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Structural design often neglects the dynamic effects induced by human
activities. Excessive vibrations in structures such as pedestrian bridges,
grandstands, slabs, and stairways have highlighted the analysis as dynamic
systems of humans interacting with structures. This phenomenon, commonly
referred to as "human-structure interaction” (HSI), is investigated in this
study using experimental records obtained from a cantilever steel frame
specially constructed to represent a variety of structures susceptible to the HSI
phenomenon. This study aims to develop and evaluate artificial neural network
(ANN) models capable of representing subjects in the passive condition of HSI
using only simple anthropometric parameters. Two models—Nonlinear Auto-
Regressive with eXogenous input (NARX) and MultiLayer Perceptron (MLP) —are
implemented and compared with a conventional Mass-Spring-Damper (MSD)
model. The results show that the ANN models significantly outperform the MSD
model, achieving lower Normalized Mean Square Error (NMSE) values both in
time-response prediction (20.23% for NARX and 25.07% for MLP vs. 30.19%
for MSD) and frequency-response prediction (16.00% for NARX and 17.05% for
MLP vs. 26.01% for MSD). These findings demonstrate that the proposed ANN-
based models can predict the dynamic response of individual subjects using
only simple anthropometric parameters such as mass and height. This approach
provides a practical and efficient tool for modeling HSI in civil engineering
applications.

KEYWORDS

human-structure interaction, artificial neural networks, dynamic systems, experimental
validation, data-driven modeling

1 Introduction

In recent decades, slender structures such as slabs, footbridges, staircases, and
grandstands have revealed problems with excessive vibrations induced by human activities
(Dang and Zivanovi¢, 2015; Shahabpoor et al., 2016; Gomez et al., 2018; Lin et al.,
2020). Structural advances have significantly increased the strength of building materials,
optimizing them while decreasing construction costs. However, the materials’ stiffness
increment has been at a different rate than their strength (Connor and Laflamme, 2014).
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The combination of these two aspects and the trend in structural
design to build more flexible and slender structures have reflected
significant changes in the dynamic properties of structures,
generating the potential for unexpected structural vibration (Wei
and Zivanovi¢, 2018). Therefore, the serviceability load conditions
due to human activities have drastically influenced the design of
these structures (Zivanovi¢ et al., 2005; Dang and Zivanovié, 2016).

Structures with serviceability issues due to human activities
reflect a phenomenon known in the literature as “human-structure
interaction” (HSI). Ahmadi et al. (2019) defined HSI as the
bidirectional dynamic effect between humans and structures. HSI
encompasses three main effects: (1) dynamic forces exerted by
individuals on a structure; (2) the impact of structural vibrations
on the human body; (3) alterations in the dynamic properties of a
structure due to the presence of people. This interaction is especially
significant when the walking frequency of individuals aligns with the
structure’s fundamental frequency, leading to resonance. However,
even stationary individuals can influence a structure’s response.
When they sense discomfort from vibrations, people instinctively
exert counteracting forces to stabilize themselves, which in turn
affects the overall behavior of the structure. Thus, the HSI
phenomenon may occur with a person or group of people in active
(jogging, walking, or running) or passive (standing, sitting, or static
position) conditions on a structure where the dynamic response is
modified (Salyards and Noss, 2014; Ahmadi et al., 2018; Ortiz and
Caicedo, 2019).

Different models have been proposed to represent humans
in HSI that encompass their active and passive conditions.
For instance, Sim et al. (2007), Hashim et al. (2020), and
others have employed Mass-Spring-Damper (MSD) models to
represent a standing human, aiming to identify the fundamental
parameters of the human body in vibrating structures. Others have
proposed representing humans using different dynamic models,
such as feedback systems (Ortiz and Caicedo, 2019; Alzubaidi
and Caicedo, 2021) and inverted pendulum (Bocian et al., 2013;
Qin et al,, 2013; Cruise et al., 2017). These models brought new
perspectives and possibilities to understanding HSI.

Traditionally, researchers have used conventional deterministic
MSD models to represent HSI. These models relied on one or
more degrees of freedom (DOF) and were considered linear time-
invariant systems. However, further research has demonstrated
that this assumption is only valid in specific cases (Subashi et al.,
2006; Martinez-Garcia et al, 2021). Despite their simplicity
of implementation, MSD models have limitations that make
it challenging to represent subjects with different biodynamic
characteristics (Gomez et al., 2020). For example, they require
the stiffness and damping coefficients of the person to operate;
these are more complicated to measure than anthropometric
characteristics such as mass and height. Another disadvantage of
deterministic MSD models is that they only include biodynamic
parameters for one subject at a time. Therefore, each subject
needs its own deterministic MSD model. Additionally, deterministic
MSD models do not consider important factors such as weight,
height, age, and gender, which may significantly affect the HSI
(Bierbaum et al., 2010; Cruise et al., 2017). These limitations reveal a
research gap, as most existing models fail to provide a practical and
generalizable approach to represent human occupants in HSI using
parameters that are simple to obtain.
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Alternative models to MSD have been employed to address
problems similar to HSI. For instance, artificial neural networks
(ANNs) have been successfully used in solving the vehicle-bridge
interaction (VBI) problem. ANNs can offer advantages based
on self-learning capabilities that deterministic models cannot
consider. ANNs have been used to predict system responses in
VBI phenomena (Luo et al., 2020; Li et al., 2021). Other research
has also used deep ANNs such as long short-term memory
(LSTM) and convolutional neural networks (CNN) to predict
human-induced force predictions in different scientific applications
(Johnson et al., 2019; Peldez-Rodriguez et al., 2024).

Significant technological advances related to several artificial
intelligence branches have been developed for decades. ANNs, for
example, are particularly noteworthy for their ability to imitate
the biological neuron’s structure and functioning (Norgaard et al.,
2000). ANNs learn and generalize complex linear and nonlinear
relationships based on experience. Several ANN architectures
are available, but our study focused on ANNs tailored to time
series and dynamic system identification (Norgaard et al., 2000;
Khodabandehlou and Fadali, 2019; Li et al., 2021). The ability
of ANNs to learn and generalize temporal signal behavior,
together with their capacity to integrate external parameters into
training, makes them a powerful tool for representing interaction
phenomena between dynamic systems, including HSI. These
advantages position ANN-based models as a viable alternative
to conventional approaches for representing humans in HSL
This study leverages these learning and generalization capabilities
of ANNs—qualities often missing in deterministic models and
many conventional approaches used to represent humans in HSIL.
Accordingly, we introduce novel ANN-based models specifically
designed to represent humans in the HSI phenomenon, utilizing
the nonlinear autoregressive with eXogenous inputs (NARX) and
multilayer perceptron (MLP) architectures.

This study aims to demonstrate that ANN-based models
can effectively represent the human body in HSI while also
their
anthropometric parameters under passive conditions. To achieve

demonstrating robustness to variations in subjects’
this, the models are trained and validated using experimental data
collected from structures occupied by individual subjects.

The organization of this paper is as follows. The “Methodology”
section describes the procedure used to obtain the test data, the
mathematical model representing the test structure, and the ANN-
based models representing the human in HSIL. In “Results and
Discussion’, the results of the developed models are shown. Finally,
“Conclusions” contains the main findings of this study and outlines

essential considerations for future research.

2 Methodology
2.1 Test structure

The cantilever steel frame used in this study was built at the
University of South Carolina and comprises two fixed supports and
two sliding supports that facilitate adjustments to the cantilever’s
length and, thus, its stiffness. Concrete blocks can be added to
the structure to increase its mass. With the modification of mass
and structural stiffness, the test structure can represent a range of
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FIGURE 1

Experimental structure, initially proposed by Salyards and Noss (2014),
modified and constructed at the University of South Carolina to
evaluate structural responses in the 3—-10 Hz frequency range.

frequencies in which some structures are susceptible to HSI. The
experimental data used in this study were obtained from Ortiz
(2016). The cantilever length was 2.54 m, and the concrete blocks
were located 1.9 m from the fixed support. The test structure used
in the experimental program is shown in Figure 1, where, in the
HSI tests, the subject stands in an upright (vertical) and natural
position on the center of the concrete block located at the end of
the cantilever.

The tests involved exciting the structure through a vertical
impact using a 096D50 PCB hammer applied at the center
of the concrete block at the cantilever’s end. This method is
commonly used to stimulate a broad range of frequencies in
the test structure, including those associated with both vertical
and horizontal vibration modes. The structure was instrumented
with PCB 333B50 accelerometers, which recorded the vertical
and horizontal accelerations of the experimental structure with a
sampling frequency of 1,652 Hz. The frequency range of interest
for this study is below 10 Hz; thus, the data were resampled
to 128 Hz to satisfy the Nyquist theorem, allowing for accurate
representation of frequencies up to 64 Hz. A low-pass filter was then
applied to each signal to remove high-frequency noise unrelated to
HSI, ensuring that only relevant frequencies contributed to model
fitting. This preprocessing step was critical in avoiding interference
from extraneous frequencies that could otherwise compromise the
accuracy of the models. Initially, the empty structure was excited
to carry out the system identification process of the test structure.
Subsequently, the procedure was repeated with different subjects
on the structure. The vibration levels exerted on the structure were
large enough for humans to perceive the vibration and generate a
response action on the structure. Figure 2 depicts the experimental
HSI set-up, where y, and y, refer to the vertical and horizontal
DOF of the structure, respectively. K, is the structural stiffness
associated with the vertical DOF, and C, is the structural damping
coeflicient related to the vertical DOE Similarly, K;, and C,, are
the stiffness and damping associated with the horizontal DOF of
the structure, respectively. P is the force produced by the impact
of a hammer on the structure. The human is modeled as a single
DOF system in the vertical direction, with s, as the relative vertical
displacement between the human and the structure. It is important
to highlight that temperature control measures were implemented
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FIGURE 2

Experimental HSI set-up representation where the structure is
modeled as a two-DOF system, while the subject is expressed as a
single-DOF system with its effect on the vertical DOF. The structure is
impacted with a hammer in the center of the concrete block at the
end of the cantilever in the vertical direction.

during the tests within a laboratory environment, ensuring a
constant temperature of approximately 21 °C. The experiments were
conducted under these controlled temperature conditions, with
each subject’s test lasting approximately 3 min. Therefore, we can
affirm that the thermal effects on the test structure were constant
during the tests.

2.2 Participants

Nine test subjects (three females) participated in the study. The
sample size (n = 9) was defined according to the practical constraints
of the experimental campaign, including volunteer availability,
laboratory  scheduling, and instrumentation requirements.
Participants were recruited from available volunteers to provide
variation in anthropometric characteristics relevant to model
development under passive HSI. All participants confirmed through
self-report that they had no conditions affecting their standing
posture. Informed consent was obtained from all subjects, with
approval from the University of South Carolina Institutional
Review Board. Anthropometric parameters for each subject are

presented in Table 1.

2.3 Dataset

During the experiment, the impact force P and accelerations j,
and y, of the structure were recorded over time. We obtained 27
records for the occupied structure, with three measured for each of
the nine participants. Additionally, three records were obtained for
the empty structure. The models followed a standard ANN training
and validation data distribution (80% training—20% validation).
Data from seven out of the nine subjects were used for training,
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TABLE 1 Anthropometric characteristics of test subjects.

Subject Mass (kg) Height (m)
H1 73 1.73
H2 67 1.68
H3 86 1.56
H4 72 1.78
H5 73 1.83
Heé 72 1.81
H7 69 1.85
H8 88 1.71
H9 78 1.83

while the third record of each training subject served as additional
validation data for the models. In this regard, the occupied structure
dataset was split into two parts: (1) the training dataset, comprising
the first two records of participants H1-H7, and (2) the validation
dataset, including the third record of participants H1-H7 and all
records of participants H8 and H9. It is important to clarify that
each dataset includes the time signals of the hammer’s impact on the
structure, the vertical and horizontal accelerations of the structure,
and the mass and height of the analyzed subject. Table 2 presents the
organization of the data used in this study, which is used to feed and
validate all the human models.

2.4 Structural model

The current study represents the structure as a two-DOF
state-space model, accounting for both vertical and horizontal
movements. The model incorporates the effect of the human on
the structure through the vertical force generated by the subject’s
location. Equations 1, 2 give the equation of motion (EOM) of the
empty structure as

4+Zq+Q’q=®'TP+®'TF, 1)
with
Lw 0 w0 1
z=2|"" 2= ! T= )
0 o, 0 0

where §, q, and q are the generalized acceleration, velocity, and
displacement of the structure in the vertical and horizontal DOF,
respectively. {; and w, respectively represent the damping ratio
and the natural frequency associated with the first vibration mode.
Similarly, {, and w, respectively correspond to the damping ratio and
the natural frequency associated with the second vibration mode. Q*
is the spectral matrix, ® is the modal matrix normalized with respect
to the mass, and T is the vector defining the DOF where the inputs
are applied—in this case, the hammer impact force and the human
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force are applied at the same place. P refers to the impact force of the
hammer on the structure, and F, is the force generated by the human
on the structure. It is important to note that when the structure is
empty, F, is equal to zero. Using the state-space model, the EOM of
the structural model is described by Equations 3, 4 as

X, =AX, +Bu,
V = CSXS + DSuS

3)

with
0 1 0 0

A = , B,=
o'r o'T
4x4 4x2 (4)

C,=o[-@* -Z],,, D,=0[@'T @'T],,

where X, is the state vector [qq]” of the structure. The vector u,
includes the inputs of the structure corresponding to the hammer
impact and the human force, and I is the identity matrix. The
structure’s frequency response is obtained from the relationship
between the hammer impact P as the input and the vertical y,
and horizontal y, accelerations of the structure as the outputs. This
analysis enables us to estimate the transfer function that describes
the system in the frequency domain. The empty structure has natural
frequencies at 3.49 Hz and 3.92 Hz with associated damping ratios

of 0.62% and 0.32%, respectively.

2.5 Human as an MSD model

The human being may be considered a dynamic system due
to its biomechanical characteristics, with the ability to modify
the behavior of a structure. Thus, the HSI effect occurs from the
interaction between two dynamic systems: the human and the
structure. When an occupied structure is excited by an impact,
the human exerts a controlling force on the structure, modifying
the structural response. Multiple models have been proposed
to represent the human in the HSI phenomenon. Traditionally,
simplified models have been used, such as linear deterministic MSD
models, with one or multiple degrees of freedom. These models
have been widely employed under the justification that the human,
in addition to contributing mass, also contributes stiffness and
damping to the coupled system.

An MSD model of a single DOF (reference MSD model) was
developed to compare the ANN-based models proposed in this
study with a model traditionally used to represent a human being
in HSIL. Equation 5 describes the EOM of the reference MSD model
human model as

8+ ZCPa)PSP + a)f,sp =-y, (5)
where $pr $ps and s, are the relative acceleration, velocity, and
displacement between the structure and the center of gravity (COG)
of the subject, respectively. {, and w,, are the respective damping ratio
and natural frequency of the test subject in the vertical direction.
Equations 6, 7 show the state space model of the reference MSD
model interacting with the structure as

X, =AX,+B,j,
Fmsd = CPXP

(6)
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TABLE 2 Dataset organization for the occupied structure.

10.3389/fbuil.2025.1672716

Record
I 2 3
HI
Subject Validation

H8

H9
with neural network. The input is the impact of the hammer “P(t)” that
excites the coupled system. The arrows indicate the process that
A 0 1 B = C,=[K, G ) leads, through a neural network represented by connected nodes.
’ _“’127 20,0, Pl- ’ The human exerts a force “Fp(t)” on the structure, and the output of

where X, is the state vector [sp SP]T of the human model, and K,
and Cp are the stiffness and damping coefficients of the human,
respectively. The prediction of the MSD-SDOF model for the force
produced by the human is denoted as F,,,;.

The mass value of the reference model is obtained by calculating
the arithmetical average of the mass of subjects HI-H7, resulting
in a value of 73.1 kg. The experimental data corresponding to
the training dataset described in the section dataset are linked
consecutively to determine the damping and stiffness values. After
joining and aligning the training dataset, the damping and stiffness
values of the reference MSD model are optimized, resulting in
values of 1,652 kgs™! and 72,074 kg-s%, respectively. Considering
the fixed mass value mentioned above and the damping and stiffness
values found, the natural frequency and damping ratio values are
calculated, resulting in 5 Hz and 36%, respectively. The natural
frequency and damping ratio obtained agree with the results in the
literature for standing subjects (Wei and Zivanovi¢, 2018). Figure 3
compares the experimental frequency responses of the empty and
occupied structure. It is observed that the interaction between
human and structure modifies its natural frequency and provides
damping to the system.

2.6 HSI models with ANNs

The HSI models presented in this study utilize dynamic
substructuring to capture the bidirectional interaction between the
structural model and the ANN-based models representing human
behavior. By simulating the coupled models, the prediction of the
response of the test structure interacting with subjects of different
masses and heights is obtained. This response varies according to
the anthropometric parameters of the human under consideration.
The structural model and the ANN-based models described below
provide a single model that considers the effect of each model on
the other (Figure 4).

Closed-loop diagram representing the interaction between
humans and structures, the humans are represented by an artificial
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the coupled system is the recorded acceleration “y(t)”.

2.7 Human as a NARX model

The first human model proposed in this study represents the
human as a NARX-type ANN. The NARX model is a recurrent ANN
based on the ARX configuration and is typically used for time series
problems. Research indicates that this type of ANN has a better
response to long time series and a better generalization capability
than conventional ANNs due to the implementation of delays in its
architecture (Lin et al., 1996). NARX models can represent almost
any nonlinear function using backpropagation in the gradient
descent process for ANN parameter updating (Ruslan et al., 2014).
As shown in Table 2, the first two records from subjects H1-H7
are used for model training, while the third record for subjects
H1-H?7 and all records for subjects H8 and H9 are used for model
validation. As the force exerted by the human was not measured
in the experiment, the force generated by an independent MSD
model for each subject is used as the starting point for training
the NAXR model. The NARX model, coupled with the structural
model, then continues the training to minimize the error between
the prediction of the structural response and the experimental
data. To incorporate differences between subjects in the ANN’s
learning, additional inputs, such as the anthropometric parameters
of mass and height, are included in the NARX model. Figure 5
illustrates the architecture described by Equation 8 to represent the
NARX model, as

Fnurx:f(Fnarx(t_1)’Fnarx(t_2)’u(t_1)’u(t_2)) (8)

where u is the input vector containing the training dataset’s
mass, height, and vertical acceleration. f is a nonlinear function
representing the relationship between inputs and output. The
prediction of the force produced by the human at each instant
of time ¢ is denoted by F,,,.. F,,.(t—1) and F, . (t-2) are the
past values of F,,., which are used as autoregressive inputs to

the model; likewise u(t - I) and u(t—2) are the past values of the
exogenous characteristics used as exogenous inputs to the model.
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Interaction between the structural and human model

represented by ANNSs.

This model incorporates past input values to detect variations
in model parameters attributed to external factors. Therefore,
implementing memory through delays is crucial in such models
(Chen et al., 1990; Argyropoulos et al., 2016). The training process
employed the Levenberg-Marquardt backpropagation algorithm,
a statistical optimization method widely used for nonlinear least-
squares problems. This algorithm was selected because it combines
the rapid convergence properties of the Gauss-Newton method
with the stability of gradient descent, making it particularly
effective for system identification tasks with relatively small to
medium-sized datasets, such as the present experimental campaign.
Model evaluation was conducted using a five-fold cross-validation
procedure, ensuring that the dataset was partitioned into five
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subsets, with each serving once as the validation set while the
remaining four were used for training.

2.8 Human as an MLP model

The second human model proposed in this study represents the
human as an MLP-type ANN performing point-to-point response
prediction. The model takes a set of past data and successively
predicts a future value until the output signal is complete. Two
ANNs are pre-trained to feed the MLP model, with each ANN
corresponding to one of the analyzed systems. The first pre-trained
ANN is designed to represent the human. It is trained with
mass, height, and vertical structural acceleration inputs. The force
generated by an independent MSD model for each subject is the
output target of the pre-training ANN. The second pre-trained
ANN represents the experimental structure, and it is trained using
the hammer force and the force generated by each independent
MSD model as inputs, with the vertical structural acceleration as
the output.

An MLP model is implemented in this study with two hidden
layers, using transfer learning to incorporate the properties of pre-
trained ANNs (Figure 6). The first layer of the MLP model integrates
the characteristics of the pre-trained ANN for the human, while the
second layer integrates the characteristics of the pre-trained ANN
for the structure. Each layer consists of fully connected neurons,
and the learning process requires updating of the synaptic weights
W and biases 6 using the backpropagation algorithm. The model’s
training is conducted using the first two records of subjects HI-H7,
while the third record for HI-H7 and all records for H8 and H9 are

frontiersin.org


https://doi.org/10.3389/fbuil.2025.1672716
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org

Mena-Sanchez et al.

10.3389/fbuil.2025.1672716

FIGURE 5

NARX architecture models the human in HSI. In addition to the vertical structural acceleration input, the model considers the mass and height of the
subjects, while the output of the model is the prediction of the force generated by the subject on the structure.

O00000

— H Human force

Human
layer

Mass HO
Height HQ

Accel. (3,) HQ

0000

FIGURE 6

Hammer HO

MLP architecture represents the human and structural systems together in HSI. The subject’'s mass, height, and vertical acceleration are provided as
inputs to the human layer. The output of the human layer is denoted by F,,,, which is then used as an input along with the impact of the hammer for
the structure layer. The output of the structure layer is the prediction of the vertical acceleration of the structure.

Structure
layer

H Accel

0000

used for model validation. Equation 9 describes the mathematical
representation of the MLP model as

j}u :fo(zwjolh+00)

where W;, is the synaptic weight of the node j in the layer o,

©)

I, is the output of the hidden layer h, while 8, corresponds to
the bias of the layer o. The layers h and o are hidden and output
layers, respectively. y, is the prediction of the vertical acceleration
of the structure, and f, is the hyperbolic tangent activation function
as recommended by Pinkus (1999). The model jointly represents
the human and the structure to achieve an experimental fit. The
prediction of the force generated by the human on the structure is
denoted as F,;,.

The training loop developed to improve the performance
of the MLP model involves fitting the parameters of the layer
representing the structural model. In contrast, the layer’s parameters
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representing the human are fixed. This procedure uses 100 epochs
or early stopping criteria to enhance the overall performance of
the MLP model by updating the layer representing the structural
model. In the second phase of the loop, the layer’s parameters
representing the structure are fixed, and the layer’s parameters
representing the human are updated with five epochs. The entire
procedure is repeated until the error criterion in the experimental
fit has minimal changes with a tolerance of two decimal places.
After the coupled human-structure system is modeled and the
training process is completed, the layer representing the human is
separated from the MLP model to build a hybrid interaction model
with the structural model described in Section 2.4. The training
process of the MLP model employed the Bayesian regularization
backpropagation algorithm, a statistical optimization method that
introduces a regularization term into the error function to balance
model complexity and fitting accuracy. This approach was selected
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FIGURE 7
Experimental time response and NARX model prediction for H8 (88 kg, 1.71 m) and H9 (78 kg, 1.83 m). (A,C) present the responses in the vertical and
horizontal directions, respectively. (B,D) provide enlarged views of the results shown in (A,C), respectively.

because it mitigates the risk of overfitting, which is especially
important when working with relatively small experimental datasets
and neural network architectures of moderate complexity, such as
in this study. The MLP model was evaluated using a 5-fold cross-
validation procedure, where the dataset was divided into five equal
parts. In each iteration, one subset was used for validation while
the remaining four were used for training, ensuring a balanced
assessment of the model’s generalization capability.

3 Results and discussion

The performance of HSI models with ANNs (NARX and MLP)
was evaluated by comparing the structural acceleration of the
coupled models with experimental measurements. In both cases,
HSI models with ANNs could predict the structural response by
modifying the mass and height of the test subjects. Figures 7-10
show the comparison between the prediction of the ANN-based
models and the experimental response of the structure due to the
impact of the hammer while the structure is occupied by one
subject at a time—HS8 and H9. It is important to note that the
NARX and MLP models are not trained using the parameters
of these subjects, making these results an adequate assessment
of the robustness of the models. The results presented here
are fundamental for validating the models and evaluating their
ability to predict the structural response in HSI for different
subjects.

3.1 NARX model results

Figures 7, 8 present the performance of the NARX model
for subjects H8 and HY, incorporating their anthropometric
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parameters. The comparison includes both vertical and horizontal
structural responses in the time and frequency domains, with
enlarged views provided to highlight details of the predictions
against the experimental data.

Overall, the results demonstrate that the NARX model
is capable of accurately predicting the structural response
under passive HSI when the anthropometric characteristics
of different are considered. The time-domain
show with  the
measurements, while the frequency-domain analysis confirms

individuals

responses close agreement experimental
that the model adequately captures both magnitude and
phase behavior. These findings highlight the robustness of the
NARX model in adapting to variations in subject mass and

height.

3.2 MLP model results

Figures 9, 10 illustrate the performance of the MLP model for
subjects H8 and H9, considering their respective anthropometric
parameters. The results include both vertical and horizontal
responses in the time and frequency domains, with detailed
views provided to highlight differences between experimental
measurements and model predictions.

The comparison shows that the MLP model can successfully
reproduce the structural response under passive HSI, adapting
to variations in subject characteristics. In the time domain, the
model predictions closely match the experimental responses,
while the frequency-domain results confirm that the MLP
model effectively captures both magnitude and phase behavior.
These findings confirm the models ability to generalize
across subjects and highlight its suitability as an alternative
representation of humans in HSI.
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Experimental frequency response and NARX model prediction for H8 (88 kg, 1.71 m) and H9 (78 kg, 1.83 m). (A) and (C) show the vertical response in
magnitude and phase, respectively. (B) and (D) present the horizontal response in magnitude and phase, respectively.
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Experimental time response and MLP model prediction for H8 (88 kg, 1.71 m) and H9 (78 kg, 1.83 m). (A,C) present the responses in the vertical and
horizontal directions, respectively. (B,D) provide enlarged views of the results shown in (A,C), respectively.
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Figure 11 presents the vertical force predictions obtained from
the NARX and MLP models for subjects H8 and H9. Both
models consistently indicate that H8 exerts greater forces on
the structure than H9, highlighting the ability of the ANN-
based approaches to capture inter-subject variability. These results
confirm that the models not only reproduce the structural response
but also provide meaningful insights into individual human
contributions within the HSI phenomenon.

Frontiers in Built Environment

3.3 Overall results

The models developed consider the influence of the human
on the vertical DOF of the test structure. The Normalized Mean
Square Error (NMSE) is a statistical measure that normalizes the
mean square error (MSE) by the variance of the experimental
data. This normalization allows for direct comparison between
predicted and experimental signals and enhances interpretability
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Experimental frequency response and MLP model prediction for H8 (88 kg, 1.71 m) and H9 (78 kg, 1.83 m). (A,C) show the vertical response in
magnitude and phase, respectively. (B,D) present the horizontal response in magnitude and phase, respectively.
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across different scales and datasets. This metric was selected because
it is scale-independent and accounts for the variability of the
experimental signals, making it more suitable than absolute error
measures for comparing structural vibration data. For this reason,
the NMSE is used to calculate the error obtained by the reference

Frontiers in Built Environment

10

MSD, NARX, and MLP models concerning the structural vertical
response. Equation 10 describes the NMSE as

"xexp - xsim"2

NMSE = >
[y, — mean (xexp) I

(10)
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FIGURE 12

NMSE obtained by the NARX and MLP models in the vertical DOF. (A)
NMSE value prediction of the models in the time domain. (B) NMSE
value prediction of the models in the frequency domain.

where x,,,

the time or frequency domain for each subject, and x;,,

is the vertical component experimental response in
is the
prediction of the response in the same domain from the model under
consideration. Figure 12 shows the NMSE values obtained by the
reference MSD, NARX, and MLP models for the vertical component
response in the time (Figure 12A) and frequency (Figure 12B)
domains. It can be observed that the NARX and MLP models obtain
abetter prediction of the structural response than the reference MSD
model when a subject occupies the structure. Averaging the obtained
values, the NARX and MLP models achieve NMSEs of 20.23%
and 25.07% in the time domain, respectively, while the reference
MSD model has a higher NMSE of 30.19%. For frequency response
prediction, the NARX and MLP models achieve NMSEs of 16.00%
and 17.05%, respectively, outperforming the reference MSD model,
which has a higher NMSE of 26.01%. In both domains, the ANN-
based models outperform the reference model. This result shows that
ANN-based models are a promising alternative to represent humans
in the HSI phenomenon due to the adaptation of the response to the
input parameters, which correspond to human mass and height.

It is noteworthy that subjects H3 and H8 exhibit significant
variations in their anthropometric parameters compared to other
participants. Interestingly, the NARX model predicts the structural
response better than the MLP model in these cases. However, in
cases when the subject has mass and height values near those of
training, the MLP model performs better. This suggests that the
NARX model might be implemented to predict subjects’ responses
with mass and height values farther away from the training data.
Conversely, the MLP model may better predict the structural
response for data close to the training dataset.

To quantify the uncertainty of human force predictions in the
developed models, a Monte Carlo approach was applied with 100
iterations, perturbing the input data by 5% relative to the maximum
value of each variable. The mean and standard deviation of the
NMSE were calculated. For the NARX model, the average NMSE
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Average normalized sensitivity analysis of ANN-based models. The
relative contribution of each input variable to the model

output is shown.

was 3.03% with a standard deviation of 2.94 x 107, indicating
the variability of predictions around the mean value. For the
MLP model, equivalent analyses yielded an average NMSE of
10.60% with a standard deviation of 2.91x 107, These results
provide a quantitative assessment of prediction uncertainty for
both models under input variability. In addition, 95% confidence
intervals (CI) were computed to further assess uncertainty. For the
NARX model, the CI ranged from 2.97% to 3.09%, whereas for
the MLP model it spanned 10.54%-10.66%. These results provide
a robust quantitative assessment of predictive reliability under input
variability, highlighting the superior consistency of the NARX model
compared to the MLP.

In practical terms, the ANN-based models can support
engineers by providing fast tools for predicting the vibration levels
induced by different individuals, which can be integrated into
structural health monitoring systems. These models may also guide
design adjustments in slabs and grandstands by accounting for
variability in user mass and height. From a policy perspective,
adopting such data-driven approaches could inform serviceability
criteria in building codes, ensuring that human-induced vibrations
are evaluated not only through simplified deterministic models but
also through adaptive predictive tools.

3.4 Sensitivity analysis

A sensitivity analysis was conducted to improve the
interpretability of the ANN models. This analysis quantifies the
relative influence of each input variable on the model’s output. To
do so, a 5% multiplicative perturbation was applied to one input
variable at a time, and the resulting change in model performance
was recorded; the procedure was repeated for all input variables.

The results presented in Figure 13 indicate that the height of
each subject is the most influential variable in the models, providing
a clearer understanding of the neural network’s decision-making
process and highlighting the importance of considering subjects’
anthropometric parameters in the HSI phenomenon.
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3.5 Validation results

According to the data organization described in Table 2, the
model validation may be performed using any data from subjects H8
and H9 or the third record from any subject. Thus, the third record
from H3, H8, and H9 is chosen. Figure 14 shows the errors obtained
by the reference MSD, NARX, and MLP models for the third record
of the selected subjects.

As shown in Figure 14, the ANN models outperform the
reference MSD model with validation data, with NARX exhibiting
the best adaptability to anthropometric variations. Trained on
multiple subjects, these models effectively generalize human
interaction (HSI)
dynamically adjusting to individual differences.

The findings of this study demonstrate that ANNs can adapt to
changing input patterns and learn to generalize from the training

responses in human-structure scenarios,

data to make predictions on new data. Specifically, the ANN-
based models exhibit exceptional adaptability for subjects with
higher mass, such as H8 and H3. Interestingly, the reference
MSD models error increases for these subjects, even after being
carefully optimized using data from all the participants. These results
highlight the limitations of deterministic models like the reference
MSD model in capturing the complexity of human behavior in HSI
scenarios. In contrast, ANN-based models effectively adapt to inter-
subject variations in anthropometric parameters, providing more
accurate predictions of the HSI response.

Several recent studies have explored alternative representations
of HSI beyond the traditional MSD. Equivalent models have
been proposed that translate human effects into adjusted modal
properties (Van Nimmen et al., 2021), as well as convolution-based
formulations for passive and active components (Luca et al., 2022).
More recently, control-based approaches have been introduced to
model humans within HSI (Calonge et al., 2023; Lopez et al.,
2025). The ANN-based models proposed in this study align
with current trends that seek alternatives to traditional physical
and deterministic models. The results reinforce the idea that
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it is possible to achieve more accurate approximations than
conventional approaches using adaptive methodologies. Unlike
analytical simplifications or control formulations, ANN-based
models prioritize adaptability and predictive accuracy by learning
nonlinear relationships directly from the data without relying on
predefined structures or parameters.

4 Conclusion

This study highlights the contribution of ANN-based models,
specifically MLP and NARX, as powerful alternatives to classical
MSD representations for capturing human-structure interaction. A
key contribution is the ability of these models to adapt to easily
measurable anthropometric parameters, such as mass and height,
while maintaining high accuracy in predicting individual responses.
Compared with the MSD model, the ANN models, particularly
the NARX, significantly reduced prediction error, thereby offering
a practical and accessible tool for engineers and researchers. The
implications of these findings extend to enhancing safety and
comfort in civil structures, as they provide a reliable method for
incorporating human variability into the design and analysis of
structural systems.

Some real applications of the developed models can focus
analyzing and designing structures where humans are in a passive
posture, such as grandstands and classrooms. By more accurately
representing the impact of humans on these structures, ANN
models can be used to predict and mitigate problems related to
comfort and structural stability. From a computational perspective,
the proposed MLP and NARX models feature relatively simple
architectures and low computational cost, with per-sample inference
times in the millisecond range for datasets sampled at 128 Hz.
These characteristics indicate that real-time execution is feasible
on standard computing platforms and potentially on embedded
hardware, especially if ported to lightweight languages such as
Python or C++. This makes the models suitable for integration
into structural health monitoring systems or adaptive control
frameworks, where rapid and continuous assessment of HSI is
required. Future research may include testing the performance of the
proposed models in real-time scenarios. In addition, the proposed
models could serve as a basis for developing more advanced systems
to predict the response of multiple humans or differentiate between
individuals by incorporating additional anthropometric parameters
that are easily measurable.

However, it is important to note that the ANN models employed
in this study use supervised learning, which relies on labeled
input-output data. Improvements in the availability of human-
generated force data and a larger dataset might enhance the
prediction accuracy of the models. Future research may also focus
on increasing the number of easily measurable parameters in
test subjects to enhance the accuracy of individual responses.
The ANN models developed here have the potential to be
applied in different system types as long as the human is in
a standing (passive) condition and the structure is influenced
by excitations that affect the same DOF where the human is.
An example of such an application may be individuals standing
passively on grandstands. The proposed ANN-based models are
not restricted to representing only passive human conditions in
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HSI. With appropriate retraining using data from moving subjects,
they can capture active interactions, such as pedestrian-bridge
dynamics, and can be extended to other contexts, including
vehicle-structure interactions. To unlock their full potential, future
research should prioritize the development of a broader and
more diverse database, incorporating a greater number of easily
measurable anthropometric parameters. Such an effort would
strengthen model accuracy, enhance generalization, and expand its
applicability to a broader range of HSI scenarios. Overall, this study
provides a solid foundation for further research on the use of ANN
models to represent humans as dynamic systems in HSI.

This study focuses exclusively on the passive condition of the
HSI phenomenon. However, active human conditions, such as
walking, jogging, or jumping, generate complex and significant
dynamic interactions in structures susceptible to HSI. As part of
future research, we propose extending the current framework to
include these active conditions by acquiring experimental data
in controlled environments using instrumented platforms that
record forces induced by human gait and other dynamic activities.
Simultaneously, the developed neural network models, such as
NARX and MLP, will be adapted to process non-stationary inputs,
capturing the inherent variability of active HSI. This approach
enables the evaluation of the generalization and robustness of
the models under active HSI conditions, supporting broader
applications of Al-based modeling in structural dynamics analysis.
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