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Eigensystem Realization Algorithm (ERA), Stochastic Subspace Identification 
(SSI), Continuous Wavelet Transform (CWT), and Enhanced Frequency Domain 
Decomposition (EFDD) are four widely used damping identification methods. 
Their performance remains unclear in previous reviews and comparative 
discussions. This uncertainty can be attributed to three critical factors: the 
varying behavior of different methods under different excitations, the lack of 
a clear benchmark for evaluating accuracy, and the unquantified influence of 
parameter tuning on results. This study revisits and evaluates these methods 
under controlled conditions and addresses the key challenges that hinder 
reliable damping identification. A major challenge identified is the sensitivity of 
the results to parameter settings, which significantly impacts the stability and 
accuracy of the identification. Based on the evaluation, recommended methods 
and corresponding parameter guidelines are provided for three common 
excitation scenarios: impulse, white noise, and earthquakes. This study offers 
practical guidance for the selection and application of damping identification 
methods in structural dynamics.
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damping identification, eigensystem realization algorithm, stochastic subspace 
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 1 Introduction

Damping describes energy dissipation in structural dynamic systems. Understanding it 
helps improve the accuracy of structural response simulations, since it could significantly 
affect the response on both global and local levels, such as base shear, roof displacement, 
inter-story drift, and floor acceleration (Lee, 2020a; Lee, 2022; Lee et al., 2023a; Lee et al., 
2024a; Yang et al., 2025). It also provides valuable guidance for structural design 
codes (Cruz and Miranda, 2017), and helps to detect early damage (Daneshjoo and 
Gharighoran, 2008; Cao et al., 2017) because it reflects the impaired structural capability 
in energy dissipation.

Its composition is, however, often complex including internal structural material effects, 
dynamic friction between components and aerodynamic forces (Silva, 2007) and, therefore, 
the damping ratio of a structure cannot be derived directly from structural dimensions and
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material properties. In other words, the damping ratio could only be 
reliably obtained from measured vibration data through the use of 
damping identification techniques.

The identification of damping poses a greater challenge in 
comparison to the identification of structural frequencies or mode 
shapes (Xu et al., 2015). First, the composition of the damping 
mechanisms is often complex and the damping ratios identified 
from the same structure may not remain constant across different 
vibrations (Bernal et al., 2015). Second, identification methods 
are commonly developed based on viscous damping assumption 
(Adhikari, 2013). These methods are not well-suited to address 
the energy loss due to nonviscous mechanisms (Guo et al., 2022), 
particularly the nonlinear damage behavior caused by strong 
excitations like earthquakes (Dai et al., 2020). Third, the impact 
of noise on damping identification is more pronounced than 
that of other modal parameters such as structural frequencies 
and mode shapes (Bernal et al., 2015). Numerous identification 
methods have been developed to address these challenges, 
typically categorized into three domains: time, frequency, and 
time-frequency.

Among the time domain methods, the most representative is 
the logarithmic decrement. Several novel time-domain methods 
have also been developed, including the Eigensystem Realization 
Algorithm (ERA) (Juang and Pappa, 1985), Stochastic Subspace 
Identification (SSI) (De Moor et al., 1991) and Time Domain 
Decomposition (TDD) (Kim et al., 2005). ERA has been applied 
to seismic responses of a four-story building, demonstrating 
that damping ratios increase with larger earthquake amplitudes 
(Ulusoy et al., 2011). It has also been employed to analyze free 
vibrations of short telecom structures, revealing a relationship 
between damping and excitation amplitude (Jimenez Capilla et al., 
2022). SSI has been used to detect structural damage by identifying 
damping ratios from measured ambient vibration responses of 
bridges (Yan et al., 2004). Attempts to enhance SSI through machine 
learning (ML) have been made, but improvements in damping 
ratio identification remain limited (Liu et al., 2023). TDD, although 
effective, does not directly utilize state-space models and has shown 
relatively lower accuracy in multi-modal analyses when compared 
to SSI for complex structural systems (Zahid et al., 2020).

Among the frequency domain methods, the half-power 
bandwidth method is the most well-known technique. 
The Enhanced Frequency Domain Decomposition (EFDD) 
(Brincker et al., 2001) is another famous frequency domain method 
which was easy to use and fast to process the data (Magalhães et al., 
2010). It was applied to some high-rise buildings in Japan and 
revealed amplitude dependency of damping (Tamura et al., 2002; 
Tamura, 2012; Tamura et al., 2013).

Among the time-frequency domain methods, the Continuous 
Wavelet Transform (CWT) (Staszewski, 1997) and Hilbert-Huang 
Transform (HHT) (Huang et al., 1998) are two representative 
methods. CWT combined with Random Decrement Technique 
(RDT) was used to identify damping from seismic responses 
(Curadelli et al., 2008). CWT, when combined with the Random 
Decrement Technique (RDT), has been used to identify damping 
ratios from seismic responses, with results indicating that damping 
ratios are more sensitive than natural frequencies to changes in 
the structural damage state. This makes damping ratios more 
reliable indicators for damage detection (Curadelli et al., 2008). The 

accuracy of CWT combined with ERA in identifying a non-viscous 
damping was recently validated in an experimental vibration test 
of a cantilever beam (Shen et al., 2023). HHT, while effective in 
certain applications, suffers from limitations such as sensitivity to 
noise, instability in modal decomposition, and high computational 
complexity (Bao et al., 2009). For systems with closely spaced modes, 
CWT is theoretically more effective and reliable than HHT (Yan and 
Miyamoto, 2006).

Some studies have reviewed various damping identification 
methods (Zahid et al., 2020; Al-hababi et al., 2020; 
Papagiannopoulos and Beskos, 2012; Bin Abu Hasan et al., 2018), 
and some methods have been compared under certain cases recently 
(He et al., 2022; Peeters et al., 2000; Lew et al., 1993). However, these 
studies face three limitations: (1) The performance of identification 
methods based on different algorithms varies depending on the 
structural response under different excitations. These differences 
were not mentioned or distinguished. (2) These studies lack a 
clear benchmark for defining identification accuracy, leaving the 
comparison conclusion ambiguous. (3) Many methods require fine-
tuning of specific parameters during the data processing. While 
some studies have acknowledged the influence of parameter settings 
on identification results (Zahid et al., 2020; Al-hababi et al., 2020), 
the extent of this impact has not been quantified.

To address the above-mentioned limitations, this study 
revisits and evaluates the performances of damping identification 
methods. It selects ERA, SSI, EFDD, and CWT due to their 
widespread application over the past few decades and compares their 
performance under three excitation scenarios: impulse, white noise, 
and seismic excitations. The data for analysis come from numerical 
simulations of a linear elastic multi-degree-of-freedom (MDOF) 
system. While real data, such as experimental results or recordings 
from instrumented buildings, are also available, the true damping 
ratios are unknown. In contrast, numerical simulations provide 
controlled conditions where the damping ratio is predefined, 
offering a clear benchmark for evaluating identification accuracy. 
Hence, the influence of parameter settings on identification accuracy 
can be quantitatively demonstrated. This study aims to provide 
a detailed evaluation of certain identification methods from the 
perspective of vibration signal analysis. 

2 Criteria

The following shows the criteria used to evaluate the damping 
identification methods: 

1. Noise robustness. In identifying modal parameters from 
structural responses, damping is more sensitive to noise 
than other modal parameters like natural frequencies 
(Ni et al., 2023; Bernal et al., 2012). Methods that exhibit strong 
noise robustness are crucial for ensuring reliable damping 
identification.

2. Higher modes: Damping for higher modes significantly 
influences inter-story drifts (Lee et al., 2023a), which are 
a crucial engineering demand to evaluate the damage of 
a building.

3. Sensor location: The ability to utilize response data from 
different sensor locations is essential because responses at 
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various heights contain different modal damping information. 
Ideally, a method needs to leverage data from as many sensor 
locations as possible to ensure robust identification of multiple 
modal damping ratios.

4. Parameter sensitivity: All four methods require setting values 
for some parameters, but some of these recommended values 
have not been explicitly studied. Given that the accuracy 
of damping identification highly depends on the values of 
the parameters, it is important to find out the sensitivity 
of accuracy concerning the parameter values. The goal is 
not to give parameter recommendations but to compare the 
sensitivity of each method to the changes in these parameters. 
The way to qualify it is detailed later in Section 7.

3 Techniques of impulse response 
function extraction

ERA and CWT cannot be used to identify damping ratios from 
forced vibration responses as they only work for free vibration 
or impulse response. The following discusses two techniques 
for extracting impulse response function (IRF) from forced 
vibration response. 

3.1 Natural excitation technique (NExT)

NExT was originally proposed for identifying the dynamic 
properties of structures based on ambient vibrations (James et al., 
1993). It operates by computing the auto and cross-correlation 
functions between multiple time series recorded from 
different sensors.

Given two signals x(t) and y(t), their cross-spectral density is 
computed as Sxy(ω) = X(ω)Y

∗
(ω), where X(ω) and Y(ω) are the 

Fourier transforms of x(t) and y(t), and Y
∗
(ω) denotes the complex 

conjugate of Y(ω). The cross-correlation function Rxy(τ) can be 
obtained by applying the inverse Fourier transform to the cross-
spectral density as Sxy(ω) and they both form a Fourier pair, as shown 
in Equation 1:

Sxy (ω) = ∫
∞

−∞
Rxy (τ)e−i∗ωdτ, Rxy (τ) = F−1 (Sxy (ω)) (1)

where time lag τ represents the delay between two signals x(t) and 
y(t). The cross-correlation function Rxy(τ) describes how similar 
or correlated the signals are when one is shifted in time relative 
to the other. It has the same characteristics as the system’s IRF 
(Hosseini Kordkheili et al., 2018; Zarafshan et al., 2014). In practice, 
τ is determined by engineers based on their experience. In this study, 
τ is treated as the parameter that affects the identification and its 
sensitivity will be investigated. 

3.2 Random decrement technique (RDT)

RDT was originally developed by Cole (1971) at NASA in the 
late 1960s and early 1970s. The technique assumes that the random 
response of a structure at any given moment consists of three 
components: the step response resulting from initial displacements, 

FIGURE 1
illustration of numerical model in OpenSees.

the impulse response from initial velocity, and a random component 
caused by external forces.

RDT aggregates multiple segments of response data, known as 
Random Decrement (RD) segments, that share a common triggering 
condition ys, a predefined threshold in displacement or velocity. 
The RD function (also named RD signature) can be expressed as 
Equation 2:

RD (s) = 1
N

N

∑
i=1

xi (ti + s) (2)

where xi(ti + s) represents the response segments from time ti
to ti + s, s denotes the time duration of each RD segment 
and N is the number of segments which meet the triggering 
condition. The averaging process eliminates components related 
to initial velocity and forced vibrations (Asmussen, 1997), leaving 
only the contribution from the initial displacement. This RD 
signature can be treated as an IRF of the system for extracting 
the dynamic characteristics, including natural frequencies and 
damping ratios (Zhou and Li, 2021). The segment length s and 
triggering condition ys are both user-defined parameters, which 
affect the accuracy of the identified damping ratio (Zheng et al., 
2024a). Many researchers have provided their insights regarding 
the recommended parameters (Zhou and Li, 2021; Kijewski, 2000; 
Tamura, 2012; Tamura and Suganuma, 1996), but these are often 
limited to scenarios involving steady-state excitation. In this study, 
these two parameters will be investigated. The triggering condition 
is represented by the product of the standard deviation (σ) of the 
response and a trigger coefficient, named trigger value. 

4 Numerical data

This study relies on numerical simulations to generate response 
data. A 3-story flexure-type model with viscous damping is built in 
OpenSees (McKenna, 2011), as shown in Figure 1.

The flexure-type model can reveal well-separated modes, 
reducing the interference from closely spaced modes in each 

Frontiers in Built Environment 03 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1671758
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Zheng et al. 10.3389/fbuil.2025.1671758

TABLE 1  Relative error of drift at Node 3 versus the damping ratios.

ζ (%) 3.0 2.8 2.6 2.4 2.2 2 1.8 1.6 1.4 1.2 1

Drift (mm) 235 237 240 243 246 250 254 261 270 280 292

Drift error (%) 6.28 5.13 3.97 2.80 1.61 0 1.70 4.20 7.74 11.82 16.66

identification method. The model consists of a cantilever beam with 
three nodes, each with a lumped mass of 800 kg, accounting for 
horizontal mass inertia only. The beam spans 9 m in length, with 
Young’s modulus of 2× 108 kNm2, and a cross-sectional dimension 
of 15 cm by 15 cm. The modal frequencies are 0.92 Hz, 6.02 Hz, 
and 16.19 Hz. The global damping ratio is assigned 2% for 3 modes 
by using the bell-shaped model (Lee, 2020a; Lee, 2019; Lee, 2020b; 
Lee, 2021; Lee et al., 2023b; Lee et al., 2024b). The responses 
under three excitation scenarios, namely, impulse, white noise and 
earthquake, are simulated by the Newmark constant acceleration 
method (β = 0.25,γ = 0.5) with a time step of 0.005 s.

To test how sensitive the structural response, particularly 
the drift, is affected by damping ratios under strong earthquake 
excitation, the Tabas earthquake with its PGA of 1 g was 
introduced. Table 1 shows the relationship between the damping 
ratio and the relative error in the maximum drift at Node 3, the 
top node. When the damping ratio is within the 20% interval of the 
2% damping, the corresponding drift is within the 5% interval of 
the drift with 2% damping. Therefore, 20% is set as the tolerance 
baseline in the following sections.

To maintain a coherent scope and a clear benchmark across 
methods, the present study intentionally confines the analysis 
to linear elastic systems. Under this controlled setting, several 
approaches would exhibit limited accuracy or pronounced 
parameter sensitivity under realistic seismic inputs, which will be 
discussed later. Extending them to nonlinear or damaged states 
is therefore nontrivial, and damping modelling or identification 
for softening structures remains challenging (Lee and Chang, 
2022). Cases on structure with nonlinear and damage status will 
be addressed in a dedicated follow-up study. 

5 Identification methods

5.1 Enhanced frequency domain 
decomposition (EFDD)

EFDD is an extension of the Frequency Domain Decomposition 
(FDD) method (Zahid et al., 2020). The process begins with 
estimating the power spectral density (PSD) of the measured 
responses, PSDxx(ω), which provides an energy distribution of 
responses across different frequencies. It is then decomposed by 
singular value decomposition (SVD), as shown in Equation 3:

PSDxx (ωi) = UiSiU
H
i (3)

where the matrix Ui = [ui1,ui2,…,uim] is a unitary matrix holding 
the singular vectors, Si is a diagonal matrix holding the scalar 
singular values, m is the number of measurements, and superscript 

H is the complex conjugate and transpose. At the peak in the 
spectrum, the first singular vector ui1 is an estimate of the mode 
shape for the corresponding mode. It can be regarded as the mode 
shape of the SDOF system decomposed from the original MDOF 
system. The PSD function of each SDOF system could be obtained 
using the bell-shaped peak selection method, employing the Modal 
Assurance Criterion (MAC), as shown in Equation 4, to ensure that 
the selected singular vector is well-matched to each SDOF system.

MAC =
|ϕT

1 ϕ2|
2

(ϕT
1 ϕ1)(ϕ

T
2 ϕ2)

(4)

where ϕ1 and ϕ2 are the two mode shape vectors being compared. 
The auto-correlation function can be obtained by applying the 
inverse Fourier transform to each determined SDOF-PSD function. 
The damping ratios are identified by applying logarithmic decrement 
to the auto-correlation functions of each SDOF system, as shown in 
Equation 5:

δ = 1
n

ln(
a (t)

a (t+ nT)
) , ζ = δ

√4π2 + δ2
(5)

where a(t) and a(t+ nT) are successive peak amplitudes of auto-
correlation functions, and n is the number of peak points utilized for 
constructing a fitting line. EFDD is sensitive to parameter selection 
at various stages, which can introduce bias in damping estimates 
(Bin Abu Hasan et al., 2018; Zheng et al., 2024b). In this study, 
MAC and the number of peaks n are the parameters that are to be 
investigated. 

5.2 Stochastic subspace identification (SSI)

SSI was developed with the capability to directly identify 
state-space models for systems subjected to stochastic excitation 
(Van Overschee and De Moor, 1996). It has high parameter 
estimation accuracy and computational efficiency compared to 
other methods (Reynders et al., 2016). The general procedure of SSI 
can be summarized in the following steps:

The first step involves constructing a Hankel matrix 
using the measured output data. The Hankel matrix Hk
is formed as Equation 6:

Hk =(

(

y (k) y (k+ 1) … y (k+ n− 1)

y (k+ 1) y (k+ 2) … y (k+ n)

⋮ ⋮ ⋱ ⋮

y (k+m− 1) y (k+m) … y (k+m+ n− 2)

)

)

(6)

where y(k) represents the system’s output data at time step k, and 
n represents the time shift, which is also named block rows (rb). 
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Then, the SVD was applied to the Hankel matrix H to decompose 
it into three matrices H = UΣVT, where U and V are orthogonal 
matrices, and Σ is a diagonal matrix containing the singular values. 
The matrix Σ ranks the energy or importance of each component 
in the data, with larger singular values corresponding to dominant 
dynamic modes.

At this point, the decomposition can be truncated by retaining 
only the most significant singular values and their corresponding 
vectors. This step allows us to reduce the noise in the data and focus 
on the dominant system behavior. The resulting truncated matrix, 
say Σr, represents the reduced system’s dynamics. The matrix Ur
can be split into two parts, Up represents the data from past time 
steps and U f  represents the data from future time steps. After that, a 
state-space model can be constructed as Equation 7:

x (k+ 1) = Ax (k) +Bu (k) , y (k) = Cx (k) +Du (k) (7)

where A, B, C, and D are the system matrices, x(k) is the state vector, 
and u(k) represents input data. The matrices A can be computed as 
A = U+f Up, where U+f  represents the Moore-Penrose pseudoinverse 
of U f . The eigenvalue problem of matrix A is solved to extract 
the system’s modal parameters, including natural frequency and 
damping ratio for each mode, as shown in Equation 8:

Aφi = λiφi, ζi = −
Re(λi)
|λi|

(8)

where λi are the eigenvalues, φi are the eigenvectors and Re is the 
operator that extracts the real part of λ.

This method was improved later (Peeters and De roeck, 
1999) into two algorithms: data-driven SSI (SSI-DATA) and 
covariance-driven SSI (SSI-COV). SSI-DATA usually provides 
better performance compared to SSI-COV (Li et al., 2018), as it uses 
the analytical spectrum expression and can predict future measured 
data through the implementation of a Kalman gain (Yan et al., 2004). 
However, the application of SSI-DATA requires careful parameter 
selection (Li et al., 2018). The block row (rb) is the parameter 
investigated in this study. 

5.3 Eigensystem realization algorithm (ERA)

ERA is built upon Markov parameters, which are derived from 
the system’s impulse response function. These parameters are used 
to construct a block Hankel matrix, which allows for the realization 
of a discrete-time state-space model (Li et al., 2011). The ERA 
procedure begins with constructing a block Hankel matrix Hk, 
the same as Equation 6. The difference is that ERA used impulse 
response data to build this Hk.

Then, the SVD is applied to the block Hankel matrix: Hk =
UΣVT. The system order is determined by examining the singular 
values in Σ. Singular values close to zero indicate noise and 
can be truncated. A reduced-order realization is constructed 
using the truncated SVD:Hk ≈ UrΣrV

T
r , where Ur, Σr, and Vr

correspond to the retained singular values and vectors. Then a 
shifted Hankel matrix Hk+1 is used to compute the system matrices 
A, as shown in Equation 9:

A = Σ
− 1

2
r UT

r Hk+1VrΣ
− 1

2
r (9)

The eigenvalue problem of matrix A is solved to extract natural 
frequencies and damping ratios, the same as Equation 8.

One challenge of ERA is selecting the optimal dimensions for the 
block Hankel matrix. Mathematically, this parameter has the same 
meaning as rb in SSI. However, in ERA, its value is significantly larger 
than in SSI, and this is more intuitively reflected in the response 
signal as a time lag. Improper selection can hinder the effective 
separation of the signal from noise (Juang, 1994). In this study, time 
lag, which determines the dimension of the Hankel matrix, is the 
parameter investigated in this study. 

5.4 Continuous wavelet transform (CWT)

CWT is a time-frequency domain method, with its core 
principle centred on applying a wavelet function. This function 
is an adjustable waveform that can be shifted along the time 
axis and scaled along the frequency axis to extract time and 
frequency information simultaneously from the measured response 
data (Staszewski, 1997). The procedure of CWT can be briefly 
summarized as follows (Slavič et al., 2003):

First, the scale parameters of the wavelet function are adjusted 
to cover a range of frequencies relevant to the structural modes 
of interest. Then, the natural frequency can be computed using 
the classical Fourier transform. After that, the ridge is extracted, 
representing the energy concentration in the wavelet time-scale 
plane. The ridge R(t) can be defined as the set of points where 
the modulus of the wavelet coefficients is maximised: R(t) =
maxa |Wx(a, t)|, where Wx(a, t) represents the wavelet coefficients. 
Then, the skeleton, which consists of the values of the wavelet 
transform restricted to its ridge, is extracted: S(t) =Wx(a(t), t), 
where a(t) is the scale corresponding to the ridge at time t. The 
envelope of the wavelet transform is computed to analyze the energy 
distribution over time: E(t) = |S(t)|. Finally, the damping ratio ζ is 
extracted by fitting the E(t) ∝ e−ζωnt.

Like ERA, CWT is limited to damping identification from 
impulse response or free vibration. It is known for its resilience to 
noise and its ability to identify damping at closely spaced natural 
frequencies (Ruzzene et al., 1997). However, its computational 
complexity increases with the size of the data, potentially making 
it computationally demanding for long signals (Lamarque et al., 
2000). In this study, the method using the Morlet wavelet proposed 
by Slavič et al. (2003) is selected. Although this method has 
been extended to other wavelets (Gabor (Wang et al., 2021) and 
Cauchy (Erlicher and Argoul, 2007)), Morlet wavelet is widely 
used and discussed (Curadelli et al., 2008; Ta and Lardiès, 2006; 
Chen et al., 2009; Wang et al., 2024), making it a valuable benchmark 
for comparison in this study. The numerical simulation data provides 
a sufficiently long duration to ensure the performance of the CWT 
method. The method of CWT does not require parameters to be 
investigated in this study. 

6 Comparison under impulse 
excitation

This section compares the four methods based on criteria 1, 
2 and 3. Criterion 4, parameter sensitivity, is not considered in 
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TABLE 2  Relative errors of three methods using two types of responses in Cases II, IM, and IEM.

Response Methods II (%) IM (%) IME (%)

ζ1 ζ2 ζ3 ζ1 ζ2 ζ3 ζ1 ζ2 ζ3

Displacement

CWT 0.4 3.1 9.3 0.4 2.6 0.5 21.9 86.6 200.7

ERA 0.5 - - 0.6 - - 0.4 - -

SSI 0.5 0.5 - 1.1 1.8 - 0.2 37.5 -

Acceleration

CWT 0.5 0.3 2.7 0.5 1 0.4 21.1 65.3 16.1

ERA 0.5 0.5 3.7 0.5 0.4 3.8 2.1 4.6 -

SSI 0.5 0.4 - 0.4 0.7 - 1.1 24.7 -

TABLE 3  Relative errors of CWT using responses of different types and nodes in Case IM.

Mode Relative error (%)

Displacement Acceleration

Node 1 Node 2 Node 3 Node 1 Node 2 Node 3

ζ1 0.4 0.4 0.1 0.1 0.3 0.5

ζ2 2.6 2.4 9.1 1.4 1.1 1.0

ζ3 0.5 1.9 13.5 5.5 4.4 0.4

this part, as the damping identified from the impulse response is 
not sensitive to it. According to Equation 7, under the state space 
system assumption, Bu(k) and Du(k) represent the process and 
measurement noises (Yan et al., 2004). Therefore, two types of noise 
are considered: one adding to the excitation source and the other 
adding to the measurement data.

Response datasets containing displacement and acceleration 
recordings from three nodes are collected. Three cases are 
considered: (1) Case (II), Idealized Impulse response. The impulse 
is a 1 g acceleration ground excitation with a 0.1 s period. 
(2) Case (IM), Impulse response with Measurement noise. The 
measurement noise is set to Gaussian white noise with a signal-
to-noise ratio (SNR) of 35 dB, which is an acceptable setting for 
the accelerometers (Brincker and Ventura, 2015). (3) Case (IEM), 
Impulse response with Excitation noise and Measurement noise. The 
Excitation noise is set to a slight Gaussian white noise with a standard 
deviation of 0.01 g. This is to simulate the slight ground disturbance 
in the experimental environment.

All datasets are processed using a Butterworth low-pass filter 
with a cutoff frequency of 60 Hz. The relative errors of identified 
damping using the methods CWT, ERA and SSI, for the three cases 
II, IM, and IME, are given in Table 2.

Not all results are reported in Table 2 because (1) The 
EFDD method could not effectively identify damping ratios from 
impulse response signals. The impulse excitation lasts a short 
time, expressing weak information at the resonance peaks in the 
spectrum, causing inaccuracies in damping identification. (2) The 

TABLE 4  Performance of methods in impulse excitation scenario.

Criterion CWT ERA SSI

1 (Noise robustness) 2 3 2

2 (Higher modes) 3 2 2

3 (Sensor location) 1 3 3

∗3 represents good, 2 represents moderate, and 1 represents poor.

accuracy of SSI-DATA is significantly superior to that of SSI-COV. 
Therefore, the SSI in Table 2 are presented with SSI-DATA results. 
(3) ERA and SSI can analyze multi-channel inputs, but CWT 
can only process single-channel inputs. The response of different 
nodes reveals different results by CWT (Mazza et al., 2023), as 
shown in Table 3. Node 1 (the node immediately above the fixed 
ground support) displacement records and node 3 (the top node) 
acceleration records reveal better results than other records. The 
optimal choice, namely, node 1 displacement records and node 3 
acceleration records, are selected to be reported in Table 2 for CWT.

The identification results are reported in Table 2 as relative 
errors. It shows that when displacement records are used, CWT 
performs well in the II and IM scenarios. SSI can identify two modal 
damping ratios and ERA can only identify the first one. None of 
them performs well in the IME scenario. When using acceleration 
records, ERA is the only method capable of identifying the first 
and second modal damping ratios in the IME scenario. It also 
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FIGURE 2
Satisfactory rate of EFDD versus the affecting parameters for all three modal damping ratios.

FIGURE 3
Satisfactory rate of SSI versus rb for all three modal damping ratios.

provides accurate identification in both II and IM scenarios. SSI 
loses identifying damping ratios of the third mode but demonstrates 
accurate identification of damping ratios for the first two modes in 
II and IM. CWT fails to identify damping in the IME scenario but 
still performs better than SSI in II and IM scenarios.

According to the above discussions, Table 4 summarizes the 
performance ranking of these methods based on subjective 
quantitative analysis (SQA).

Recommendations for damping identification of impulse 
response signals are as follows: 

1. When the environmental noise level is low and acceleration 
records are available, ERA is recommended, with CWT as a 
supplementary verification. If only displacement records are 
available, CWT is recommended.

2. When the environmental noise level is high, ERA is 
recommended, with SSI as a supplementary verification.

7 Comparison under white noise 
excitation

The four methods are compared based on all four criteria. 
EFDD and SSI can be directly used to identify damping ratios 
from white noise responses. ERA and CWT must be combined 
with the impulse response function extraction techniques (IRFTs) 
mentioned in Section 3. Therefore, The following are considered: 
(1) EFDD, (2) SSI and methods combining SSI with IRFT, (3) 
Methods combining ERA with IRFT, and (4) Methods combining 
CWT with IRFT.

The affecting parameters are discussed in the introduction of 
each IRFT and method in Sections 3 and 5. NExT has one parameter, 
time length τ. RDT has two parameters, trigger value ys and segment 
length s. EFDD has two parameters, MAC and the number of 
peaks n. SSI has one parameter, block row (rb). ERA has one 
parameter, time lag.
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FIGURE 4
Satisfactory rate of SSI + NExT versus the time window length for all three modal damping ratios.

FIGURE 5
Satisfactory rate of SSI + RDT versus the affecting parameters for all three modal damping ratios.

SSI, ERA, and CWT performed well under both II and IM 
conditions in the scenario of impulse response. Therefore, when 
discussing the methods combining SSI, ERA, and CWT with IRFT, 
only the parameters of IRFT will be considered. Fifty sets of Gaussian 
white noise, each lasting 200 s to ensure a stable performance of each 
method, are generated as excitation for simulation with acceleration 
responses recorded. In practice, using displacement sensors to 
collect responses under white noise excitation is rare, so this section 
will not compare the performance based on displacement records.

The analysis in this section will be divided into three steps. 
In step 1, each method is applied to several sets of responses. 
The reasonable parameter ranges for each method are determined 
through trial and error. The limit for each parameter is established 
at the point where a significant drop in identification accuracy 
occurs. This range will be shown later in the figures and will not 
be listed. In step 2, the procedure of trial and error is repeated 

across all the generated responses in the corresponding parameter 
range. The proportion of parameter settings that yield identification 
errors within the error tolerance of 20% across the whole trial is 
referred to as the satisfactory rate (SR). A higher SR indicates that 
the corresponding parameter setting is more likely to result in a 
damping ratio error below 20%. A more concentrated distribution 
of high SR values indicates that the method performs consistently 
well across a specific cluster of parameter settings. This consistency 
makes it easier for users to select appropriate parameters, ensuring 
stable identification accuracy. In step 3, the parameter settings that 
yield a high SR for the first and second modes are considered 
the recommended parameters. The methods assigned with the 
recommended parameter settings are applied to another set of white 
noise excitation responses to compare their noise robustness.

Figure 2 illustrates the EFDD results of the second step. The 
horizontal and vertical axes represent two parameter settings 
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FIGURE 6
Satisfactory rate of ERA + NExT versus the time window length for all three modal damping ratios.

FIGURE 7
Satisfactory rate of ERA + RDT versus the affecting parameters for all three modal damping ratios.

influencing the EFDD identification results. The color gradient 
indicates the value of the SR, which represents the probability that 
the EFDD identification results under the given parameter setting 
achieve an error below 20% across 50 runs.

Figure 2 shows that the number of peaks mainly influences 
the damping ratio of the first mode. EFDD shows its stability in 
identifying the first and second modal damping ratios with SR 
exceeding 60% and 80%. The SR for the third modal damping ratio 
shows an increasing trend as MAC decreases. However, a very low 
MAC would introduce significant noise during the inverse Fourier 
transform process. The trend presented may be a coincidence 
specific to this model and damping ratio setting. Hence, EFDD 
cannot identify the damping ratio of the third mode of this model.

Figure 3 illustrates the SSI results in the second step. The trend 
lines in the figures are selected based on the best fit for the results, 
which could be either linear, polynomial, or piecewise. The trend lines 

show that the SR of SSI for the first modal damping ratio gets a peak 
when rb increases to around 30. The damping ratio identification for 
the second mode is very stable. When rb is between 29 and 34, the 
identified damping ratios for both the first and second modes exhibit 
a high SR. SSI fails to identify the third modal damping ratio. 

Figure 4 shows that for SSI + NExT, the SR exhibits small 
fluctuation in the identification of the first and second modal damping 
ratios. Compared to Figure 3, there is a noticeable decline in the SR 
for both the first and second modal damping ratios. While Figure 4 
shows that the SR for the first mode damping ratio fluctuates more 
steadily with parameter variations and that the third mode damping 
ratio has improved, these advantages are minimal. 

Using NExT to extract IRF as a supplement to SSI identification 
does not appear to give a better performance. Intuitively, adjusting rb
value on SSI while using NExT might yield better results. However, 
doing so would undermine the purpose of evaluating the quality of 
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FIGURE 8
Satisfactory rate of CWT + NExT versus the IRF order for all three modal damping ratios.

FIGURE 9
Error of CWT + RDT versus parameters for one set of responses at 
three nodes.

the extracted IRF. Therefore, only the parameter affecting NExT is 
considered here.

Figure 5 shows that SSI + RDT performs well for the 
first and second modes but poorly for the third mode. The 
distribution of the SR across the parameter settings shows a certain 
pattern, but the concentration of high SR is not pronounced. 
Compared to SSI, the only advantage of SSI + RDT over SSI 
is a slight improvement in the SR for the third mode damping 
ratio. However, its performance in identifying both the first and 
second modal damping ratios is inferior. Therefore, using RDT 
to extract IRF as a supplement to SSI identification is also not a
favourable option.

Figure 6 demonstrates the capability of ERA + NExT to reliably 
identify the damping ratios of all three modes. The high SR 
distribution corresponding to the damping ratios of the three modes 
is easily found in concentrated areas. The superior performance of 
ERA + NExT lies in the overlap of these highly SR distributions, 
in the time segment from 1.2 to 1.7 s. This indicates that when the 
NExT parameter is set within this range, there is a high probability 
of simultaneously obtaining damping ratios for all three modes with 
errors below 20%.

Figure 7 shows a trend where, as the modal order increases 
from 1 to 3, the region with high SR shifts towards smaller 
segment lengths. When identifying the damping ratios of 
higher modes, setting the RDT time segments short can ensure 
that high-modal information dominates the processed signal. 
This indicates that a unified parameter setting should not be 
used for identifying the damping ratios of multiple modes 
with ERA + RDT. Although ERA + RDT also demonstrates 
the capability to identify the three modes, its concentration 
of high SR distribution is slightly inferior compared to
ERA + NExT.
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FIGURE 10
Satisfactory rate of CWT + RDT versus the trigger value for all three modal damping ratios.

TABLE 5  Parameter setting recommendations for each method under white noise tests.

Method EFDD SSI ERA + RDT SSI + RDT CWT + RDT ERA + NExT SSI + NExT CWT + NExT

Parameters n = 8
MAC = 0.76

rb = 31 ys = 1.75
s = 2.4

ys = 1.1
s = 9

ys = 1.6 time lag = 1.3 time lag = 33 IRF = 2

When CWT is combined with NExT, the parameter under 
discussion initially is the time length, same as SSI + NExT and 
ERA + NExT. However, as mentioned in Section 3, CWT requires 
a long signal duration to ensure accurate identification. Through 
trials, it was observed that the accuracy of CWT + NExT increases 
with the time length and eventually converges. Therefore, the time 
length no longer holds significance for further discussion. On the 
other hand, CWT can only process single-channel responses. The 
responses composed of recordings from three nodes yield nine IRFs 
after NExT processing. The SR distribution results after analysing the 
nine IRFs are shown in Figure 8. This figure shows that the choice of 
IRF has little impact on the damping identification of the first mode. 
Although the CWT + NExT method performs poorly for the first 
modal damping, it demonstrates high SR in identifying the second 
and third modal damping ratios. This characteristic has not been 
mentioned in other studies, and its generality remains to be explored 
in the future.

The discussion for CWT + RDT should have originally focused 
on the parameters influencing RDT, namely, the segment length 
and triggering condition ys. Similar to CWT + NExT, the accuracy 
of CWT + RDT increases with the segment length and eventually 
converges. Now only the triggering condition ys remains relevant 
for further discussion. Additionally, CWT can only process single-
channel response data but RDT extracts three IRFs from the 
response recorded at the three nodes. Figure 9 shows the differences 
in identification accuracy of the CWT + RDT method for one sample 
set of responses at three nodes. The identification results for the 
response at node 3 exhibit advantages in both the first and second 
modes. Therefore, the response data at node 3 are used for the 50 

identification tests. Figure 10 shows that the performance of CWT 
+ RDT for the damping ratio identification of all three modes is 
unsatisfactory.

In step 3, the parameter settings that yield the highest SR for the 
first and second modes are considered the recommended parameters, 
as shown in Table 5. Two sets of responses are generated. (1) The 
White noise excitation response (WN). The white noise excitation 
signal is set to Gaussian white noise with a standard deviation of 
0.1 g. (2) White noise excitation response plus measurement noise 
(WNM). The measurement noise is set to Gaussian white noise with 
an SNR of 35 dB. All datasets are processed using a Butterworth 
low-pass filter with a cutoff frequency of 60 Hz. The results of these 
methods assigned with the parameters in Table 5 for the WN and 
WNM datasets are shown in Figure 11. The vertical axis accuracy is 
computed as Accuracy = 1− log20(Relativeerror), where the relative 
error is in percentage. When the error exceeds 20%, the accuracy 
will be a negative value. 

Figure 11 shows that EFDD, SSI, ERA + RDT, SSI + RDT, ERA 
+ NExT and CWT + NEXT perform well on noise robustness. 
Their accuracy values in WN and WNM cases are consistent. 
Among them, SSI, ERA + RDT and ERA + NEXT have a relatively 
higher accuracy compared with the others. Table 6 summarizes the 
performance ranking of these methods based on SQA.

In summary, ERA + NExT demonstrates a significant advantage 
in damping identification across all three modes. It is the first 
recommendation for damping identification from acceleration 
records under white noise excitation. EFDD and SSI perform well 
in identifying the damping ratios of the first and second modes, 
following ERA + NExT. They both can serve as verification methods. 
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FIGURE 11
Accuracy of all methods in WN and WNM cases for all three modal damping ratios.

TABLE 6  Performance of methods in white noise excitation scenario.

Criterion 
(description)

EFDD SSI ERA + RDT SSI + RDT CWT + RDT ERA + NExT SSI + NExT CWT + NExT

1 (Noise robustness) 3 3 3 3 1 3 1 3

2 (Higher modes) 2 2 2 2 1 3 2 3

3 (Sensor location) 3 3 3 3 1 3 3 1

4 (Parameter 
sensitivity)

2 2 2 1 1 3 2 1

∗3 represents good, 2 represents moderate, and 1 represents poor.

Comparing the results of SSI, SSI + RDT, and SSI + NExT shows 
that these two IRFTs do not provide noticeable improvements in 
SSI identification accuracy or parameter stability. The identification 
accuracy of CWT + RDT is not satisfactory, which may be related 
to the choice of the wavelet type. The consistently high accuracy of 
CWT + NExT in identifying the third mode is noteworthy. 

8 Comparison under earthquake 
excitation

In this section, four methods are compared based on 
criteria 4 only. The analysis in this section fully follows 
the second step outlined in Section 7. Two hundred thirty- 
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FIGURE 12
Satisfactory rate of EFDD versus the affecting parameters for all four models.

four earthquake recordings, obtained from the Center for 
Engineering Strong Motion Data (CESMD), were used as 
excitation sources. This data was used by Bernal et al. 
(2012) for discussing damping predictors of different types of
structures.

To extend the scope of this study, models with varying natural 
frequencies were obtained by adjusting the mass at the nodes. 
The natural frequencies of these four models are as follows [0.92, 
6.02, 16.19] Hz, [1.39, 9.11, 24.47] Hz, [1.84, 12.05, 32.37] Hz, 
and [2.6, 17.04, 45.78] Hz. When the error tolerance was set to 
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FIGURE 13
Satisfactory rate of SSI versus the rb affecting parameters for all four models.

TABLE 7  Recommended parameter values of each method for earthquake excitations.

Method EFDD SSI ERA + RDT SSI + RDT CWT + RDT ERA + NExT SSI + NExT CWT + NExT

Parameters n = 38
MAC = 0.87

rb = 37 ys = 1.25
s = 7.8

ys = 1.25
s = 27

ys = 1.4 time lag = 1.6 time lag = 42 IRF = 1

the same 20% as in the previous section, all methods performed 
poorly, even for the identification of the first modal damping. 
Only EFDD, SSI, and SSI + RDT methods achieved satisfactory 
rates around 50%, while other methods fell below 40%. After 
relaxing the error tolerance from 20% to 50%, which means the 
error for the global drift would increase from 4.2% to 16.66% 
as shown in Table 1, these three methods continued to yield the 
highest satisfactory rates. Figures 12, 13 show the performance of 
EFDD and SSI across the four models after the error tolerance 
was relaxed to 50%. Since the results of SSI + RDT did not 
show any advantage over SSI and performed significantly worse 
in identifying the second modal damping ratio, consistent with 
the findings in Section 7, the results of SSI + RDT have been
omitted here.

Figure 12 shows that EFDD can reveal the damping ratio of the 
first and the second modes within an error of 50% in nearly 90% of 
the 234 tests. A higher number of peaks remains beneficial for the 
accuracy of the damping ratio for the first mode, consistent with the 

trends observed in the white noise section. As the structural modal 
frequencies increase, the accuracy of identifying the damping ratios 
for the third mode decreases sharply. There is no clear pattern in the 
variation of the optimal parameter setting region for the damping 
identification of the second mode. The third modal frequency 
of the first structure is close to the second modal frequency 
of the fourth structure, yet the damping identification results 
differ significantly. This suggests that the damping ratio identified 
by EFDD is more influenced by the mode order rather than
the modal frequency.

Figure 13 shows that SSI has a lower satisfactory rate in 
identifying the damping ratio for the first mode compared to EFDD, 
with an even larger discrepancy for the second mode. As the 
structural modal frequency increases, SSI loses its ability to identify 
the damping of the highest mode. Since SSI requires adjusting only 
one parameter, while EFDD involves adjusting two parameters, the 
parameter sensitivity for identifying the damping ratio of the first 
mode is roughly comparable between the two methods. However, 
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TABLE 8  Relative errors by all methods with recommended parameter 
values for earthquake NZ2010.

Method EQ settings (%) WN settings (%)

ζ1 ζ2 ζ3 ζ1 ζ2 ζ3

EFDD 10.5 30.5 48.5 24 109 64

SSI 13.5 67.5 2.5 20.5 82 13

ERA + RDT 56.5 70.5 - 57.5 80.5 -

SSI + RDT 49 127.5 - 40 290 76

CWT + RDT 2 80 34 22.5 - -

ERA + NExT 19 - - 9.5 - -

SSI + NExT 9.5 39.5 13.5 0.5 10.5 58

CWT + NExT 74 - - 74 - -

TABLE 9  Relative errors with recommended EQ settings for side study 
models under earthquake NZ2010.

Method 2-storey 
model (%)

10-storey 
chimney(%)

ζ1 ζ2 ζ1 ζ2 ζ3

EFDD 8.3 55.8 20.6 1.5 33.4

SSI 2.5 37.7 29.1 13.3 41.2

ERA + RDT 33.7 61.2 90.9 16.5 12.9

SSI + RDT 44 11.9 117 65.8 22

CWT + RDT 17.9 - 53.2 - -

ERA + NExT 15.5 23.6 4.5 61.3 96.9

SSI + NExT 51.1 29 34 - -

CWT + NExT 81 - 76.3 166.7 -

for the second mode, EFDD demonstrates a clear advantage
compared to SSI.

In some previous studies, parameter setting recommendations 
derived from statistical analyses under noise or light wind excitation 
conditions have commonly been applied to damping identification 
for seismic responses (Yang et al., 2025; Curadelli et al., 2008; 
Frizzarin et al., 2010; Zhang and Cho, 2009). To explore this issue, 
one earthquake recording not included in the initial set of 234 
was selected: the NZ2010 earthquake recorded at Darfield High 
School. This earthquake on 4 September 2010 (magnitude 7.0–7.1) 
and the destructive aftershock on 22 February 2011 (magnitude 
6.3) caused significant loss of life and property for the residents of 
Christchurch. Parameter recommendations for the seismic scenario 
are derived based on the first structural settings corresponding to the 
highest satisfactory rate in the first mode results, as shown in Table 7. 

The identification results using the white noise recommendation 
values from the previous section will serve as the comparison 
group. Table 8 shows the identification results using parameter 
recommendations from Table 5 (white noise - WN) and Table 7
(earthquake - EQ).

Under the condition of applying the EQ recommendation 
values, the performance of EFDD, SSI, CWT + RDT, ERA + 
NExT, and SSI + NExT are acceptable. They give the first modal 
damping ratio with less than 20% error. CWT + RDT provided 
the most accurate results for the damping ratio of the first mode. 
SSI and SSI + NExT provided good results for the damping 
ratio of the third mode. Under the condition of using the WN 
recommendation values, the performance of SSI, ERA + NExT, and 
SSI + NExT are acceptable. SSI + NExT provided the most accurate 
results for the damping ratio of the first and second modes. SSI 
provided good results for the damping ratio of the third mode. The 
identification accuracy of EFDD, SSI, and CWT + RDT improved 
when applying the EQ recommendation values. ERA + NExT and 
SSI + NExT provided more accurate results when applying the WN 
recommendation values.

In this case, CWT + RDT, ERA + NExT, and SSI 
+ NExT outperformed EFDD and SSI, contrary to the 
statistical results from the 234 tests. It indicates the high 
degree of variability in the damping identification from 
seismic responses. Applying the EQ recommendation values 
has a positive effect on improving identification accuracy. 
The lack of a pronounced effect may be due to insufficient
test samples.

In summary, EFDD remains the most stable method 
recommended for earthquake scenarios. SSI can be used as a 
verification method. When structural measurement channels are 
limited, such as having data from only one floor, CWT + RDT 
becomes a viable option.

As a side study, two additional numerical models were analysed 
to examine the generality of this comparative study: (i) a 2-storey 
flexure-type model from the authors’ previous work (Zheng et al., 
2024b) and (ii) a 10-storey chimney model from Lee (2020a). The 
same bell-shaped proportional damping model was applied, with 
all modal damping ratios set to 2%. The results in Table 9 show 
that, although the absolute error magnitudes vary with structural 
type and modal order, the relative performance ranking among 
methods is generally consistent with that observed in the main 
models. EFDD and SSI remain among the most stable methods 
for the first modal damping ratio. Methods involving RDT exhibit 
large errors in several modes, confirming their sensitivity. ERA + 
NExT again yields good results, particularly for the first mode of 
the 10-storey chimney, but performance drops for other modes, 
reflecting the parameter sensitivity highlighted in Section 8. These 
findings suggest that the comparative conclusions drawn from the 
primary numerical model are not specific to that configuration but 
are also applicable to other structural types with different dynamic 
characteristics. 

9 Conclusion

Based on the criteria of noise robustness, higher modes, 
sensor location, and parameter sensitivity, this study compared 
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the performance of EFDD, SSI, ERA, and CWT, in damping 
identification for the scenarios of impulse, white noise, and 
earthquake excitations. SSI, ERA, and CWT were combined 
with RDT and NExT when applied to a forced vibration 
analysis. Some conclusions revealed by the numerical test are
as follows: 

1. For the impulse excitation scenario, ERA demonstrated 
high accuracy and strong noise resistance when applied 
to acceleration records. CWT showed advantages when 
applied to displacement records, commonly collected in
laboratories.

2. For the white noise excitation scenario, ERA + NExT 
performed best. Its remarkable performance in parameter 
sensitivity could allow users to select appropriate parameters 
to achieve satisfactory identification accuracy more easily. The 
next best are EFDD and SSI.

3. For the earthquake excitation scenario, both EFDD and SSI 
performed well in terms of stability without being too sensitive 
to the choice of parameter values. Their performance on 
accuracy is not fully satisfactory.

4. Applying a fixed set of parameter settings to identify the 
damping ratios of multiple modes is not ideal for all 
methods. Determining parameter recommendations tailored 
to different modes based on structural diversity requires
extensive study.

5. In a certain case under NZ2010 earthquake excitation, some 
recently proposed methods, such as CWT + RDT, performed 
better than EFDD and SSI in accuracy, but might not 
exhibit stability. Hence, using one method alone for damping 
identification with seismic responses poses risks. It would be 
worthwhile to explore an approach to combine the stability 
of EFDD with the high accuracy of novel methods in
the future.

6. Compared to the parameter recommendations obtained 
from the statistical analysis of white noise responses, 
applying the parameters derived from the statistical 
analysis of seismic responses significantly improves the 
identification accuracy of EFDD, SSI, and CWT + RDT 
methods. More extensive modelling and statistical analysis 
of earthquake responses are needed in the subsequent
studies.

This study provided clear strategies by statistical analysis 
to address damping identification for the impulse, white 
noise, and earthquake excitation scenarios. The methods used 
in this study are mathematically based on the formulations 
shown in Section 5, whereas many subsequent improvements 
have been made by several researchers (Ulusoy et al., 2011; 
Li et al., 2018; Brincker and Amador, 2022; Qu et al., 2024; 
Bajrić and Høgsberg, 2018; Huang and Gu, 2016; Dou et al., 
2016). Nonetheless, this study comprehensively evaluates the 
performance of each method based on the established criteria with 
a benchmark. It can serve as a useful guide for researchers who 
wish to apply these methods in their studies involving damping 
identifications. The parameter recommendations derived from 

the statistical analysis of 236 earthquake responses can also serve
as references.
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