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Structural design often neglects the dynamic effects induced by human 
activities. Excessive vibrations in structures such as pedestrian bridges, 
grandstands, slabs, and stairways have highlighted the analysis as dynamic 
systems of humans interacting with structures. This phenomenon, commonly 
referred to as “human–structure interaction” (HSI), is investigated in this 
study using experimental records obtained from a cantilever steel frame 
specially constructed to represent a variety of structures susceptible to the HSI 
phenomenon. This study aims to develop and evaluate artificial neural network 
(ANN) models capable of representing subjects in the passive condition of HSI 
using only simple anthropometric parameters. Two models—Nonlinear Auto-
Regressive with eXogenous input (NARX) and MultiLayer Perceptron (MLP) —are 
implemented and compared with a conventional Mass-Spring-Damper (MSD) 
model. The results show that the ANN models significantly outperform the MSD 
model, achieving lower Normalized Mean Square Error (NMSE) values both in 
time-response prediction (20.23% for NARX and 25.07% for MLP vs. 30.19% 
for MSD) and frequency-response prediction (16.00% for NARX and 17.05% for 
MLP vs. 26.01% for MSD). These findings demonstrate that the proposed ANN-
based models can predict the dynamic response of individual subjects using 
only simple anthropometric parameters such as mass and height. This approach 
provides a practical and efficient tool for modeling HSI in civil engineering 
applications.
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 1 Introduction

In recent decades, slender structures such as slabs, footbridges, staircases, and 
grandstands have revealed problems with excessive vibrations induced by human activities 
(Dang and Živanović, 2015; Shahabpoor et al., 2016; Gomez et al., 2018; Lin et al., 
2020). Structural advances have significantly increased the strength of building materials, 
optimizing them while decreasing construction costs. However, the materials’ stiffness 
increment has been at a different rate than their strength (Connor and Laflamme, 2014).
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The combination of these two aspects and the trend in structural 
design to build more flexible and slender structures have reflected 
significant changes in the dynamic properties of structures, 
generating the potential for unexpected structural vibration (Wei 
and Živanović, 2018). Therefore, the serviceability load conditions 
due to human activities have drastically influenced the design of 
these structures (Živanović et al., 2005; Dang and Živanović, 2016).

Structures with serviceability issues due to human activities 
reflect a phenomenon known in the literature as “human–structure 
interaction” (HSI). Ahmadi et al. (2019) defined HSI as the 
bidirectional dynamic effect between humans and structures. HSI 
encompasses three main effects: (1) dynamic forces exerted by 
individuals on a structure; (2) the impact of structural vibrations 
on the human body; (3) alterations in the dynamic properties of a 
structure due to the presence of people. This interaction is especially 
significant when the walking frequency of individuals aligns with the 
structure’s fundamental frequency, leading to resonance. However, 
even stationary individuals can influence a structure’s response. 
When they sense discomfort from vibrations, people instinctively 
exert counteracting forces to stabilize themselves, which in turn 
affects the overall behavior of the structure. Thus, the HSI 
phenomenon may occur with a person or group of people in active 
(jogging, walking, or running) or passive (standing, sitting, or static 
position) conditions on a structure where the dynamic response is 
modified (Salyards and Noss, 2014; Ahmadi et al., 2018; Ortiz and 
Caicedo, 2019).

Different models have been proposed to represent humans 
in HSI that encompass their active and passive conditions. 
For instance, Sim et al. (2007), Hashim et al. (2020), and 
others have employed Mass-Spring-Damper (MSD) models to 
represent a standing human, aiming to identify the fundamental 
parameters of the human body in vibrating structures. Others have 
proposed representing humans using different dynamic models, 
such as feedback systems (Ortiz and Caicedo, 2019; Alzubaidi 
and Caicedo, 2021) and inverted pendulum (Bocian et al., 2013; 
Qin et al., 2013; Cruise et al., 2017). These models brought new 
perspectives and possibilities to understanding HSI.

Traditionally, researchers have used conventional deterministic 
MSD models to represent HSI. These models relied on one or 
more degrees of freedom (DOF) and were considered linear time-
invariant systems. However, further research has demonstrated 
that this assumption is only valid in specific cases (Subashi et al., 
2006; Martínez-García et al., 2021). Despite their simplicity 
of implementation, MSD models have limitations that make 
it challenging to represent subjects with different biodynamic 
characteristics (Gomez et al., 2020). For example, they require 
the stiffness and damping coefficients of the person to operate; 
these are more complicated to measure than anthropometric 
characteristics such as mass and height. Another disadvantage of 
deterministic MSD models is that they only include biodynamic 
parameters for one subject at a time. Therefore, each subject 
needs its own deterministic MSD model. Additionally, deterministic 
MSD models do not consider important factors such as weight, 
height, age, and gender, which may significantly affect the HSI 
(Bierbaum et al., 2010; Cruise et al., 2017). These limitations reveal a 
research gap, as most existing models fail to provide a practical and 
generalizable approach to represent human occupants in HSI using 
parameters that are simple to obtain.

Alternative models to MSD have been employed to address 
problems similar to HSI. For instance, artificial neural networks 
(ANNs) have been successfully used in solving the vehicle–bridge 
interaction (VBI) problem. ANNs can offer advantages based 
on self-learning capabilities that deterministic models cannot 
consider. ANNs have been used to predict system responses in 
VBI phenomena (Luo et al., 2020; Li et al., 2021). Other research 
has also used deep ANNs such as long short-term memory 
(LSTM) and convolutional neural networks (CNN) to predict 
human-induced force predictions in different scientific applications 
(Johnson et al., 2019; Peláez-Rodríguez et al., 2024).

Significant technological advances related to several artificial 
intelligence branches have been developed for decades. ANNs, for 
example, are particularly noteworthy for their ability to imitate 
the biological neuron’s structure and functioning (Norgaard et al., 
2000). ANNs learn and generalize complex linear and nonlinear 
relationships based on experience. Several ANN architectures 
are available, but our study focused on ANNs tailored to time 
series and dynamic system identification (Norgaard et al., 2000; 
Khodabandehlou and Fadali, 2019; Li et al., 2021). The ability 
of ANNs to learn and generalize temporal signal behavior, 
together with their capacity to integrate external parameters into 
training, makes them a powerful tool for representing interaction 
phenomena between dynamic systems, including HSI. These 
advantages position ANN-based models as a viable alternative 
to conventional approaches for representing humans in HSI. 
This study leverages these learning and generalization capabilities 
of ANNs—qualities often missing in deterministic models and 
many conventional approaches used to represent humans in HSI. 
Accordingly, we introduce novel ANN-based models specifically 
designed to represent humans in the HSI phenomenon, utilizing 
the nonlinear autoregressive with eXogenous inputs (NARX) and 
multilayer perceptron (MLP) architectures.

This study aims to demonstrate that ANN-based models 
can effectively represent the human body in HSI while also 
demonstrating their robustness to variations in subjects’ 
anthropometric parameters under passive conditions. To achieve 
this, the models are trained and validated using experimental data 
collected from structures occupied by individual subjects.

The organization of this paper is as follows. The “Methodology” 
section describes the procedure used to obtain the test data, the 
mathematical model representing the test structure, and the ANN-
based models representing the human in HSI. In “Results and 
Discussion”, the results of the developed models are shown. Finally, 
“Conclusions” contains the main findings of this study and outlines 
essential considerations for future research. 

2 Methodology

2.1 Test structure

The cantilever steel frame used in this study was built at the 
University of South Carolina and comprises two fixed supports and 
two sliding supports that facilitate adjustments to the cantilever’s 
length and, thus, its stiffness. Concrete blocks can be added to 
the structure to increase its mass. With the modification of mass 
and structural stiffness, the test structure can represent a range of 
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FIGURE 1
Experimental structure, initially proposed by Salyards and Noss (2014), 
modified and constructed at the University of South Carolina to 
evaluate structural responses in the 3–10 Hz frequency range.

frequencies in which some structures are susceptible to HSI. The 
experimental data used in this study were obtained from Ortiz 
(2016). The cantilever length was 2.54 m, and the concrete blocks 
were located 1.9 m from the fixed support. The test structure used 
in the experimental program is shown in Figure 1, where, in the 
HSI tests, the subject stands in an upright (vertical) and natural 
position on the center of the concrete block located at the end of 
the cantilever.

The tests involved exciting the structure through a vertical 
impact using a 096D50 PCB hammer applied at the center 
of the concrete block at the cantilever’s end. This method is 
commonly used to stimulate a broad range of frequencies in 
the test structure, including those associated with both vertical 
and horizontal vibration modes. The structure was instrumented 
with PCB 333B50 accelerometers, which recorded the vertical 
and horizontal accelerations of the experimental structure with a 
sampling frequency of 1,652 Hz. The frequency range of interest 
for this study is below 10 Hz; thus, the data were resampled 
to 128 Hz to satisfy the Nyquist theorem, allowing for accurate 
representation of frequencies up to 64 Hz. A low-pass filter was then 
applied to each signal to remove high-frequency noise unrelated to 
HSI, ensuring that only relevant frequencies contributed to model 
fitting. This preprocessing step was critical in avoiding interference 
from extraneous frequencies that could otherwise compromise the 
accuracy of the models. Initially, the empty structure was excited 
to carry out the system identification process of the test structure. 
Subsequently, the procedure was repeated with different subjects 
on the structure. The vibration levels exerted on the structure were 
large enough for humans to perceive the vibration and generate a 
response action on the structure. Figure 2 depicts the experimental 
HSI set-up, where yv and yh refer to the vertical and horizontal 
DOF of the structure, respectively. Kv is the structural stiffness 
associated with the vertical DOF, and Cv is the structural damping 
coefficient related to the vertical DOF. Similarly, Kh and Ch are 
the stiffness and damping associated with the horizontal DOF of 
the structure, respectively. P is the force produced by the impact 
of a hammer on the structure. The human is modeled as a single 
DOF system in the vertical direction, with sp as the relative vertical 
displacement between the human and the structure. It is important 
to highlight that temperature control measures were implemented 

FIGURE 2
Experimental HSI set-up representation where the structure is 
modeled as a two-DOF system, while the subject is expressed as a 
single-DOF system with its effect on the vertical DOF. The structure is 
impacted with a hammer in the center of the concrete block at the 
end of the cantilever in the vertical direction.

during the tests within a laboratory environment, ensuring a 
constant temperature of approximately 21 °C. The experiments were 
conducted under these controlled temperature conditions, with 
each subject’s test lasting approximately 3 min. Therefore, we can 
affirm that the thermal effects on the test structure were constant 
during the tests.

2.2 Participants

Nine test subjects (three females) participated in the study. The 
sample size (n = 9) was defined according to the practical constraints 
of the experimental campaign, including volunteer availability, 
laboratory scheduling, and instrumentation requirements. 
Participants were recruited from available volunteers to provide 
variation in anthropometric characteristics relevant to model 
development under passive HSI. All participants confirmed through 
self-report that they had no conditions affecting their standing 
posture. Informed consent was obtained from all subjects, with 
approval from the University of South Carolina Institutional 
Review Board. Anthropometric parameters for each subject are 
presented in Table 1.

2.3 Dataset

During the experiment, the impact force P and accelerations ÿv
and ÿh of the structure were recorded over time. We obtained 27 
records for the occupied structure, with three measured for each of 
the nine participants. Additionally, three records were obtained for 
the empty structure. The models followed a standard ANN training 
and validation data distribution (80% training—20% validation). 
Data from seven out of the nine subjects were used for training, 
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TABLE 1  Anthropometric characteristics of test subjects.

Subject Mass (kg) Height (m)

H1 73 1.73

H2 67 1.68

H3 86 1.56

H4 72 1.78

H5 73 1.83

H6 72 1.81

H7 69 1.85

H8 88 1.71

H9 78 1.83

while the third record of each training subject served as additional 
validation data for the models. In this regard, the occupied structure 
dataset was split into two parts: (1) the training dataset, comprising 
the first two records of participants H1–H7, and (2) the validation 
dataset, including the third record of participants H1–H7 and all 
records of participants H8 and H9. It is important to clarify that 
each dataset includes the time signals of the hammer’s impact on the 
structure, the vertical and horizontal accelerations of the structure, 
and the mass and height of the analyzed subject. Table 2 presents the 
organization of the data used in this study, which is used to feed and 
validate all the human models.

2.4 Structural model

The current study represents the structure as a two-DOF 
state-space model, accounting for both vertical and horizontal 
movements. The model incorporates the effect of the human on 
the structure through the vertical force generated by the subject’s 
location. Equations 1, 2 give the equation of motion (EOM) of the 
empty structure as

q̈+Zq̇+Ω2q =ΦTΓP+ΦTΓFp (1)

with

Z = 2[

[

ζ1ω1 0

0 ζ2ω2

]

]
,Ω2 = [

[

ω2
1 0

0 ω2
2

]

]
,Γ = [

[

1

0
]

]
(2)

where q̈, q̇, and q are the generalized acceleration, velocity, and 
displacement of the structure in the vertical and horizontal DOF, 
respectively. ζ1 and ω1 respectively represent the damping ratio 
and the natural frequency associated with the first vibration mode. 
Similarly, ζ2 and ω2 respectively correspond to the damping ratio and 
the natural frequency associated with the second vibration mode. Ω2

is the spectral matrix, Φ is the modal matrix normalized with respect 
to the mass, and Γ is the vector defining the DOF where the inputs 
are applied—in this case, the hammer impact force and the human 

force are applied at the same place. P refers to the impact force of the 
hammer on the structure, and Fp is the force generated by the human 
on the structure. It is important to note that when the structure is 
empty, Fp is equal to zero. Using the state-space model, the EOM of 
the structural model is described by Equations 3, 4 as

Ẋs = AsXs +Bsus

ÿ = CsXs +Dsus
(3)

with

As = [

[

0 I

−Ω2 −Z
]

]4x4

, Bs = [

[

0 0

ΦTΓ ΦTΓ
]

]4x2

,

Cs =Φ[−Ω2 −Z]2x4, Ds =Φ[ΦTΓ ΦTΓ]2x2

(4)

where Xs is the state vector [qq̇]T of the structure. The vector us
includes the inputs of the structure corresponding to the hammer 
impact and the human force, and I is the identity matrix. The 
structure’s frequency response is obtained from the relationship 
between the hammer impact P as the input and the vertical ÿv
and horizontal ÿh accelerations of the structure as the outputs. This 
analysis enables us to estimate the transfer function that describes 
the system in the frequency domain. The empty structure has natural 
frequencies at 3.49 Hz and 3.92 Hz with associated damping ratios 
of 0.62% and 0.32%, respectively. 

2.5 Human as an MSD model

The human being may be considered a dynamic system due 
to its biomechanical characteristics, with the ability to modify 
the behavior of a structure. Thus, the HSI effect occurs from the 
interaction between two dynamic systems: the human and the 
structure. When an occupied structure is excited by an impact, 
the human exerts a controlling force on the structure, modifying 
the structural response. Multiple models have been proposed 
to represent the human in the HSI phenomenon. Traditionally, 
simplified models have been used, such as linear deterministic MSD 
models, with one or multiple degrees of freedom. These models 
have been widely employed under the justification that the human, 
in addition to contributing mass, also contributes stiffness and 
damping to the coupled system.

An MSD model of a single DOF (reference MSD model) was 
developed to compare the ANN-based models proposed in this 
study with a model traditionally used to represent a human being 
in HSI. Equation 5 describes the EOM of the reference MSD model 
human model as

̈sp + 2ζpωp ̇sp +ω2
psp = −ÿv (5)

where ̈sp, ̇sp, and sp are the relative acceleration, velocity, and 
displacement between the structure and the center of gravity (COG) 
of the subject, respectively. ζp and ωp are the respective damping ratio 
and natural frequency of the test subject in the vertical direction. 
Equations 6, 7 show the state space model of the reference MSD 
model interacting with the structure as

Ẋp = ApXp +Bpÿv

Fmsd = CpXp
(6)
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TABLE 2  Dataset organization for the occupied structure.

with

Ap = [

[

0 1

−ω2
p −2ζpωp

]

]
,Bp = [

[

0

−1
]

]
,Cp = [Kp Cp] (7)

where Xp is the state vector [sp ̇sp]T of the human model, and Kp
and Cp are the stiffness and damping coefficients of the human, 
respectively. The prediction of the MSD-SDOF model for the force 
produced by the human is denoted as Fmsd.

The mass value of the reference model is obtained by calculating 
the arithmetical average of the mass of subjects H1–H7, resulting 
in a value of 73.1 kg. The experimental data corresponding to 
the training dataset described in the section dataset are linked 
consecutively to determine the damping and stiffness values. After 
joining and aligning the training dataset, the damping and stiffness 
values of the reference MSD model are optimized, resulting in 
values of 1,652 kg⋅s−1 and 72,074 kg⋅s−2, respectively. Considering 
the fixed mass value mentioned above and the damping and stiffness 
values found, the natural frequency and damping ratio values are 
calculated, resulting in 5 Hz and 36%, respectively. The natural 
frequency and damping ratio obtained agree with the results in the 
literature for standing subjects (Wei and Živanović, 2018). Figure 3 
compares the experimental frequency responses of the empty and 
occupied structure. It is observed that the interaction between 
human and structure modifies its natural frequency and provides 
damping to the system.

2.6 HSI models with ANNs

The HSI models presented in this study utilize dynamic 
substructuring to capture the bidirectional interaction between the 
structural model and the ANN-based models representing human 
behavior. By simulating the coupled models, the prediction of the 
response of the test structure interacting with subjects of different 
masses and heights is obtained. This response varies according to 
the anthropometric parameters of the human under consideration. 
The structural model and the ANN-based models described below 
provide a single model that considers the effect of each model on 
the other (Figure 4).

Closed-loop diagram representing the interaction between 
humans and structures, the humans are represented by an artificial 

neural network. The input is the impact of the hammer “P(t)” that 
excites the coupled system. The arrows indicate the process that 
leads, through a neural network represented by connected nodes. 
The human exerts a force “Fp(t)” on the structure, and the output of 
the coupled system is the recorded acceleration “y(t)”. 

2.7 Human as a NARX model

The first human model proposed in this study represents the 
human as a NARX-type ANN. The NARX model is a recurrent ANN 
based on the ARX configuration and is typically used for time series 
problems. Research indicates that this type of ANN has a better 
response to long time series and a better generalization capability 
than conventional ANNs due to the implementation of delays in its 
architecture (Lin et al., 1996). NARX models can represent almost 
any nonlinear function using backpropagation in the gradient 
descent process for ANN parameter updating (Ruslan et al., 2014). 
As shown in Table 2, the first two records from subjects H1–H7 
are used for model training, while the third record for subjects 
H1–H7 and all records for subjects H8 and H9 are used for model 
validation. As the force exerted by the human was not measured 
in the experiment, the force generated by an independent MSD 
model for each subject is used as the starting point for training 
the NAXR model. The NARX model, coupled with the structural 
model, then continues the training to minimize the error between 
the prediction of the structural response and the experimental 
data. To incorporate differences between subjects in the ANN’s 
learning, additional inputs, such as the anthropometric parameters 
of mass and height, are included in the NARX model. Figure 5 
illustrates the architecture described by Equation 8 to represent the 
NARX model, as

Fnarx = f (Fnarx (t− 1) ,Fnarx (t− 2) ,u (t− 1) ,u (t− 2)) (8)

where u is the input vector containing the training dataset’s 
mass, height, and vertical acceleration. f is a nonlinear function 
representing the relationship between inputs and output. The 
prediction of the force produced by the human at each instant 
of time t is denoted by Fnarx. Fnarx(t− 1) and Fnarx(t− 2) are the 
past values of Fnarx, which are used as autoregressive inputs to 
the model; likewise u(t− 1) and u(t− 2) are the past values of the 
exogenous characteristics used as exogenous inputs to the model. 
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FIGURE 3
Frequency responses of the empty structure, occupied structure, and reference MSD model prediction. (A) and (C) show the vertical response in 
magnitude and phase, respectively. (B) and (D) present the horizontal response in magnitude and phase, respectively.

FIGURE 4
Interaction between the structural and human model 
represented by ANNs.

This model incorporates past input values to detect variations 
in model parameters attributed to external factors. Therefore, 
implementing memory through delays is crucial in such models 
(Chen et al., 1990; Argyropoulos et al., 2016). The training process 
employed the Levenberg–Marquardt backpropagation algorithm, 
a statistical optimization method widely used for nonlinear least-
squares problems. This algorithm was selected because it combines 
the rapid convergence properties of the Gauss–Newton method 
with the stability of gradient descent, making it particularly 
effective for system identification tasks with relatively small to 
medium-sized datasets, such as the present experimental campaign. 
Model evaluation was conducted using a five-fold cross-validation 
procedure, ensuring that the dataset was partitioned into five 

subsets, with each serving once as the validation set while the 
remaining four were used for training.

2.8 Human as an MLP model

The second human model proposed in this study represents the 
human as an MLP-type ANN performing point-to-point response 
prediction. The model takes a set of past data and successively 
predicts a future value until the output signal is complete. Two 
ANNs are pre-trained to feed the MLP model, with each ANN 
corresponding to one of the analyzed systems. The first pre-trained 
ANN is designed to represent the human. It is trained with 
mass, height, and vertical structural acceleration inputs. The force 
generated by an independent MSD model for each subject is the 
output target of the pre-training ANN. The second pre-trained 
ANN represents the experimental structure, and it is trained using 
the hammer force and the force generated by each independent 
MSD model as inputs, with the vertical structural acceleration as 
the output.

An MLP model is implemented in this study with two hidden 
layers, using transfer learning to incorporate the properties of pre-
trained ANNs (Figure 6). The first layer of the MLP model integrates 
the characteristics of the pre-trained ANN for the human, while the 
second layer integrates the characteristics of the pre-trained ANN 
for the structure. Each layer consists of fully connected neurons, 
and the learning process requires updating of the synaptic weights 
W and biases θ using the backpropagation algorithm. The model’s 
training is conducted using the first two records of subjects H1–H7, 
while the third record for H1–H7 and all records for H8 and H9 are 
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FIGURE 5
NARX architecture models the human in HSI. In addition to the vertical structural acceleration input, the model considers the mass and height of the 
subjects, while the output of the model is the prediction of the force generated by the subject on the structure.

FIGURE 6
MLP architecture represents the human and structural systems together in HSI. The subject’s mass, height, and vertical acceleration are provided as 
inputs to the human layer. The output of the human layer is denoted by Fmlp, which is then used as an input along with the impact of the hammer for 
the structure layer. The output of the structure layer is the prediction of the vertical acceleration of the structure.

used for model validation. Equation 9 describes the mathematical 
representation of the MLP model as

ÿo = fo (∑WjoIh + θo) (9)

where Wjo is the synaptic weight of the node j in the layer o, 
Ih is the output of the hidden layer h, while θo corresponds to 
the bias of the layer o. The layers h and o are hidden and output 
layers, respectively. ÿo is the prediction of the vertical acceleration 
of the structure, and fo is the hyperbolic tangent activation function 
as recommended by Pinkus (1999). The model jointly represents 
the human and the structure to achieve an experimental fit. The 
prediction of the force generated by the human on the structure is 
denoted as Fmlp.

The training loop developed to improve the performance 
of the MLP model involves fitting the parameters of the layer 
representing the structural model. In contrast, the layer’s parameters 

representing the human are fixed. This procedure uses 100 epochs 
or early stopping criteria to enhance the overall performance of 
the MLP model by updating the layer representing the structural 
model. In the second phase of the loop, the layer’s parameters 
representing the structure are fixed, and the layer’s parameters 
representing the human are updated with five epochs. The entire 
procedure is repeated until the error criterion in the experimental 
fit has minimal changes with a tolerance of two decimal places. 
After the coupled human–structure system is modeled and the 
training process is completed, the layer representing the human is 
separated from the MLP model to build a hybrid interaction model 
with the structural model described in Section 2.4. The training 
process of the MLP model employed the Bayesian regularization 
backpropagation algorithm, a statistical optimization method that 
introduces a regularization term into the error function to balance 
model complexity and fitting accuracy. This approach was selected 

Frontiers in Built Environment 07 frontiersin.org

https://doi.org/10.3389/fbuil.2025.1672716
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org


Mena-Sanchez et al. 10.3389/fbuil.2025.1672716

FIGURE 7
Experimental time response and NARX model prediction for H8 (88 kg, 1.71 m) and H9 (78 kg, 1.83 m). (A,C) present the responses in the vertical and 
horizontal directions, respectively. (B,D) provide enlarged views of the results shown in (A,C), respectively.

because it mitigates the risk of overfitting, which is especially 
important when working with relatively small experimental datasets 
and neural network architectures of moderate complexity, such as 
in this study. The MLP model was evaluated using a 5-fold cross-
validation procedure, where the dataset was divided into five equal 
parts. In each iteration, one subset was used for validation while 
the remaining four were used for training, ensuring a balanced 
assessment of the model’s generalization capability. 

3 Results and discussion

The performance of HSI models with ANNs (NARX and MLP) 
was evaluated by comparing the structural acceleration of the 
coupled models with experimental measurements. In both cases, 
HSI models with ANNs could predict the structural response by 
modifying the mass and height of the test subjects. Figures 7–10 
show the comparison between the prediction of the ANN-based 
models and the experimental response of the structure due to the 
impact of the hammer while the structure is occupied by one 
subject at a time—H8 and H9. It is important to note that the 
NARX and MLP models are not trained using the parameters 
of these subjects, making these results an adequate assessment 
of the robustness of the models. The results presented here 
are fundamental for validating the models and evaluating their 
ability to predict the structural response in HSI for different
subjects.

3.1 NARX model results

Figures 7, 8 present the performance of the NARX model 
for subjects H8 and H9, incorporating their anthropometric 

parameters. The comparison includes both vertical and horizontal 
structural responses in the time and frequency domains, with 
enlarged views provided to highlight details of the predictions 
against the experimental data.

Overall, the results demonstrate that the NARX model 
is capable of accurately predicting the structural response 
under passive HSI when the anthropometric characteristics 
of different individuals are considered. The time-domain 
responses show close agreement with the experimental 
measurements, while the frequency-domain analysis confirms 
that the model adequately captures both magnitude and 
phase behavior. These findings highlight the robustness of the 
NARX model in adapting to variations in subject mass and
height. 

3.2 MLP model results

Figures 9, 10 illustrate the performance of the MLP model for 
subjects H8 and H9, considering their respective anthropometric 
parameters. The results include both vertical and horizontal 
responses in the time and frequency domains, with detailed 
views provided to highlight differences between experimental 
measurements and model predictions.

The comparison shows that the MLP model can successfully 
reproduce the structural response under passive HSI, adapting 
to variations in subject characteristics. In the time domain, the 
model predictions closely match the experimental responses, 
while the frequency-domain results confirm that the MLP 
model effectively captures both magnitude and phase behavior. 
These findings confirm the model’s ability to generalize 
across subjects and highlight its suitability as an alternative 
representation of humans in HSI.
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FIGURE 8
Experimental frequency response and NARX model prediction for H8 (88 kg, 1.71 m) and H9 (78 kg, 1.83 m). (A) and (C) show the vertical response in 
magnitude and phase, respectively. (B) and (D) present the horizontal response in magnitude and phase, respectively.

FIGURE 9
Experimental time response and MLP model prediction for H8 (88 kg, 1.71 m) and H9 (78 kg, 1.83 m). (A,C) present the responses in the vertical and 
horizontal directions, respectively. (B,D) provide enlarged views of the results shown in (A,C), respectively.

Figure 11 presents the vertical force predictions obtained from 
the NARX and MLP models for subjects H8 and H9. Both 
models consistently indicate that H8 exerts greater forces on 
the structure than H9, highlighting the ability of the ANN-
based approaches to capture inter-subject variability. These results 
confirm that the models not only reproduce the structural response 
but also provide meaningful insights into individual human 
contributions within the HSI phenomenon.

3.3 Overall results

The models developed consider the influence of the human 
on the vertical DOF of the test structure. The Normalized Mean 
Square Error (NMSE) is a statistical measure that normalizes the 
mean square error (MSE) by the variance of the experimental 
data. This normalization allows for direct comparison between 
predicted and experimental signals and enhances interpretability 
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FIGURE 10
Experimental frequency response and MLP model prediction for H8 (88 kg, 1.71 m) and H9 (78 kg, 1.83 m). (A,C) show the vertical response in 
magnitude and phase, respectively. (B,D) present the horizontal response in magnitude and phase, respectively.

FIGURE 11
NARX and MLP model prediction for the force exerted by H8 (mass = 88 kg, height = 1.71 m) and H9 (mass = 78 kg, height = 1.83 m) on the structure.
(A) and (C) present the force prediction of the NARX and MLP models, respectively. (B) and (D) show an enlarged view of the results presented in (A)
and (C), respectively.

across different scales and datasets. This metric was selected because 
it is scale-independent and accounts for the variability of the 
experimental signals, making it more suitable than absolute error 
measures for comparing structural vibration data. For this reason, 
the NMSE is used to calculate the error obtained by the reference 

MSD, NARX, and MLP models concerning the structural vertical 
response. Equation 10 describes the NMSE as

NMSE =
‖xexp − xsim‖2

‖xexp −mean(xexp)‖
2

(10)
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FIGURE 12
NMSE obtained by the NARX and MLP models in the vertical DOF. (A)
NMSE value prediction of the models in the time domain. (B) NMSE 
value prediction of the models in the frequency domain.

where xexp is the vertical component experimental response in 
the time or frequency domain for each subject, and xsim is the 
prediction of the response in the same domain from the model under 
consideration. Figure 12 shows the NMSE values obtained by the 
reference MSD, NARX, and MLP models for the vertical component 
response in the time (Figure 12A) and frequency (Figure 12B) 
domains. It can be observed that the NARX and MLP models obtain 
a better prediction of the structural response than the reference MSD 
model when a subject occupies the structure. Averaging the obtained 
values, the NARX and MLP models achieve NMSEs of 20.23% 
and 25.07% in the time domain, respectively, while the reference 
MSD model has a higher NMSE of 30.19%. For frequency response 
prediction, the NARX and MLP models achieve NMSEs of 16.00% 
and 17.05%, respectively, outperforming the reference MSD model, 
which has a higher NMSE of 26.01%. In both domains, the ANN-
based models outperform the reference model. This result shows that 
ANN-based models are a promising alternative to represent humans 
in the HSI phenomenon due to the adaptation of the response to the 
input parameters, which correspond to human mass and height.

It is noteworthy that subjects H3 and H8 exhibit significant 
variations in their anthropometric parameters compared to other 
participants. Interestingly, the NARX model predicts the structural 
response better than the MLP model in these cases. However, in 
cases when the subject has mass and height values near those of 
training, the MLP model performs better. This suggests that the 
NARX model might be implemented to predict subjects’ responses 
with mass and height values farther away from the training data. 
Conversely, the MLP model may better predict the structural 
response for data close to the training dataset.

To quantify the uncertainty of human force predictions in the 
developed models, a Monte Carlo approach was applied with 100 
iterations, perturbing the input data by 5% relative to the maximum 
value of each variable. The mean and standard deviation of the 
NMSE were calculated. For the NARX model, the average NMSE 

FIGURE 13
Average normalized sensitivity analysis of ANN-based models. The 
relative contribution of each input variable to the model 
output is shown.

was 3.03% with a standard deviation of 2.94× 10−3, indicating 
the variability of predictions around the mean value. For the 
MLP model, equivalent analyses yielded an average NMSE of 
10.60% with a standard deviation of 2.91× 10−3. These results 
provide a quantitative assessment of prediction uncertainty for 
both models under input variability. In addition, 95% confidence 
intervals (CI) were computed to further assess uncertainty. For the 
NARX model, the CI ranged from 2.97% to 3.09%, whereas for 
the MLP model it spanned 10.54%–10.66%. These results provide 
a robust quantitative assessment of predictive reliability under input 
variability, highlighting the superior consistency of the NARX model 
compared to the MLP.

In practical terms, the ANN-based models can support 
engineers by providing fast tools for predicting the vibration levels 
induced by different individuals, which can be integrated into 
structural health monitoring systems. These models may also guide 
design adjustments in slabs and grandstands by accounting for 
variability in user mass and height. From a policy perspective, 
adopting such data-driven approaches could inform serviceability 
criteria in building codes, ensuring that human-induced vibrations 
are evaluated not only through simplified deterministic models but 
also through adaptive predictive tools. 

3.4 Sensitivity analysis

A sensitivity analysis was conducted to improve the 
interpretability of the ANN models. This analysis quantifies the 
relative influence of each input variable on the model’s output. To 
do so, a 5% multiplicative perturbation was applied to one input 
variable at a time, and the resulting change in model performance 
was recorded; the procedure was repeated for all input variables.

The results presented in Figure 13 indicate that the height of 
each subject is the most influential variable in the models, providing 
a clearer understanding of the neural network’s decision-making 
process and highlighting the importance of considering subjects’ 
anthropometric parameters in the HSI phenomenon.
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FIGURE 14
Validation of the NARX and MLP models, considering the 
anthropometric parameters of H7, H8, and H9. (A) NMSE values 
prediction of the models for the time domain. (B) NMSE values 
prediction of the models for the frequency domain.

3.5 Validation results

According to the data organization described in Table 2, the 
model validation may be performed using any data from subjects H8 
and H9 or the third record from any subject. Thus, the third record 
from H3, H8, and H9 is chosen. Figure 14 shows the errors obtained 
by the reference MSD, NARX, and MLP models for the third record 
of the selected subjects.

As shown in Figure 14, the ANN models outperform the 
reference MSD model with validation data, with NARX exhibiting 
the best adaptability to anthropometric variations. Trained on 
multiple subjects, these models effectively generalize human 
responses in human–structure interaction (HSI) scenarios, 
dynamically adjusting to individual differences.

The findings of this study demonstrate that ANNs can adapt to 
changing input patterns and learn to generalize from the training 
data to make predictions on new data. Specifically, the ANN-
based models exhibit exceptional adaptability for subjects with 
higher mass, such as H8 and H3. Interestingly, the reference 
MSD model’s error increases for these subjects, even after being 
carefully optimized using data from all the participants. These results 
highlight the limitations of deterministic models like the reference 
MSD model in capturing the complexity of human behavior in HSI 
scenarios. In contrast, ANN-based models effectively adapt to inter-
subject variations in anthropometric parameters, providing more 
accurate predictions of the HSI response.

Several recent studies have explored alternative representations 
of HSI beyond the traditional MSD. Equivalent models have 
been proposed that translate human effects into adjusted modal 
properties (Van Nimmen et al., 2021), as well as convolution-based 
formulations for passive and active components (Lucà et al., 2022). 
More recently, control-based approaches have been introduced to 
model humans within HSI (Calonge et al., 2023; Lopez et al., 
2025). The ANN-based models proposed in this study align 
with current trends that seek alternatives to traditional physical 
and deterministic models. The results reinforce the idea that 

it is possible to achieve more accurate approximations than 
conventional approaches using adaptive methodologies. Unlike 
analytical simplifications or control formulations, ANN-based 
models prioritize adaptability and predictive accuracy by learning 
nonlinear relationships directly from the data without relying on 
predefined structures or parameters. 

4 Conclusion

This study highlights the contribution of ANN-based models, 
specifically MLP and NARX, as powerful alternatives to classical 
MSD representations for capturing human–structure interaction. A 
key contribution is the ability of these models to adapt to easily 
measurable anthropometric parameters, such as mass and height, 
while maintaining high accuracy in predicting individual responses. 
Compared with the MSD model, the ANN models, particularly 
the NARX, significantly reduced prediction error, thereby offering 
a practical and accessible tool for engineers and researchers. The 
implications of these findings extend to enhancing safety and 
comfort in civil structures, as they provide a reliable method for 
incorporating human variability into the design and analysis of 
structural systems.

Some real applications of the developed models can focus 
analyzing and designing structures where humans are in a passive 
posture, such as grandstands and classrooms. By more accurately 
representing the impact of humans on these structures, ANN 
models can be used to predict and mitigate problems related to 
comfort and structural stability. From a computational perspective, 
the proposed MLP and NARX models feature relatively simple 
architectures and low computational cost, with per-sample inference 
times in the millisecond range for datasets sampled at 128 Hz. 
These characteristics indicate that real-time execution is feasible 
on standard computing platforms and potentially on embedded 
hardware, especially if ported to lightweight languages such as 
Python or C++. This makes the models suitable for integration 
into structural health monitoring systems or adaptive control 
frameworks, where rapid and continuous assessment of HSI is 
required. Future research may include testing the performance of the 
proposed models in real-time scenarios. In addition, the proposed 
models could serve as a basis for developing more advanced systems 
to predict the response of multiple humans or differentiate between 
individuals by incorporating additional anthropometric parameters 
that are easily measurable.

However, it is important to note that the ANN models employed 
in this study use supervised learning, which relies on labeled 
input–output data. Improvements in the availability of human-
generated force data and a larger dataset might enhance the 
prediction accuracy of the models. Future research may also focus 
on increasing the number of easily measurable parameters in 
test subjects to enhance the accuracy of individual responses. 
The ANN models developed here have the potential to be 
applied in different system types as long as the human is in 
a standing (passive) condition and the structure is influenced 
by excitations that affect the same DOF where the human is. 
An example of such an application may be individuals standing 
passively on grandstands. The proposed ANN-based models are 
not restricted to representing only passive human conditions in
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HSI. With appropriate retraining using data from moving subjects, 
they can capture active interactions, such as pedestrian–bridge 
dynamics, and can be extended to other contexts, including 
vehicle–structure interactions. To unlock their full potential, future 
research should prioritize the development of a broader and 
more diverse database, incorporating a greater number of easily 
measurable anthropometric parameters. Such an effort would 
strengthen model accuracy, enhance generalization, and expand its 
applicability to a broader range of HSI scenarios. Overall, this study 
provides a solid foundation for further research on the use of ANN 
models to represent humans as dynamic systems in HSI.

This study focuses exclusively on the passive condition of the 
HSI phenomenon. However, active human conditions, such as 
walking, jogging, or jumping, generate complex and significant 
dynamic interactions in structures susceptible to HSI. As part of 
future research, we propose extending the current framework to 
include these active conditions by acquiring experimental data 
in controlled environments using instrumented platforms that 
record forces induced by human gait and other dynamic activities. 
Simultaneously, the developed neural network models, such as 
NARX and MLP, will be adapted to process non-stationary inputs, 
capturing the inherent variability of active HSI. This approach 
enables the evaluation of the generalization and robustness of 
the models under active HSI conditions, supporting broader 
applications of AI-based modeling in structural dynamics analysis.
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