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The Architecture, Engineering, and Construction (AEC) sector accounts for 39%
of greenhouse gas emissions, 40% of solid waste, and 12% of potablewater
usage globally, underscoring the need for sustainable, efficient practices.
Building Information Modeling (BIM) offers a digital framework to address
these challenges through lifecycle management, collaboration, and efficiency
gains. However, most organizations remain at BIM Level 2 maturity, which
limits their potential for full integration. This study proposes a comprehensive
Decision Support System (DSS) to facilitate the adoption of BIM Level 3,
with an emphasis on collaboration, sustainability, and data interoperability.
The DSS integrates Structural Equation Modeling (SEM), Analytical Hierarchy
Process (AHP), and Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) to identify and prioritize key drivers—including political,
economic, socio-cultural, technological, legal, and environmental factors. The
framework is validated through case studies, demonstrating its ability to align
organizational strategies with sustainable practices. Organization (A) highlighted
several essential components, ensuring a comprehensive assessment of BIM
level 3 implementation within the organization. On the other hand, organization
(B) stressed the importance of comparing the predicted environmental
performance outcomes generated by the DSS with actual performance data
collected during the building's occupancy phase to validate the system’s
predictive capabilities. These findings offer a practical pathway for achieving
BIM Level 3 maturity, enhancing efficiency, supporting digital transformation,
and advancing sustainability in the AEC industry.

KEYWORDS

building information modeling (BIM), BIM level 3 maturity, decision support system
(DSS), integrated project delivery (IPD), analytical hierarchy process (AHP), techniquefor
order preference by similarity to ideal solution (TOPSIS), structural equation modeling
(SEM)

1 Introduction

Technological advancements have occurred across the Architecture, Engineering,
and Construction (AEC) industry over the last few decades, with Building Information
Modeling (BIM) emerging as a highly imperative tool to address various challenges faced
by the industry. BIM is a model-oriented, collaborative digital platform that enables the
management of the entire lifecycle of construction initiatives, promoting more sustainable
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and eflicient practices (Azhar et al., 2012; Sacks, 2020). BIM is an
integrated framework that encompasses all policies, practices, and
technologies related to the digital management of building data,
facilitating smooth communication and interoperability among
different stakeholders in a project. There is evidence that the
implementation of BIM reduces the costs and time spans of projects
while simultaneously increasing the productivity and quality of
construction activities (Bryde et al., 2013; Suermann and Issa, 2009).
BIM is the backbone of Construction 5.0 because it facilitates the
digital transformation of the sector’s activities, making it even more
efficient and innovative to execute in the construction field.

BIM is a multi-dimensional approach that allows extra
data dimensions to be linked to a model (Awwad et al., 2022;
D’Amico et al, 2020a). As more information (e.g., cost and
schedule) can be added, it provides a fuller understanding
of the project/asset. According to (DAmico et al, 2020a;
D’Amico et al,, 2020b; Koutamanis, 2020), the levels are the
procedures that enable other knowledge areas, such as construction
project management, scheduling and planning, cost estimation and
control, construction safety, and sustainability parameters, to be
embedded in BIM software to provide a single source of information
for all project stakeholders. These areas are interrelated with the
levels of BIM maturity in terms of BIM dimensions.

In Level 1, managed CAD drawings (in 2D or 3D) are
used, and industry standards, like commercial data and cost
management packages, are implemented (Adekunle et al., 2023;
Adekunle et al., 2022b; Adekunle et al, 2021; Alankarage et al.,
2023; Alankarage et al., 2022). Level 2 involves basic collaborative
modeling; however, the 3D environment is maintained in separate,
discipline-specific tools and is not shared in the cloud environment.
The 4D in level 2 is a 3D representation of an asset that
includes the element of time, enabling schedules and critical
path simulations (Adekunle et al., 2023; Alankarage et al., 2022;
Almashjary et al., 2020). The 5D within BIM level 2 is a 3D
representation of an asset with the elements of cost included
and linked to enable cost estimation, commercial management,
and earned value tracking to take place (Abubakar et al., 2014;
Charef et al,, 2018; D’Amico A. et al., 2020). Finally, Level 3
represents an open and interoperable process, including data
integration enabled by Industry Foundation Classes (IFC). The
TA collaborative model server manages data and information
(Giel and Issa, 2013; Succar, 2010; Succar and Kassem, 2015).
Level 3, sometimes called iBIM, involves sharing information in
a cloud-based, collaborative environment (Abdalla and Eltayeb,
2018; Almashjary et al., 2020). At this stage, a new dimension (6D
BIM) has evolved and been developed to address sustainability
needs (Charef et al., 2018; Kaewunruen et al., 2020; Montiel-
Santiago et al., 2020).

Many organizations have yet to achieve BIM Level 3 maturity,
which involves an integrated workflow that spans all stakeholders
and project phases. The key issues include fragmented construction
processes, interoperability between systems, and the lack of
robust evaluation frameworks to measure BIM adoption within
organizations (Chen et al., 2023; Gbadamosi et al., 2018). Maturity
models, such as the BIM Scorecard and the NBIMs ICMM, can be
used for assessing implementation, but they typically rely on project-
centric measures that do not encompass many organizational and
strategic considerations necessary for complete integration into an
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organization (Dakhil et al., 2015; Smits et al., 2017). The multitude
of data formats and the lack of standardization further complicate
the AEC sector’s implementation of an integrated BIM strategy.

The demand for BIM Level 3 introduces additional complexity to
the system, given stringent organizational objectives, sustainability
considerations, and the practical information requirements
of stakeholders. Most of these diverse demands cannot be
fulfilled well by current BIM frameworks. Hence, most BIM
applications tend to be disintegrated as they cannot fulfill the
actual promises of BIM’s implementation in most organizations
(Olanrewaju et al., 2020; Olanrewaju et al, 2022). Moreover,
earlier literature suggests that scalable and effective decision-
making tools are required for pre-planning the demand in terms
of BIM.

This study aims to address the existing gaps in the design and
validation of a holistic Decision Support System (DSS) method
tailored for BIM Level 3 implementation. This DSS shall integrate
Structural Equation Modeling (SEM), the Analytical Hierarchy
Process (AHP), and the Technique for Order Preference by
Similarity to Ideal Solution (TOPSIS). SEM is a multivariate
statistical technique that allows for the testing of relationships
among latent variables (AbuMoeilak et al., 2023; Kock, 2015). AHP
is a multi-criteria decision-making tool for ranking alternatives
based on weighted priorities (Chen and Li, 2015; Saaty, 1980).
TOPSIS is a method that evaluates alternatives against ideal and
worst-case benchmarks to identify optimal solutions (Lai et al.,
1994; Li et al, 2022). The Analytical Hierarchy Process (AHP)
and the Technique for Order Preference by Similarity to Ideal
Solution (TOPSIS) form a solid basis for evaluating and facilitating
BIM adoption (Dehdasht et al., 2020). More precisely, the DSS would
identify which key drivers of BIM adoption should be prioritized and
weighted from both internal and external perspectives, informing
an organizations strategy and implementation plan. Among its
objectives, the study will review current BIM frameworks, identify
the most critical drivers of BIM Level 3, rank those using
more rigorous methodologies, and develop a rating tool for
assessing readiness and maturity in the organizational use of
BIM. Realistic case studies are then applied to test the DSS,
demonstrating in practice how effective it would be in conducting
construction projects where integration and collaboration issues
frequently arise.

2 Literature review

Available and reported BIM frameworks rarely address these
multidimensional demands. Therefore, by reducing fragmentation
in current BIM adoption practices, this research provides a pathway
to achieve BIM Level 3 maturity through seamless collaboration,
interoperability, and integration of sustainability. The proposed
DSS will theoretically fill some gaps in understanding how BIM
implementation should work by providing practical solutions to
overcome challenges in the AEC industry. The findings contribute
to the global body of BIM knowledge, providing valuable insights
that researchers, practitioners, and policymakers can use to improve
efficiency, sustainability, and digital transformation in the industry.
In the context of strategic BIM adoption, the study highlights the
potential of BIM Level 3 to transform construction practices, reduce
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environmental impacts, and support the AEC industry’s shift toward
a more sustainable future.

2.1 BIM level 3 and integrated project
delivery (IPD)

Several maturity models can be used to assess BIM adoption
in the AEC industry, each with distinct levels and measurement
criteria (Adekunle et al., 2022b; Azhar, 2011; Eastman et al., 2011).
The most common models include the BIM Capability Maturity
Model (BIM-CMM), the BIM Execution Planning (BEP) Maturity
Model, and the Building Information Modeling Maturity Index
(BIMMI) (Azhar et al., 2012; Pan and Zhang, 2022). Such models
typically outline stages from BIM adoption to more advanced levels
of practice. They often lack a comprehensive set of tools to achieve
the highest maturity level, particularly BIM Level 3. Existing models
tend to prioritize specific project components over organizational-
wide integration, which is essential at higher levels of maturity
(Smits et al., 2017). Furthermore, their incapacity to evaluate real-
time collaboration, interoperability, and the integration of multiple
stakeholders explains a substantial gap in current BIM maturity
models. Recent research has expanded the scope of BIM maturity
frameworks to include global and regionally specific contexts. For
example (Schery et al., 2023), proposed a framework for identifying
and prioritizing critical success factors for BIM adoption in public
sector projects, applying fuzzy multi-criteria decision-making
(MCDM) techniques. This work highlights the growing emphasis on
structured decision-making methods for evaluating BIM maturity,
particularly in developing countries. Table 1: summarises the most
cited maturity models in the literature. BIM Level 3 is considered to
be the peak of digital integration in the construction industry, and
at this level, integration consists of interoperability, sustainability
considerations, and robust collaboration (Arayici et al., 2018;
Glasgow and Dakhil, 2017; Glema, 2017). In this scenario, all
project stakeholders, including designers, engineers, contractors,
and clients, utilize a single web-based platform to exchange
information in real time. The centralization of data ensures that
all critical project information is readily available at all times,
thereby improving coordination and reducing errors (Giel and Issa,
2013). Furthermore, Level-3 integration incorporates sustainability
parameters directly into the project lifecycle, such as energy and
resource conservation (De Schutter et al., 2018). This integrated
approach leads to more informed decision-making and smoother
project delivery.

The IPD system is a major driver of BIM Level 3 integration,
promoting collaboration among all project stakeholders (Bui et al.,
2016; Merschbrock and Munkvold, 2014). The IPD promotes the
sharing of goals, resources, and risks, leading to a collaborative
effort to enhance project outcomes. (Khosrowshahi, 2017). This
approach encourages improved accountability, productivity, and
transparency by allowing stakeholders with expertise in related
subjects to contribute to the brainstorming and decision-making
process, thereby solving problems in real-time (Sacks, 2020). The
practice of BIM at Level 3 significantly enhances the efficiency of
the IPD, as everyone on the team is aligned with the project’s goals
and strategies (Chen and Lu, 2019; Zhang et al., 2022).
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2.2 BIM Implementation Drivers and
attributes

Government regulations and interventions are key drivers
of BIM adoption. National regulations—such as mandating BIM
in public sector projects and establishing BIM standards and
guidelines—have been crucial in driving its widespread deployment
(Kim S. et al.,, 2020; Wang et al, 2021). Countries such as the
United Kingdom and South Korea have implemented regulatory
frameworks that promote BIM implementation, demonstrating the
level of government support required for BIM adoption. Table 2
describes BIM drivers.

In addition, the role of governance and institutional
frameworks has become increasingly crucial for advancing BIM
implementation. Tran and Huynh, 2025 examined government
involvement in public-private partnership (PPP) infrastructure
delivery in Vietnam, emphasizing how legal frameworks,
institutional capacity, and regulatory mechanisms shape the
successful digitalization of construction practices. These findings
reinforce the importance of the political and economic dimensions
considered in this study’s DSS framework and demonstrate how
policy-driven environments in Asia are accelerating BIM maturity
at both organizational and national levels.

The implementation of BIM involves considerable upfront
costs, primarily due to expenses related to software, training,
and deployment (Capobianco et al, 2021). In contrast, the
long-term benefits of BIM are usually greater than the cost of
investment, including cost savings through improved efficiency,
enhanced project outcomes, and reduced errors (Du et al., 2014;
Kim S. etal,, 2020). The ROI from implementing BIM is a significant
driver for its uptake, especially in competitive marketplaces where
financial benefits are regarded as critical determinants (Wang and
Feng, 2022).

Successful BIM adoption requires a shift in organizational
culture towards greater innovation and collaboration (Shafiq, 2021).
Effective implementation of BIM also requires engagement and trust
among stakeholders because it demands an integrated approach to
project management (Lu W. et al., 2021). Cultural factors encompass
the attitudes of individuals toward technology and their willingness
to adopt new tools, which can significantly impact an organization’s
adoption of BIM(Liu et al., 2022; Tan et al., 2022).

Studies such as (Schery et al., 2023; Vempati, 2024) illustrate
how Al-enabled decision-making and digital twins are reshaping
construction management and sustainability practices. This
evolution demonstrates the need for DSS that can integrate both
technological innovation and organizational factors, as proposed in
the current research.

The successful implementation of BIM is dependent primarily
on the availability of BIM-compatible software, along with
a robust IT infrastructure. Organizations should invest in
powerful computing systems and advanced software to benefit
fully from BIM(Wang and Feng, 2022). Furthermore, software
interoperability across various platforms used by diverse
stakeholders is critical to ensuring the smooth flow of data and
collaboration throughout the project’s lifetime.

BIM adoption requires legal frameworks that provide clarity
regarding intellectual property and data security. The ownership
rights to digital models and the protection of sensitive data must
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TABLE 1 Summary of the most cited maturity models.

Model

BIM Maturity Model
(BMM) - (iBIM)

Developer

Bew-Richards (2008)

Key elements

BIM process-based model

3 Levels

Clear guidelines for United
Kingdom construction industry

Shortcomes

Apply to some
organizations or
industries

10.3389/fbuil.2025.1687407

References

(Adekunle et al., 2022b;

Dakhil et al., 2016; Kim 1. et al.,
2020; Peralta

Lagos, 2019; Succar and
Kassem, 2015)

(NIBS)

aspects of BIM.

BIM Maturity Model Bilal Succar (2010) - BIM field-based model - Does not adequately (S. Adekunle et al., 2022; Chen
(BIM3) - Based on 12 (KMAs) consider potential and Li, 2015;
Comprehensive financial Ferraz et al., 2020; Succar, 2010)
evaluation framework benefits of BIM.
Capability Maturity National Institute of - Organizational, cultural, leadership, - High subjectivity, Banawi et al. (2019), Chen and
Model- (CMM) Building Sciences training, and communication limited Lu (2019),

measurement scope

McCuen et al. (2012), Sun
et al. (2022)

Dutch construction

Sebastian and Van

Identify areas for improvement in

Implementation may

(Banawi et al., 2019; Lu W. et al.,

industry BIM Quick Berlo (2010) BIM processes require a significant 2021; Siebelink et al., 2021; Sun
Scan - Clear and structured approach for amount of time etal, 2022)
innovation through BIM. and resources
Information Du, Liu, and Issa - Based on a set of BIM stages of the - Implementation may Alankarage et al. (2022),
Modeling Cloud (2014) construction lifecycle require a significant Feng et al. (2021), Kassem et al.
Score (BIMCS) - Provides a roadmap for amount of time (2020),
organizations to improve their BIM and resources Siebelink et al. (2021), Sun
capabilities etal. (2022)
BIM Proficiency The Indiana - Widely accepted BIM capabilities - Apply to some (Chen et al., 2023;
Index University (IU)- - Provides a clear and structured organizations or Morlhon et al., 2014; Siebelink
(2012) approach for organizations industries etal., 2018)

be clearly defined to mitigate regulatory risks (Ahmad et al., 2021;
Arensman and Ozbek, 2012). Legal considerations regarding data
usage, particularly in collaborative environments, must be addressed
promptly to facilitate effective BIM implementation and compliance
with industry standards (Eadie et al., 2015).

The BIM supports sustainable practices by incorporating
energy-efficient designs and environmental assessments during the
early stages of the project’s procedure (De Schutter et al., 2018).
BIM can be applied to better manage the environmental impact of
buildings by optimizing resource use, reducing waste, and ensuring
energy-efficient designs (Glasgow and Dakhil, 2017). The advantage
of BIM is that it enables one to model environmental conditions
and simulate energy use during building construction, ultimately
creating more sustainable structures. Table 1 summarizes the most
cited BIM Implementation Drivers.

3 Materials and methods

In this study, a mixed-methods research approach is employed,
combining qualitative (interviews) and quantitative (SEM, AHP,
and TOPSIS) techniques to answer the research questions and test
the hypotheses regarding the implementation of BIM Level 3. The
combination of these methods enables a complete study of BIM
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adoption, which combines both the subjective aspects of experts’
opinions and objective statistical information. This study employs
methodological triangulation, which involves the use of multiple
theories, methods, observations, and experimental materials to
mitigate the biases and limitations that might otherwise arise
from a single approach. Triangulation enhances research outcomes,
especially in areas such as BIM implementation. Figure 1 provides a
detailed overview of the research methodology.

3.1 Questionnaire design

The first phase in the survey construction outlined the purpose
of the research. It established a target population of Subject Matter
Experts (SMEs) with BIM knowledge across various segments of
the AEC industry. It was essential to gather precise expert opinions,
which could only be obtained from SMEs. After this, a pilot phase
was conducted with the primary goal of testing the initial survey
questions. This paper employed an expert panel in the pilot phase
to refine the survey questions, ensuring they elicited the critical
factors influencing BIM Level 3 (McBride and Sigler, 2019). We
refined our questions based on expert feedback to improve clarity
and relevance.

frontiersin.org


https://doi.org/10.3389/fbuil.2025.1687407
https://www.frontiersin.org/journals/built-environment
https://www.frontiersin.org

Abumoeilak et al.

TABLE 2 BIM implantation drivers summary.

10.3389/fbuil.2025.1687407

Dimension Attributes Definition References
Government Regulations and Refers to regulations and Al-Mohammad et al. (2023),
Mandates requirements set by Almeida et al. (2023),
government bodies that Atkinson et al. (2014),
mandate or encourage the Jiang et al. (2022), Winfield
adoption of BIM in (2020)
construction projects
Government Funds and The government’s availability Al-Ashmori et al. (2023),
Budget allocations and allocation of financial Almeida et al. (2023),
resources to support BIM Kim S. et al., 2020, Wang and
implementation in the AEC Feng (2022)
industry
! Political Trade Policies and Refers to regulations and rules Charef et al. (2019), Ganah and
International Standards set by governments to govern Lea (2021), Simon Elias (2019)
international trade in the
context of BIM, such as
established norms and
guidelines
Government Intervention Government intervention Atkinson et al. (2014), Withers
involves the active role of (2012), Yuan and Yang (2020)
authorities in promoting,
regulating, or incentivizing the
adoption of BIM in the AEC
industry
Cost of Implementation The total expenses associated Babatunde et al. (2019),
with adopting and integrating Fazeli et al. (2021),
BIM into construction Khahro et al. (2021),
processes Parsamehr et al. (2023)
Financial Considerations Evaluation of the long-term Al-Ashmori et al. (2023),
financial benefits and savings Farouk et al. (2023), Hill and
resulting from the Lee (2012), Inyim et al. (2015),
implementation of BIM. Kotler and Alexander Rath
(1984)
Competitive Advantage The strategic benefit Abdalla et al. (2023),
organizations gain through the Awwad et al. (2022),
effective use of BIM in terms of Madanayake et al. (2021),
project efficiency, quality, and Porwal et al. (2023)
2 Economic competitiveness
Skills and Training Cost The expenses related to Hartmann et al. (2008),
training personnel to Tang et al. (2019), Al Hattab
effectively use BIM tools and and Hamzeh (2018)
methodologies
Return on investment (ROI) Measuring the financial gains Arslan et al. (2020),
or benefits obtained relative to Kim I. et al. (2020)
the costs incurred in
implementing BIM.
Global Economic Conditions External economic factors that Al-Yami and Sanni-Anibire
can influence the adoption and (2021), Chen et al. (2018),
success of BIM implementation Abbasnejad et al. (2021),
on a global scale Eilifsen et al. (2020)
3 Socio-cultural Culture and Values Organizational culture and Adekunle et al., 2022b,
values that may impact the Al-Ashmori et al., (2022),
acceptance and integration of Alankarage et al. (2023),
BIM within a company Tan et al. (2022)
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TABLE 2 (Continued) BIM implantation drivers summary.

Dimension

Attributes

Leadership and Change
Management

Definition

The effectiveness of leadership
and change management
practices in facilitating the
transition to a BIM-enabled
workflow

10.3389/fbuil.2025.1687407

References

Abd Jamil and Fathi (2019),
Ahmed et al. (2017),
Al-Ashmori et al. (2023),
Azhar, 2011; Olugboyega
(2023)

Employee Attitudes and Beliefs

The perceptions and
acceptance levels of employees
toward BIM, which can affect
its successful implementation

Al-Ashmori et al. (2023),
Alankarage et al. (2022),
Elhendawi et al. (2019),
Olanrewaju et al. (2022),
Olugboyega (2023)

Labor Market Conditions

The availability and expertise
of skilled labour in the market
proficient in BIM
methodologies

Al-Mohammad et al. (2023),
Liu et al. (2022), Tan et al.
(2022)

Human Resources and Skills
Development

Education, training,
certification, ongoing
professional development,
collaborative learning,
research, and promotion efforts

Al Hattab and Hamzeh (2018),
Al-Mohammad et al. (2023),
Awwad et al. (2022),
Olugboyega (2023)

Collaborative Practices

The extent to which BIM
encourages and facilitates
collaborative work practices
among project stakeholders

LuY. et al. (2021), Al Hattab
and Hamzeh (2018)

Generational Differences

Variances in attitudes and
approaches towards
technology, including BIM,
across different age groups
within the workforce

Celoza et al. (2021),
Stepanenko et al. (2019),
Alwash et al. (2017),
Awwad et al. (2022)

Effective Communication and
Information Sharing

The ability of organizations to
communicate and share
information efficiently through
BIM processes

De Schutter et al. (2018),
Duetal. (2014)

4 Technological

Availability of BIM Software

The accessibility and variety of
BIM software solutions in the
market.

Awwad et al. (2022), Chan et al.
(2019), Ma et al. (2022)

Interoperability Platforms

The compatibility and seamless
integration of different BIM
tools and software platforms

Awwad et al. (2022),

Huang et al. (2023), Kadhim
(2022), Mutis and Mehraj
(2022), Tang et al. (2019)

IT Infrastructure

The strength and adequacy of
an organization’s IT
infrastructure to support BIM
implementation

Huang et al. (2023), Pan and
Zhang (2022), Porwal et al.
(2023)

Data Management and Data

Strategies and systems in place

Huang et al. (2023), Pan and

Standardization for the effective organization, Zhang (2021), Simon Elias
storage, and retrieval of (2019), Szép and Kirolyfi
BIM-related data (2021)
Machine Learning and Al Integration of machine Chaubhan et al. (2021),
Technologies learning and artificial Chen et al. (2023), Marchinares

intelligence technologies to
enhance BIM capabilities

and Aguilar-Alonso (2020),
Pan and Zhang (2022), Wang
and Feng (2022)
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TABLE 2 (Continued) BIM implantation drivers summary.

10.3389/fbuil.2025.1687407

Dimension Attributes Definition References
Intellectual Property Legal considerations regarding Celoza et al. (2021),
ownership and protection of Stepanenko et al. (2019)
intellectual property related to
BIM models and data
Liability and Risk Allocation Determination of Alwash et al. (2017), Dao et al.
responsibilities and risks (2020)
associated with BIM
implementation among project
stakeholders
Contractual obligations Legal agreements outlining Ahmad et al. (2021),
5 Legal BIM-related responsibilities Alwash et al. (2017),
and requirements between Arensman and Ozbek (2012),
parties involved in a Arshad et al. (2019)
construction project
Dispute Resolution Procedures in place to resolve Alwash et al. (2017),
Mechanisms disputes that may arise during Arensman and Ozbek (2012),
the course of BIM-enabled Arshad et al. (2019), Ma et al.
projects (2020)
Information Exchange Agreed-upon standards and Sansa et al. (2021), Hill and
Protocols protocols for exchanging Lee (2012), Inyim et al. (2015),
BIM-related information Kotler and Alexander Rath
among project participants (1984)
Sustainability and Green Integration of BIM in projects Glasgow and Dakhil (2017),
Building Initiatives focused on sustainable and Inyim et al. (2015),
environmentally friendly Siebelink et al. (2021)
construction practices
Environmental Awareness Consideration of Liu et al. (2022), Wang and
environmental impact and Feng (2022)
sustainability goals in
BIM-enabled projects
Sustainability Policies Organizational policies and Ahmad et al. (2021),
guidelines related to Al-Ashmori et al. (2023)
6 Environmental sustainable construction
practices
Sustainability Tools BIM tools and features De Schutter et al. (2018),
designed to support and assess Du et al. (2014)
the sustainability aspects of
construction projects
Local Environmental Adherence to and compliance Abd Jamil and Fathi (2019),
Regulations with local regulations Ahmed et al. (2017),
pertaining to environmental Sansa et al. (2021)
standards in construction
projects

In the second phase of the survey design, we conducted semi-
structured interviews with SMEs to validate the factors identified
in the reported literature and to explore new BIM adoption
drivers that had not been previously covered. Table 3 presents
the profile of the expert panel engaged in the semi-structured
interviews, comprising four professionals with diverse expertise in
digital transformation, BIM modeling, project management, and
technical specification. Their varied job roles, years of experience
(6-15), and geographic representation (United Kingdom, UAE,
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KSA) ensured balanced and credible input for validating the survey.
The data collection included flexible, semi-structured interviews,
which enabled the researchers to explore new and emerging
factors, as well as refine existing ones based on expert insights.
Following the identification of a research gap in the literature,
semi-structured interviews were conducted with SMEs to gather
qualitative data, validate the research findings, and gain an in-
depth understanding of the factors influencing the adoption of BIM
Level 3.
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Research methodology.

A set of interviews was conducted to explore the current status  that interviews can be used to gather valuable insights into the
of BIM implementation at Level 3 and the barriers that influence  subjective experiences of participants, which are often essential
its successful adoption at this level. Kuada (Kuada, 2012) argued  for understanding the complex problems associated with BIM
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TABLE 3 Interviewees profiles.

10.3389/fbuil.2025.1687407

\[e} Interviewee Expert 1 Expert 2 Expert 3 Expert 4
1 BIM Specialization Academia - Digital Transformation BIM Modelling Project Management Technical Specification
2 Job Designation PhD/BIM Coordinator Senior BIM Architect Project Manager Senior Engineer
3 Years of Experience 6 9 15 7
4 Country United Kingdom UAE UAE KSA

implementation. The data collected from these interviews were then
used to corroborate questions about the survey and to provide a
comprehensive understanding of the drivers and the limitations of
BIM adoption.

3.2 Data collection and analysis

3.2.1 Structural Equation Modeling (SEM) — EFA
and CFA

A statistical technique known as SEM was used to analyze the
relationship between drivers of BIM Level 3 implementation. SEM
is suitable for studying complex topics, such as BIM implementation,
because it enables the analysis of both latent and measured
variables and supports the modeling of various BIM drivers. Before
applying SEM, the study employed Exploratory Factor Analysis
(EFA) to identify the latent constructs underlying the collected
survey data. EFA is a widely accepted technique for reducing
dimensionality and exploring factor structures in the early stages
of model building (Hair et al., 2019; Mei et al., 2022). The dataset’s
suitability for factor analysis was confirmed using the Kaiser-
Meyer-Olkin (KMO) measure and Bartlett’s Test of Sphericity. The
KMO value exceeded 0.90, indicating excellent sampling adequacy,
while Bartlett’s test was significant (p < 0.05), confirming that the
correlation matrix was appropriate for factor extraction (Cohen,
2013; Garson, 2012; Majumdar and Schehr, 2014). Following the
EFA, the model structure was validated through Confirmatory
Factor Analysis (CFA), and the reliability of the identified factors
was assessed consistent with the literature. Then, SEM was used to
explore the relationship between these factors and their influence
on users perceptions, which became an exogenous dimension of
the model (Kim and Jung, 2016). SEM enabled us to evaluate several
hypothesized relationships simultaneously, grasp the intricacies of
BIM Level 3 implementation, and empirically identify the most
influential drivers.

3.2.2 AHP and TOPSIS

The AHP method was used to rank the various factors that
affect BIM adoption. AHP is a MCDM tool that enables decision-
makers to evaluate multiple alternatives against a set of criteria,
where the weight of each criterion varies. It consists of structuring
the decision problem, collecting data, normalizing the weights,
and deriving a final ranking of the decision criteria. BIM drivers
are particularly important for decision-making, so AHP is a
highly convenient tool for assigning relative importance to various
BIM drivers (Saaty, 2001).
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The TOPSIS method was employed to evaluate and prioritize
alternative solutions based on their proximity to an ideal solution.
Intrinsically, this methodology assesses how each alternative
performs compared to an ideal and a worst-case scenario, providing
a comprehensive evaluation of each alternatives effectiveness
(Akram et al, 2019). The application of TOPSIS in BIM
implementation enhances decision-making by determining the best
alternatives based on multiple criteria, and it improves BIM Level 3
adoption strategies (Tan et al., 2021).

An online questionnaire, developed in Google Forms, was
sent to experts through LinkedIn and other professional networks,
and circulated to 11 experts within the AEC sector worldwide. A
total of 11 responses, deemed representative, were collected and
subsequently analyzed for this study.

The data implies that this demographic comprises a diverse pool
of BIM professionals with varying experience levels. The presence
of highly experienced individuals and those with fewer years of
experience suggests a broad spectrum of expertise. A significant
majority (58%) of individuals in this demographic have 11-20
years of experience in BIM. This suggests that a substantial portion
of the group comprises seasoned professionals who have been
working with BIM for a considerable period. Another noteworthy
observation is that a significant segment (25%) of respondents
has more than 21 years of experience in BIM. This group can
be considered highly experienced and potentially includes BIM
pioneers who have been involved in the technology’s early adoption.
Furthermore, the data indicate that most organizations in this
context belong to the private sector, accounting for 55%, while
the government sector is less prominent in this dataset, yet still
significant at 45% (Figure 2).

4 Results and discussion
4.1 Respondents profile

To collect data from BIM stakeholders worldwide, this study
used an online survey that included a wide range of sectors
and professional backgrounds. The survey was conducted on 12
December 2023, and remained open for 2 weeks, resulting in 270
responses, with 259 complete responses included in the analysis.
The demographic data showed that most respondents (61.8%) were
male, reflecting the fact that engineering and construction are
mainly male-dominated fields. This highlights the need for increased
gender diversity in these industries, as shown by the 38.2% female
participants.
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FIGURE 2
Two pie charts. The first chart shows the organizational sector. The

second chart shows years of experience.
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Half of the respondents (52.9%) held managerial positions,
while 35.5% were analysts/associates, and the smallest group
(9.3%) were the C-suite executives. There was an even distribution
of experience levels, with 36.7% of people having between
5 and 10 years of experience, offering ample evidence of
contributions from both mid-career professionals and senior
experts. 20.8% of participants reported adopting BIM between
2010 and 2019, highlighting a period of accelerated uptake
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within the industry. The primary organizational focus included
construction management (21.2%), consultancy (18.5%), and
owners/developers (15.1%), illustrating the diverse application
of BIM practices across sectors. This demographic diversity
ensures a comprehensive representation of perspectives on BIM
implementation.

4.2 Exploratory and confirmatory factor
analyses

The study used EFA, supported by KMO measure of sampling
adequacy and Bartlett’s Test of Sphericity, which was conducted.
A KMO value above 0.9 indicates excellent suitability for factor
analysis, and Bartlett’s significance (p < 0.05) confirms that the
correlation structure is appropriate for extraction (Hair et al., 2019).
EFA was utilized to identify the underlying latent constructs in the
data. Key measures of sample adequacy were met, with a KMO
value exceeding 0.90 and significant results from Bartlett’s Test
of Sphericity (p < 0.05), indicating the dataset was suitable for
factor analysis. EFA extracted nine distinct factors, explaining a
significant portion of the variance, with eigenvalues greater than 1.
Factor loadings exceeded 0.4, and no cross-loadings were present,
confirming the appropriateness of the factor structure (Table 4).
The measured dimensions were (PD = Political Dimension; ECO =
Economic; SCD = Socio-Cultural Dimension; TD = Technological
Dimension; LD = Legal Dimension; ENV = Environmental; IPDA =
Integrated Project Delivery Attributes; SPA = Sustainability Practices
Assessment; BIMIL = BIM Implementation Level).

CFA was conducted to assess the reliability and validity of
the constructs (Figure 3). The measurement model demonstrated a
strong fit to the data (x*/df = 1.816, RMSEA = 0.056, CFI = 0.927, and
TLI = 0.919). Internal consistency was established with Cronbach’s
alpha values exceeding 0.7 for all constructs, while Composite
Reliability (CR) values further validated scale reliability. Convergent
validity was confirmed with Average Variance Extracted (AVE)
values >0.5, and discriminant validity was established as Heterotrait-
Monotrait (HTMT) values were below 0.85. These findings confirm
that the data structure is robust and the measurement scales are both
reliable and valid.

4.3 Integrated AHP and TOPSIS

Building on the CFA results, this study used the AHP and
TOPSIS methods to prioritize and rank the drivers of BIM
implementation.

AHP was used to assign weights to six primary drivers:
socio-cultural, technological, legal, environmental, economic, and
political. The highest weight (17.57%) was given to technological
drivers, emphasizing the need for robust IT infrastructure, software
interoperability, and skill development in BIM implementation. The
second-ranked (16.69%) legal considerations included contractual
clarity, intellectual property protection, and regulatory compliance.
A weighted set of these drivers was used to rank project delivery
systems using the TOPSIS method. IPD was ranked highest and
aligns with BIM’s shared risk framework through its emphasis
on collaboration. Construction Management at Risk (CMAR) was
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TABLE 4 EFA communalities.

10.3389/fbuil.2025.1687407

Initial Extraction PCA Extraction
method

PD1 1 0.73 TD5 0.763
PD2 1 0.834 TD6 0.737
PD3 1 0.854 ENVI1 0.823
PD4 1 0.818 ENV2 0.806
ECO1 1 0.738 ENV3 0.84

ECO2 1 0.806 ENV4 0.801
ECO3 1 0.777 ENV5 0.774
ECO4 1 0.757 LD1 0.81

ECO5 1 0.733 LD2 0.817
ECO6 1 0.773 LD3 0.806
SCD1 1 0.776 LD4 0.75

SCD2 1 0.736 LD5 0.761
SCD3 1 0.728 BIMIL1 0.847
SCD4 1 0.685 BIMIL2 0.801
SCD5 1 0.689 IPDAI1 0.852
SCD6 1 0.794 IPDA2 0.851
SCD7 1 0.738 SPA1 0.745
SCD8 1 0.658 SPA2 0.746
TD1 1 0.823 SPA3 0.704
TD2 1 0.83 SPA4 0.748
TD3 1 0.819 SPA5 0.714
TD4 1 0.709 SPAG 0.771

second, followed by Design-Build (DB) and Design-Bid-Build
(DBB). The resulting hybrid AHP-TOPSIS approach offered a
nuanced prioritization framework that enabled decision-makers
to synthesize strategies with project-specific requirements and
resource availability (Figure 3).

5 Proposed framework
5.1 Framework development

A structured methodology for evaluating and guiding
organizations toward a complete collaboration and integration of

information across the lifecycle of built assets has been represented
by the BIM Level 3 DSS (Figure 4).

Frontiers in Built Environment

5.1.1 Identification of drivers

The proposed BIM Level 3 DSS was developed based on the
holistic identification of key drivers affecting BIM implementation
in the AEC industry. The main structure of this phase involved
an extensive review of previous literature, industry reports,
and case studies to develop a robust framework comprising
seven primary dimensions. The political dimension examines
government policies, regulations, and funding allocation related
to supporting BIM adoption. The economic aspect addresses the
financial aspects of BIM implementation, including a cost-benefit
analysis and return on investment metrics. Organizational culture,
workforce skills, and collaboration with external stakeholders are
all social factors that emphasize the role of these factors in the
effective adoption of new initiatives. These pursuits require BIM
Level 3 maturity, which encompasses software interoperability,
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FIGURE 3
CFA diagram.

Political

robust IT infrastructure, skill development, and technological
considerations.

The third dimension of the view is the environmental dimension,
comprising tools such as green building standards, lifecycle
assessment, and generally environmentally responsible practices, all
of which are duly supported by BIM. The legal aspects are related to
questions regarding the clarity of contractual frameworks, liability
administration, and the protection of intellectual property based
on trust, as well as the effectiveness of risk mitigation in projects.
The dimension of collaborative delivery methods that include IPD
is based on the principles of shared risks and rewards inherent in
BIM. These three dimensions become an overall frame of reference
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fora common understanding and grading of readiness for BIM Level
3 implementation. They address both external and internal factors,
providing the drivers for evaluating the maturity and integration of
BIM practices in an organization. The DSS is a multidimensional
approach that encompasses all the challenges and opportunities
associated with the digitalization of the construction industry.

5.1.2 Measuring drivers using SEM

The relationships and causal linkages among the identified
drivers were quantified using SEM. The SEM method facilitates
understanding the direct and indirect effects of these factors and
the nuances of interdependencies among them, which are crucial for
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DSS conceptual framework.

comprehending their role in BIM implementation. The significant
mediators and moderators of the adoption process were identified
through SEM analysis, and the statistical indices, as indicated
by the RMSEA and CFI methods, ensured the robustness of the
SEM model. Figure 5 illustrates the SEM analysis path diagram.

5.1.3 Assigning weights using AHP

This study used the AHP method to determine the relative
importance of the drivers based on expert opinions and to
present data-driven findings. This step facilitated the systematic
prioritization of drivers based on their importance in achieving
BIM Level 3 maturity. Subsequent ranking and decision-making
processes were informed by the AHP results, complemented by the
TOPSIS, to evaluate the project delivery methods.

5.1.4 Developing the DSS

The measured drivers and their corresponding weights are
integrated into a maturity assessment tool using the DSS. The
maturity spider tool is a key feature of the system, visually
representing an organization’s performance across all dimensions.
This interactive interface enables stakeholders to identify the
strengths and weaknesses of BIM, facilitating appropriate
interventions for enhancing BIM readiness.
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5.1.5 Validation of the DSS

The DSS method was validated based on practical applications
extracted from the case studies of Organizations A and B.
Refinements to the accuracy, usability, and relevance of the system
were confirmed through these case studies.

5.1.6 Validation

Two private organizations’ case studies have been selected to test
and validate the DSS. The selection of case studies in this research
employed a purposive sampling strategy, focusing on BIM projects
that represented diverse scales, complexities, and industry sectors.
The goal is to ensure a comprehensive examination of the developed
DSS across varied contexts, enabling the identification of common
patterns, challenges, and success factors. Table 5 outlines the
selected organization’s profile. Organization A demonstrated strong
sustainability performance, reinforced by effective environmental
policies and commendable leadership. The DSS accurately identified
areas for improvement, including expanded training programs
and the refinement of lifecycle assessment tools. The feedback
on the tools user-friendly interface and its ability to align
sustainability practice with strategic objectives was particularly
lauded. However, Organization B experienced some difficulties
in developing a workforce and achieving interoperability with
existing systems. Actionable recommendations to fill these gaps
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TABLE 5 Case studies organizations profiles.

10.3389/fbuil.2025.1687407

Organizations Size Sector History of BIM  Location Stockholder BIM score

(private) (user)

A Medium (100-150) Construction Since 2018 UAE BIM Manager 47% (Level 2)

B Small (50 -100) Engineering Since 2021 United Kingdom Senior Project Manager 63% (Level 2)
Management

included developing new training modules and integrating cloud-
based interfaces provided by the DSS. The maturity spider tool
also helped the organization visually identify critical areas of
underperformance.

Both organizations found the DSS able to deliver valuable
insights and support decision-making. While these were generally
successful, there were areas for further refinement, such as
increased compatibility with other software formats and expanded
predictive capability to match the modeled results with real-world
performance data.

6 Conclusion and future
recommendations

The research undertaken was prompted by a noticeable gap
in the existing literature, particularly concerning the absence
of dedicated decision support systems capable of effectively
measuring the implementation of BIM Level 3 across various
project delivery systems within the AEC industry. This gap was
identified as a critical void in the current state of BIM research
and practice, hindering the industry’s ability to assess and advance
BIM implementation maturity comprehensively. The lack of a
dedicated DSS tailored to measure BIM Level 3 implementation
across this spectrum substantially impedes organizations from
transitioning seamlessly to advanced BIM practices. Consequently,
the research aimed to develop an integrated DSS designed to
facilitate BIM Level 3 implementation within the AEC industry
effectively.

Traditional DSS models often fail to accommodate the nuanced
requirements associated with different project delivery systems,
hindering organizations’ ability to assess their readiness and
progress in adopting BIM Level 3. This consequently inhibits
effective decision-making and strategic planning, demonstrating the
need for a comprehensive, adaptable, and project-delivery system-
specific tools in the industry capable of assessing and guiding the
implementation roadmap.

The MCDM techniques, particularly the integration of AHP
and TOPSIS, facilitated the systematic evaluation of diverse
factors influencing BIM Level 3 implementation. The synergy
between qualitative and quantitative data sources ensured a
comprehensive exploration of the complex interplay of factors,
contributing to a more robust understanding of the research
goals. Rooted in a systematic methodology, this mixed-methods
approach enabled the triangulation of findings, ensuring a
comprehensive and robust exploration of the research goals.
Empirical findings of SEM and AHP analysis confirmed the
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multifaceted nature of BIM Level 3 implementation, emphasizing
the pivotal roles played by organizational culture, leadership
commitment, technological infrastructure, and collaborativ
e practices.

Moving forward, researchers and practitioners should continue
exploring and refining tools specifically catered to the diverse
landscape of the IPD systems, taking into consideration all the
project phases within the AEC industry. This involves ongoing
collaboration between academia, industry professionals, and
software developers to ensure that DSS are robust, comprehensive,
and adaptable to the evolving nature of construction project
delivery. This focused approach on the intersection of BIM
Level 3 and project delivery systems is vital for fostering a more
holistic and effective implementation of BIM within the AEC
sector.

6.1 Research limitations

Certain limitations of this study are recognized, which provide
valuable context for its findings. The geographic scope of the
case studies used to validate the DSS was restricted. The findings
were not generalized to regions or contexts outside of the study.
Moreover, it also depends on expert opinions to derive weights
and priorities of attributes for users in DSS, which may be biased.
While they tried to diversify the panel of experts, the results
have been interpreted subjectively, colored by the individual’s
experience.

The BIM dynamic technological landscape represents another
limitation. The tools and frameworks developed during the study
may need to be continually updated to stay relevant and reflect the
latest innovations in BIM practice. The evolution of project delivery
systems reinforces the need for periodic refinement of the DSS to
accommodate changes in industry practice.

6.2 Future recommendations

Based on this study, some avenues for further investigation
and development are proposed. Advanced technologies, including
machine learning, offer an excellent opportunity to implement
machine learning algorithms in the DSS, extending its engineering
capabilities. The system can bring predictive analytics to life,
helping it evolve beyond descriptive insights to proactively
identify patterns and predict outcomes, supporting more
robust decision-making processes. Thus, a more dynamic
and adaptive set of tools could be enabled, responding to
the complexities and uncertainties of the AEC industry.
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Moreover, other case studies should be explored in their
geographic scope to generalize the DSS to other regional and
cultural contexts in future research. By expanding the scope,
the system’s adaptability and relevance in different markets and
regulatory environments can be further explored. Furthermore,
the temporal evolution of BIM Level 3 implementation can be
studied through longitudinal studies. It will provide insights into
the sustained impacts of critical drivers and the evolution of BIM
practices over time.

Future iterations of the DSS must be robust, comprehensive,
and aligned with the needs of multiple stakeholders, necessitating
collaboration between academia, industry practitioners, and
policymakers. Fostering such collaboration would be instrumental
to the seamless and standardized adoption of BIM Level 3 across the
AEC sector. Furthermore, exploring the possibilities of applying
BIM Level 4 frameworks based on findings from this study
holds an attractive prospect for the future development of BIM
maturity models.

6.3 Executive summary

This study developed a DSS to help organizations successfully
adopt BIM Level 3. The framework identifies six critical
factors: leadership, culture, technology, collaboration, economic,
and environmental considerations that influence readiness and
implementation. By applying structured decision-making methods,
the DSS provides a practical roadmap for assessing current capabilities
and planning future actions. For industry leaders and project
managers, the findings highlight the importance of investing in digital
infrastructure, fostering collaboration, and embedding sustainability
into BIM practices. This tool can support more informed decisions
and smoother transitions toward advanced BIM maturity.

This study advances the implementation of BIM Level 3 and
highlights the ongoing need for iterative development in both
research and practice. The study’s limitations may be addressed by
implementing the recommended strategies to advance innovative,
adaptable, and internationally relevant solutions for BIM adoption
and implementation within the dynamic AEC industry.
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