredlund and Xing (1994).
The water loss resulting from matric suction is described by the
SWCC’s slope. To put it another way, the fitted SWCC equation
might be differentiated to determine the water volume variation
in the two corresponding matric suctions. To derive the PSDs of
the soil mixtures, the equations suited to the SWCCs should be
differentiated as shown in Equation 3. The pore radius at a particular
matric suction may be estimated to be applying the equation of
Kelvin (Fredlund et al., 2012), which is illustrated in Equation 4,
presuming that soil pores are identical to cylindrical flow channels.

@ s ln(l+%) mn(%)“'l
dy 1n(1+170'6) a[e+(%)”]{ln[e+(%)n]}m+1
s lemer]
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TABLE 1 Index properties of Astana soil (AS1, AS2 and AS3).

10.3389/fbuil.2025.1661375

Properties  Unified soil Specific Dry density Water Liquid limit Plastic limit Plasticity
classification gravity content (VA (VA index (%)
system
Symbol (USCS) Gs w
AS1 SC (clayey sand) 25 1.8 8.1
AS2 SC (clayey sand) 25 1.9 135 39.58 19.33 20.25
AS3 SC (clayey sand) 2.5 1.8 18.2
Sand
Gravel Fines
Coarse | Medium Fine
100 il 1
i : i
%0 i i i
1 1 1
1 1 1
80 ' ' ' '
1 1 1 1
i i i i
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FIGURE 1
GSD of Astana soil.
Where: :—z is pore-size distribution of soil. performance, preventing excessive settlement, and improving long-
term durability under Kazakhstan’s harsh freeze—-thaw and rainfall
2T e
== s (4) conditions.

Where: T is surface tension of water = 72.75 x 10’3% at20 °Cs r
is radius of pore (mm).

3 Methodology

This study investigated engineered soil samples collected near
Nazarbayev University on Turan Avenue in Astana, Kazakhstan.
Three specific compaction states were selected for analysis: soil
compacted dry of optimum moisture content (AS1), at optimum
moisture content (AS2), and wet of optimum (AS3). These samples
were used to assess physical, mechanical, and hydraulic behavior
under varying moisture conditions. The findings are directly
applicable to road and pavement engineering in this area, as they
provide insight into how local soils respond to compaction and
moisture fluctuations, which is essential for predicting pavement
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The grain-size distribution of Astana soil and sand-kaolin
mixtures was determined following ASTM D6913M-17 (2009)
standards. This test helped define whether the soil was coarse- or
fine-grained and allowed classification according to ASTM D2487-
17 (2017). A sieve analysis was conducted and presented in Figure 4
to categorize the soil. Additionally, Atterberg limits, including
plastic and liquid limits, were obtained using ASTM D4318-17
(2017) to evaluate the plasticity characteristics of the soil. The
Standard Proctor test (ASTM D698-12, 2012) was performed to
determine each soil's optimum moisture content and maximum
dry density. The three compaction conditions (dry of optimum,
optimum, and wet of optimum) were selected to investigate both
unimodal and bimodal behaviors of the compacted soils. Soil
samples were conditioned to OMC, 2%-3% dry of optimum, and
2%-3% wet of optimum, sealed, and equilibrated for 24 h. They were
compacted in cylindrical molds (100 mm X 127 mm) in 3 layers for
Standard Proctor (600 kN-m/m?) or 5 layers for Modified Proctor
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FIGURE 2
Compaction curve of Astana soil samples.
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FIGURE 3
SWCC of AS1.
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(2,700 kN-m/m?), then trimmed to the required specimen sizes.
After compaction, specimens were wrapped to prevent moisture loss
and cured for 7 days before testing.

To examine the Soil-Water Characteristic Curve (SWCC), two
experimental approaches were applied: the Tempe cell method
for matric suctions under 100 kPa, and the WP4C dewpoint
potentiometer for a broader suction range. The Tempe cell setup
utilized a one-bar ceramic disc, O-ring seals, a top and base cap, and

Frontiers in Built Environment

04

wing nut clamps. Before testing, the ceramic disc was fully saturated
in distilled water using a vacuum pyrometer to ensure accuracy.
The soil sample was saturated by submerging the cell in purified
water until the moisture content reached at least 95%, at which point
the sample was considered saturated (Satyanaga et al., 2022). After
saturation, the saturated soil and cell were weighed. An air pressure
pump was then connected to the inlet tube, and pressure was applied
gradually using a low vacuum manifold system to induce matric
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TABLE 2 Satyanaga et al. (2013) best fitting parameters of AS1,
AS2 and AS3.

Fitting parameters AS1 AS2 AS3
0, 0.172 0218 0.286
¥, (kPa) 5 100 100
¥, (kPa) 15 300 1,000
5 2.000 0.100 3.000
0, 0.080 0.110 —
¥, (kPa) 6,500 2000 —
¥, (kPa) 25,000 9,000 —
S, 2 2 —
¥, (kPa) 71,000 39,000 40,000
0, 0.002 0.020 0.010

suctions of 0.5, 1, 3, 5, 10, 10, 20, 30, 40, 50, 70, 90, and 100 kPa.
To maintain saturation of the ceramic disc during the test, the
Tempe cell’s base was placed in a water reservoir. This prevented air
intrusion, provided the pressure remained below the air-entry value
of the disc. In previous studies on soil-water characteristic curve
(SWCC) testing, it was found that allowing sufficient time for the soil
specimen to equilibrate after each applied suction step was critical
for obtaining reliable measurements. When a 2-day interval between
pressure increments was used, specimens—particularly fine-grained
soils with low hydraulic conductivity—achieved more complete
equilibrium, which reduced errors from incomplete drainage or
wetting. Soil is considered to achieve equilibrium condition if the
water volume change is constant. As a result, the SWCC data were
more consistent and reproducible, with each suction value more
accurately reflecting the true moisture retention behavior of the soil.
The same procedure was applied in the SWCC testing in this study.

For higher suction values, the WP4C dewpoint potentiometer
was used. This device uses a chilled mirror to measure water
potential based on relative humidity. The measurement range
extends from 0 to 300 MPa with a precision of +0.05 MPa for
0-5MPa and 1% for 5-300 MPa. The device includes a sealed
chamber with a mirror, fan, and sensors. A laser beam detects the
dew point temperature by identifying the first point of condensation,
enabling fast and accurate suction readings. All tests were conducted
at a controlled temperature of 25 °C for consistency. Prior to testing,
the WP4C was calibrated using standard salt solutions of known
osmotic potential (e.g., LiCl), as recommended by Bello et al. (2025).
This calibration procedure ensures that the sensor response aligns
with reference values, minimizing systematic errors. The calibration
was repeated regularly during the experimental program to account
for potential drift in sensor performance. All tests were conducted
at a controlled temperature of 25 °C for consistency.

Finally, Scanning Electron Microscopy (SEM) was conducted
using a ZEISS Crossbeam 540 to observe the microstructure of
the samples. SEM provides high-resolution imaging up to x300,000
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magnification. To prepare samples, a 10 nm thick gold coating
was applied to ensure conductivity and prevent surface charging,
enabling consistent imaging quality.

4 Results

Table 1 represents the index properties of three Astana soil
samples. Astana soil was classified as “clayey sand” (SC) according
to the Unified Soil Classification System (USCS). The percentage of
gravel, sand and fines can be seen in Figure 1. Soil plasticity index
was 20.25%, with a plastic limit of 19.33% and a liquid limit of
39.58%. The intersection of plasticity index and liquid limit on the
plasticity chart showed that the fines were classified as “low plasticity
clay” (CL). The maximum dry density of soil was 1.9 g/m>®. The
specific gravity of Astana soil was 2.5.

The compaction curve indicating the five compaction tests on
Astana soil with 4, 8, 10, 15 and 20 percent of water content
were carried out to define the maximum dry density (MDD) and
optimum water content (OWC). The optimum moisture content and
maximum dry density were determined as 13.5% with 1.9 g/m*® as
illustrated in Figure 2. Moreover, ninety-five percent of MDD on dry
of optimum and wet of optimum was defined as 1.8 g/m? with water
contents of 8.1% and 18.2%, respectively. Thus, three cases with three
different dry densities and moisture contents were considered in
further laboratory experiments.

From the laboratory experiments using Tempe cell and WP4C,
the SWCCs of Astana soil and sand-kaolin mixtures were created.
To generate the SWCC of AS1 (soil sample at dry of optimum)
the same laboratory test was conducted. AS1 had an initial dry
density of 1.8 g/m* in accordance with 95% of MDD on the dry of
optimum with 8.1% of water content. The SWCC of AS1 is illustrated
in Figure 3. The SWCC occurred to be bimodal, thus Equation 1
was applied to best fit the data. Thus, soil sample AS1 displays
bimodal SWCC features, with first and second saturated volumetric
water content (VWC) (0_sland 0_s2), Ist and 2nd air-entry value
(AEV, Yal and Wa2) and two inflection points (Yml and ¥Ym?2).
Table 2 shows the Satyanaga et al. (2013) parameters used to best
fit the curve. The best fitting parameters such as Wal, Ya2, ¥ml,
¥Ym?2,s_1 and s_2 were 5 kPa, 6,500 kPa, 15 kPa, 25,000 kPa, 2 and
2, respectively.

The relationship between matric suction and volumetric
moisture content of soil sample with MDD 1.9 g/m® and optimum
moisture content 13.5% is illustrated in Figure 4. The laboratory
data of SWCC of AS2 were best fitted using Equation 1 for
bimodal curves as SWCC of the soil sample AS2 was bimodal.
Table 2 presents the best fitting parameters used in Equation 2.
To apply the Equation 2 for generating SWCC, each parameter
requires an appropriate initial value (Satyanaga et al., 2017). All
the parameters were determined using non-linear regression with
the iterations method that is available in the Microsoft Excel
software in order to best fit Equation 1 to the data from the lab
of the SWCC (Suhaizan et al., 2025).

As can be seen from the figures, SWCCs of AS1 and AS2
appeared to be bimodal and similar in shape. The first and second
saturated VWC (6_s1, 6_s2) of AS2 was 0.218 and 0.110, whereas
the saturated VWC of AS1 showed lower value of 0.172 and 0.095,
respectively. Additionally, the first AEV (Wal) of AS2 was 100 kPa,
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SWCC of AS3.

which was higher than first AEV of AS1, which was 7 kPa. However,
the second AEV (¥a2) of AS1 showed higher value than the second
AEV of AS2. First and second matric suction (¥Ym1, ¥m2) of AS1
and AS2 at inflection points were determined as 300 and 9,000 kPa,
15 and 25,000 kPa, respectively.

As illustrated in Figure 5, the SWCC of soil sample AS3 was
found to be unimodal. AS3 had an initial dry density of 1.8 g/m’
in accordance with 95% of MDD on the wet of optimum with 18.2%
of water content. For this case, Equation 2 for modelling unimodal
curve was applied to the best fit. Table 2 shows the Satyanaga et al.
(2017) best fitting parameters used in Equation 2. The saturated

Frontiers in Built Environment

VWC (0_s) of soil at wet of optimum was equal to 0.286, while the
residual water content (6_r) was equal to 0.010. Moreover, the AEV
(W_a) and suction at inflection point (¥_m) were determined as
100 kPa and 1,000 kPa, respectively.

As expected, pore-size distribution (PSD) graphs were also
generated as bimodal for samples compacted dry of optimum (AS1)
and optimum moisture content (AS2). While pore-size distribution
graph for sample compacted wet of optimum (AS3) occurred as
unimodal. The differentiated equation of Satyanaga et al. (2022) was
used to construct PSD for bimodal case, while the differentiated
equation of Satyanaga et al. (2025) was used for unimodal one. The

06 frontiersin.org


https://doi.org/10.3389/fbuil.2025.1661375
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org

Dewangga et al.

10.3389/fbuil.2025.1661375

0.00Q035 mm

0.200

0.02 mm
\ s PSD of AS1

Frequency, d(6w/d) (kPa-1)

0.050

Plot Area
11

0.000

\
|
\

0.000001 0.00001 0.0001 0.001

FIGURE 6
PSD of AS1.
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peak values of PSD of ASI appeared at 0.000035 mm and 0.02 mm
(Figure 6). The peaks of PSD of AS2 appeared at 0.0006 mm and
0.004 mm (Figure 7). Whereas for AS3 case, the peak occurred at
0.00045 mm (Figure 8).

To see the microstructure of the Astana soil samples scanning-
electron microscopy was conducted for before drying, after
drying and wetting stages. The 5K magnification pictures are
illustrated in Figures 9-11, respectively. SEM analysis of Astana
soil samples proved that compacted samples contain bimodal pore
characteristics. The figures demonstrate that intergranular pores
are ten to twenty times larger than intragranular pore spaces.
The intergranular pore diameters of the sample compacted wet
of optimum were bigger than samples at OMC and samples
compacted dry of optimum. Likewise, the sample compacted at
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wet OMC had higher intergranular pore size than the sample
compacted at OMC.

5 Discussion

Statistically examination of different kinds of pore volume is
able to calculate different pore volumes for specimens of varying
densities. Pore size was analyzed quantitatively using four categories:
micropores (d < 0.00002 mm), small pores (0.00002 mm < d <
0.00018 mm), mesopores (0.00018 mm < d < 0.00078 mm), and
macropores (d > 0.00078 mm) (Brewer, 1964; McNaught and
Wilkinson, 2006). The percentage of each pore is illustrated in
Figure 12. Moreover, the percentage of micropore, small pore,
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FIGURE 9
SEM pictures of sample AS1: (a) before drying (b) after drying (c) wetting.

mesopore and macropore were computed. In sample AS1 with 8%  AS3 with a water content of 18.2%, the percentage of micropore,
of water content, the percentage of micropore, small pore, mesopore ~ small pore, mesopore and macropore were 22%, 26%, 19% and
and macropore were 33%, 19%, 15% and 33%. In sample AS2 with ~ 33%, respectively. The micropore percentage of sample AS2 with
water content of 13.5%, the percentage of micropore, small pore,  water content of 13.5% gradually decreased in comparison with the
mesopore and macropore were 26%, 11%, 11% and 52%. In sample ~ sample with water content of 8%; the percentage of sample with
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FIGURE 10
SEM pictures of sample AS2: (a) before drying (b) after drying (c) wetting.

FIGURE 11
SEM pictures of sample AS3: (a) before drying (b) after drying (c) wetting.
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FIGURE 12
Pore structure composition.

TABLE 3 Pores with maximum frequency of Astana soil samples.

Soil type Maximum frequency, Pore diameter with Soil density, pq (Mg/m?®) | Matric suction, u, — u,,
(kPa-1) max. Frequency, d (mm) (kPa)
AS1 1.9773 0.029 1.8 10
AS2 0.0009 0.001 19 500
AS3 0.0002 29.200 1.8 0.01

water content of 18.2% did not change significantly, meaning that
after micropores attain a specific limit, compacting does not form
micropores (Zhang et al., 2019). The pore diameters with maximum
frequency of Astana soil samples are presented in Table 3. The
maximum frequency of samples AS1, AS2 and AS3 decreased as the
matric suction of samples increased.

In road engineering applications, these findings are important
because pore structure directly affects hydraulic conductivity,
moisture retention, and deformation behavior of subgrade soils.
For example, higher macropore content, as observed in AS2,
facilitates rapid drainage but may reduce strength under wet
conditions, whereas a greater proportion of micropores improves
water retention but can lead to swelling and reduced stiffness.
Understanding these pore-size distributions helps predict subgrade
performance under rainfall and traffic loading, guiding compaction
specifications and moisture control strategies to improve pavement
durability and reduce settlement risks.

6 Conclusion

Astana soil was classified as “clayey sand” (SC). Three cases of
samples compacted at optimum moisture content (OMC), dry of

Frontiers in Built Environment

optimum and wet of optimum with three different water contents
were considered. The sample had a maximum dry density of
1.9 g/m® and OMC of 13.5%. Whereas the moisture content of dry
of optimum and wet of optimum were found to be 8.15% and
18.2% from 95 percent of maximum dry density 1.8 g/m’. The
plastic limit was 19.33%, the liquid limit was 39.58% and plastic
index was 20.25%. The residual suction, air-entry value, saturated
volumetric water content of soil sample at OMC were as following:
v, = 40,000 kPa, y,; = 100 kPa, v, = 2000 kPa, 8, = 0.218, 6, =
0.110. For the case of sample at dry of optimum: y, = 71,000 kPa,
W, = 5kPa, y,, = 6,500 kPa, 0, = 0.172, 6, = 0.08. The parameters
of sample at wet of optimum were determined as y, = 40,000 kPa,
Y, = 100 kPa and 0, = 0.286. Moreover, 33% of macropore, 15% of
mesopore, 19% of small pore and 33% of micropore were obtained
for the water content of 8.1%. In the instance of 13.5% of water
content pore percentages were as follows: 52% of macropore, 11%
of mesopore, 11% of small pore and 26% of micropore. While for
the 18.2% water content, the percentage of mesopore was 19%,
macropore was 33%, small pore was 26% and micropore was 22%.
From the Scanning electron microscope images, the intergranular
pores of sample at wet optimum were larger than those at the
OMC and dry optimum. In the same way, the sample compacted
at wet of optimum had a greater intergranular pore diameter than
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the sample compacted at OMC. From the testing results, it was
observed that density has a significant influence on SWCC and
PSD. The AEV declined as the dry density of the soil increased.
This can happen since compaction may rearrange aggregates and
create larger, interconnected macropores that control air entry. This
structural change, especially when soils are compacted at dry of
optimum moisture content, may lowers the AEV despite the overall
reduction in void ratio. The findings also show that when dry density
increases, the water content decreases. The pore size with maximum
frequency decreases as the dry density of combinations of soils rises.
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