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The Architecture, Engineering, and Construction (AEC) sector accounts for 39% 
of greenhouse gas emissions, 40% of solid waste, and 12% of potablewater 
usage globally, underscoring the need for sustainable, efficient practices. 
Building Information Modeling (BIM) offers a digital framework to address 
these challenges through lifecycle management, collaboration, and efficiency 
gains. However, most organizations remain at BIM Level 2 maturity, which 
limits their potential for full integration. This study proposes a comprehensive 
Decision Support System (DSS) to facilitate the adoption of BIM Level 3, 
with an emphasis on collaboration, sustainability, and data interoperability. 
The DSS integrates Structural Equation Modeling (SEM), Analytical Hierarchy 
Process (AHP), and Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) to identify and prioritize key drivers—including political, 
economic, socio-cultural, technological, legal, and environmental factors. The 
framework is validated through case studies, demonstrating its ability to align 
organizational strategies with sustainable practices. Organization (A) highlighted 
several essential components, ensuring a comprehensive assessment of BIM 
level 3 implementation within the organization. On the other hand, organization 
(B) stressed the importance of comparing the predicted environmental 
performance outcomes generated by the DSS with actual performance data 
collected during the building’s occupancy phase to validate the system’s 
predictive capabilities. These findings offer a practical pathway for achieving 
BIM Level 3 maturity, enhancing efficiency, supporting digital transformation, 
and advancing sustainability in the AEC industry.
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 1 Introduction

Technological advancements have occurred across the Architecture, Engineering, 
and Construction (AEC) industry over the last few decades, with Building Information 
Modeling (BIM) emerging as a highly imperative tool to address various challenges faced 
by the industry. BIM is a model-oriented, collaborative digital platform that enables the 
management of the entire lifecycle of construction initiatives, promoting more sustainable
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and efficient practices (Azhar et al., 2012; Sacks, 2020). BIM is an 
integrated framework that encompasses all policies, practices, and 
technologies related to the digital management of building data, 
facilitating smooth communication and interoperability among 
different stakeholders in a project. There is evidence that the 
implementation of BIM reduces the costs and time spans of projects 
while simultaneously increasing the productivity and quality of 
construction activities (Bryde et al., 2013; Suermann and Issa, 2009). 
BIM is the backbone of Construction 5.0 because it facilitates the 
digital transformation of the sector’s activities, making it even more 
efficient and innovative to execute in the construction field.

BIM is a multi-dimensional approach that allows extra 
data dimensions to be linked to a model (Awwad et al., 2022; 
D’Amico et al., 2020a). As more information (e.g., cost and 
schedule) can be added, it provides a fuller understanding 
of the project/asset. According to (D’Amico et al., 2020a; 
D’Amico et al., 2020b; Koutamanis, 2020), the levels are the 
procedures that enable other knowledge areas, such as construction 
project management, scheduling and planning, cost estimation and 
control, construction safety, and sustainability parameters, to be 
embedded in BIM software to provide a single source of information 
for all project stakeholders. These areas are interrelated with the 
levels of BIM maturity in terms of BIM dimensions.

In Level 1, managed CAD drawings (in 2D or 3D) are 
used, and industry standards, like commercial data and cost 
management packages, are implemented (Adekunle et al., 2023; 
Adekunle et al., 2022b; Adekunle et al., 2021; Alankarage et al., 
2023; Alankarage et al., 2022). Level 2 involves basic collaborative 
modeling; however, the 3D environment is maintained in separate, 
discipline-specific tools and is not shared in the cloud environment. 
The 4D in level 2 is a 3D representation of an asset that 
includes the element of time, enabling schedules and critical 
path simulations (Adekunle et al., 2023; Alankarage et al., 2022; 
Almashjary et al., 2020). The 5D within BIM level 2 is a 3D 
representation of an asset with the elements of cost included 
and linked to enable cost estimation, commercial management, 
and earned value tracking to take place (Abubakar et al., 2014; 
Charef et al., 2018; D’Amico A. et al., 2020). Finally, Level 3 
represents an open and interoperable process, including data 
integration enabled by Industry Foundation Classes (IFC). The 
TA collaborative model server manages data and information 
(Giel and Issa, 2013; Succar, 2010; Succar and Kassem, 2015). 
Level 3, sometimes called iBIM, involves sharing information in 
a cloud-based, collaborative environment (Abdalla and Eltayeb, 
2018; Almashjary et al., 2020). At this stage, a new dimension (6D 
BIM) has evolved and been developed to address sustainability 
needs (Charef et al., 2018; Kaewunruen et al., 2020; Montiel-
Santiago et al., 2020).

Many organizations have yet to achieve BIM Level 3 maturity, 
which involves an integrated workflow that spans all stakeholders 
and project phases. The key issues include fragmented construction 
processes, interoperability between systems, and the lack of 
robust evaluation frameworks to measure BIM adoption within 
organizations (Chen et al., 2023; Gbadamosi et al., 2018). Maturity 
models, such as the BIM Scorecard and the NBIMs ICMM, can be 
used for assessing implementation, but they typically rely on project-
centric measures that do not encompass many organizational and 
strategic considerations necessary for complete integration into an 

organization (Dakhil et al., 2015; Smits et al., 2017). The multitude 
of data formats and the lack of standardization further complicate 
the AEC sector’s implementation of an integrated BIM strategy.

The demand for BIM Level 3 introduces additional complexity to 
the system, given stringent organizational objectives, sustainability 
considerations, and the practical information requirements 
of stakeholders. Most of these diverse demands cannot be 
fulfilled well by current BIM frameworks. Hence, most BIM 
applications tend to be disintegrated as they cannot fulfill the 
actual promises of BIM’s implementation in most organizations 
(Olanrewaju et al., 2020; Olanrewaju et al., 2022). Moreover, 
earlier literature suggests that scalable and effective decision-
making tools are required for pre-planning the demand in terms
of BIM.

This study aims to address the existing gaps in the design and 
validation of a holistic Decision Support System (DSS) method 
tailored for BIM Level 3 implementation. This DSS shall integrate 
Structural Equation Modeling (SEM), the Analytical Hierarchy 
Process (AHP), and the Technique for Order Preference by 
Similarity to Ideal Solution (TOPSIS). SEM is a multivariate 
statistical technique that allows for the testing of relationships 
among latent variables (AbuMoeilak et al., 2023; Kock, 2015). AHP 
is a multi-criteria decision-making tool for ranking alternatives 
based on weighted priorities (Chen and Li, 2015; Saaty, 1980). 
TOPSIS is a method that evaluates alternatives against ideal and 
worst-case benchmarks to identify optimal solutions (Lai et al., 
1994; Li et al., 2022). The Analytical Hierarchy Process (AHP) 
and the Technique for Order Preference by Similarity to Ideal 
Solution (TOPSIS) form a solid basis for evaluating and facilitating 
BIM adoption (Dehdasht et al., 2020). More precisely, the DSS would 
identify which key drivers of BIM adoption should be prioritized and 
weighted from both internal and external perspectives, informing 
an organization’s strategy and implementation plan. Among its 
objectives, the study will review current BIM frameworks, identify 
the most critical drivers of BIM Level 3, rank those using 
more rigorous methodologies, and develop a rating tool for 
assessing readiness and maturity in the organizational use of 
BIM. Realistic case studies are then applied to test the DSS, 
demonstrating in practice how effective it would be in conducting 
construction projects where integration and collaboration issues
frequently arise. 

2 Literature review

Available and reported BIM frameworks rarely address these 
multidimensional demands. Therefore, by reducing fragmentation 
in current BIM adoption practices, this research provides a pathway 
to achieve BIM Level 3 maturity through seamless collaboration, 
interoperability, and integration of sustainability. The proposed 
DSS will theoretically fill some gaps in understanding how BIM 
implementation should work by providing practical solutions to 
overcome challenges in the AEC industry. The findings contribute 
to the global body of BIM knowledge, providing valuable insights 
that researchers, practitioners, and policymakers can use to improve 
efficiency, sustainability, and digital transformation in the industry. 
In the context of strategic BIM adoption, the study highlights the 
potential of BIM Level 3 to transform construction practices, reduce 
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environmental impacts, and support the AEC industry’s shift toward 
a more sustainable future. 

2.1 BIM level 3 and integrated project 
delivery (IPD)

Several maturity models can be used to assess BIM adoption 
in the AEC industry, each with distinct levels and measurement 
criteria (Adekunle et al., 2022b; Azhar, 2011; Eastman et al., 2011). 
The most common models include the BIM Capability Maturity 
Model (BIM-CMM), the BIM Execution Planning (BEP) Maturity 
Model, and the Building Information Modeling Maturity Index 
(BIMMI) (Azhar et al., 2012; Pan and Zhang, 2022). Such models 
typically outline stages from BIM adoption to more advanced levels 
of practice. They often lack a comprehensive set of tools to achieve 
the highest maturity level, particularly BIM Level 3. Existing models 
tend to prioritize specific project components over organizational-
wide integration, which is essential at higher levels of maturity 
(Smits et al., 2017). Furthermore, their incapacity to evaluate real-
time collaboration, interoperability, and the integration of multiple 
stakeholders explains a substantial gap in current BIM maturity 
models. Recent research has expanded the scope of BIM maturity 
frameworks to include global and regionally specific contexts. For 
example (Schery et al., 2023), proposed a framework for identifying 
and prioritizing critical success factors for BIM adoption in public 
sector projects, applying fuzzy multi-criteria decision-making 
(MCDM) techniques. This work highlights the growing emphasis on 
structured decision-making methods for evaluating BIM maturity, 
particularly in developing countries. Table 1: summarises the most 
cited maturity models in the literature. BIM Level 3 is considered to 
be the peak of digital integration in the construction industry, and 
at this level, integration consists of interoperability, sustainability 
considerations, and robust collaboration (Arayici et al., 2018; 
Glasgow and Dakhil, 2017; Glema, 2017). In this scenario, all 
project stakeholders, including designers, engineers, contractors, 
and clients, utilize a single web-based platform to exchange 
information in real time. The centralization of data ensures that 
all critical project information is readily available at all times, 
thereby improving coordination and reducing errors (Giel and Issa, 
2013). Furthermore, Level-3 integration incorporates sustainability 
parameters directly into the project lifecycle, such as energy and 
resource conservation (De Schutter et al., 2018). This integrated 
approach leads to more informed decision-making and smoother 
project delivery.

The IPD system is a major driver of BIM Level 3 integration, 
promoting collaboration among all project stakeholders (Bui et al., 
2016; Merschbrock and Munkvold, 2014). The IPD promotes the 
sharing of goals, resources, and risks, leading to a collaborative 
effort to enhance project outcomes. (Khosrowshahi, 2017). This 
approach encourages improved accountability, productivity, and 
transparency by allowing stakeholders with expertise in related 
subjects to contribute to the brainstorming and decision-making 
process, thereby solving problems in real-time (Sacks, 2020). The 
practice of BIM at Level 3 significantly enhances the efficiency of 
the IPD, as everyone on the team is aligned with the project’s goals 
and strategies (Chen and Lu, 2019; Zhang et al., 2022). 

2.2 BIM Implementation Drivers and 
attributes

Government regulations and interventions are key drivers 
of BIM adoption. National regulations—such as mandating BIM 
in public sector projects and establishing BIM standards and 
guidelines—have been crucial in driving its widespread deployment 
(Kim S. et al., 2020; Wang et al., 2021). Countries such as the 
United Kingdom and South Korea have implemented regulatory 
frameworks that promote BIM implementation, demonstrating the 
level of government support required for BIM adoption. Table 2 
describes BIM drivers.

In addition, the role of governance and institutional 
frameworks has become increasingly crucial for advancing BIM 
implementation. Tran and Huynh, 2025 examined government 
involvement in public–private partnership (PPP) infrastructure 
delivery in Vietnam, emphasizing how legal frameworks, 
institutional capacity, and regulatory mechanisms shape the 
successful digitalization of construction practices. These findings 
reinforce the importance of the political and economic dimensions 
considered in this study’s DSS framework and demonstrate how 
policy-driven environments in Asia are accelerating BIM maturity 
at both organizational and national levels.

The implementation of BIM involves considerable upfront 
costs, primarily due to expenses related to software, training, 
and deployment (Capobianco et al., 2021). In contrast, the 
long-term benefits of BIM are usually greater than the cost of 
investment, including cost savings through improved efficiency, 
enhanced project outcomes, and reduced errors (Du et al., 2014; 
Kim S. et al., 2020). The ROI from implementing BIM is a significant 
driver for its uptake, especially in competitive marketplaces where 
financial benefits are regarded as critical determinants (Wang and 
Feng, 2022).

Successful BIM adoption requires a shift in organizational 
culture towards greater innovation and collaboration (Shafiq, 2021). 
Effective implementation of BIM also requires engagement and trust 
among stakeholders because it demands an integrated approach to 
project management (Lu W. et al., 2021). Cultural factors encompass 
the attitudes of individuals toward technology and their willingness 
to adopt new tools, which can significantly impact an organization’s 
adoption of BIM(Liu et al., 2022; Tan et al., 2022).

Studies such as (Schery et al., 2023; Vempati, 2024) illustrate 
how AI-enabled decision-making and digital twins are reshaping 
construction management and sustainability practices. This 
evolution demonstrates the need for DSS that can integrate both 
technological innovation and organizational factors, as proposed in 
the current research.

The successful implementation of BIM is dependent primarily 
on the availability of BIM-compatible software, along with 
a robust IT infrastructure. Organizations should invest in 
powerful computing systems and advanced software to benefit 
fully from BIM(Wang and Feng, 2022). Furthermore, software 
interoperability across various platforms used by diverse 
stakeholders is critical to ensuring the smooth flow of data and 
collaboration throughout the project’s lifetime.

BIM adoption requires legal frameworks that provide clarity 
regarding intellectual property and data security. The ownership 
rights to digital models and the protection of sensitive data must 
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TABLE 1  Summary of the most cited maturity models.

Model Developer Key elements Shortcomes References

BIM Maturity Model 
(BMM) – (iBIM)

Bew-Richards (2008) - BIM process-based model
 3 Levels

- Clear guidelines for United 
Kingdom construction industry

- Apply to some 
organizations or 
industries

(Adekunle et al., 2022b; 
Dakhil et al., 2016; Kim I. et al., 
2020; Peralta 
Lagos, 2019; Succar and 
Kassem, 2015)

BIM Maturity Model 
(BIM3)

Bilal Succar (2010) - BIM field-based model
- Based on 12 (KMAs)

Comprehensive 
evaluation framework

- Does not adequately 
consider potential 
financial 
benefits of BIM.

(S. Adekunle et al., 2022; Chen 
and Li, 2015; 
Ferraz et al., 2020; Succar, 2010)

Capability Maturity 
Model- (CMM)

National Institute of 
Building Sciences 

(NIBS)

- Organizational, cultural, leadership, 
training, and communication 
aspects of BIM.

- High subjectivity, 
limited 
measurement scope

Banawi et al. (2019), Chen and 
Lu (2019), 
McCuen et al. (2012), Sun 
et al. (2022)

Dutch construction 
industry BIM Quick 

Scan

Sebastian and Van 
Berlo (2010)

- Identify areas for improvement in 
BIM processes

- Clear and structured approach for 
innovation through BIM.

- Implementation may 
require a significant 
amount of time 
and resources

(Banawi et al., 2019; Lu W. et al., 
2021; Siebelink et al., 2021; Sun 
et al., 2022)

Information 
Modeling Cloud 
Score (BIMCS)

Du, Liu, and Issa 
(2014)

- Based on a set of BIM stages of the 
construction lifecycle

- Provides a roadmap for 
organizations to improve their BIM 
capabilities

- Implementation may 
require a significant 
amount of time 
and resources

Alankarage et al. (2022), 
Feng et al. (2021), Kassem et al. 
(2020), 
Siebelink et al. (2021), Sun 
et al. (2022)

BIM Proficiency 
Index

The Indiana 
University (IU)- 

(2012)

- Widely accepted BIM capabilities
- Provides a clear and structured 

approach for organizations

- Apply to some 
organizations or 
industries

(Chen et al., 2023; 
Morlhon et al., 2014; Siebelink 
et al., 2018)

be clearly defined to mitigate regulatory risks (Ahmad et al., 2021; 
Arensman and Ozbek, 2012). Legal considerations regarding data 
usage, particularly in collaborative environments, must be addressed 
promptly to facilitate effective BIM implementation and compliance 
with industry standards (Eadie et al., 2015).

The BIM supports sustainable practices by incorporating 
energy-efficient designs and environmental assessments during the 
early stages of the project’s procedure (De Schutter et al., 2018). 
BIM can be applied to better manage the environmental impact of 
buildings by optimizing resource use, reducing waste, and ensuring 
energy-efficient designs (Glasgow and Dakhil, 2017). The advantage 
of BIM is that it enables one to model environmental conditions 
and simulate energy use during building construction, ultimately 
creating more sustainable structures. Table 1 summarizes the most 
cited BIM Implementation Drivers. 

3 Materials and methods

In this study, a mixed-methods research approach is employed, 
combining qualitative (interviews) and quantitative (SEM, AHP, 
and TOPSIS) techniques to answer the research questions and test 
the hypotheses regarding the implementation of BIM Level 3. The 
combination of these methods enables a complete study of BIM 

adoption, which combines both the subjective aspects of experts’ 
opinions and objective statistical information. This study employs 
methodological triangulation, which involves the use of multiple 
theories, methods, observations, and experimental materials to 
mitigate the biases and limitations that might otherwise arise 
from a single approach. Triangulation enhances research outcomes, 
especially in areas such as BIM implementation. Figure 1 provides a 
detailed overview of the research methodology.

3.1 Questionnaire design

The first phase in the survey construction outlined the purpose 
of the research. It established a target population of Subject Matter 
Experts (SMEs) with BIM knowledge across various segments of 
the AEC industry. It was essential to gather precise expert opinions, 
which could only be obtained from SMEs. After this, a pilot phase 
was conducted with the primary goal of testing the initial survey 
questions. This paper employed an expert panel in the pilot phase 
to refine the survey questions, ensuring they elicited the critical 
factors influencing BIM Level 3 (McBride and Sigler, 2019). We 
refined our questions based on expert feedback to improve clarity
and relevance.
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TABLE 2  BIM implantation drivers summary.

Dimension Attributes Definition References

1 Political

Government Regulations and 
Mandates

Refers to regulations and 
requirements set by 
government bodies that 
mandate or encourage the 
adoption of BIM in 
construction projects

Al-Mohammad et al. (2023), 
Almeida et al. (2023), 
Atkinson et al. (2014), 
Jiang et al. (2022), Winfield 
(2020)

Government Funds and 
Budget allocations

The government’s availability 
and allocation of financial 
resources to support BIM 
implementation in the AEC 
industry

Al-Ashmori et al. (2023), 
Almeida et al. (2023), 
Kim S. et al., 2020, Wang and 
Feng (2022)

Trade Policies and 
International Standards

Refers to regulations and rules 
set by governments to govern 
international trade in the 
context of BIM, such as 
established norms and 
guidelines

Charef et al. (2019), Ganah and 
Lea (2021), Simon Elias (2019)

Government Intervention Government intervention 
involves the active role of 
authorities in promoting, 
regulating, or incentivizing the 
adoption of BIM in the AEC 
industry

Atkinson et al. (2014), Withers 
(2012), Yuan and Yang (2020)

2 Economic

Cost of Implementation The total expenses associated 
with adopting and integrating 
BIM into construction 
processes

Babatunde et al. (2019), 
Fazeli et al. (2021), 
Khahro et al. (2021), 
Parsamehr et al. (2023)

Financial Considerations Evaluation of the long-term 
financial benefits and savings 
resulting from the 
implementation of BIM.

Al-Ashmori et al. (2023), 
Farouk et al. (2023), Hill and 
Lee (2012), Inyim et al. (2015), 
Kotler and Alexander Rath 
(1984)

Competitive Advantage The strategic benefit 
organizations gain through the 
effective use of BIM in terms of 
project efficiency, quality, and 
competitiveness

Abdalla et al. (2023), 
Awwad et al. (2022), 
Madanayake et al. (2021), 
Porwal et al. (2023)

Skills and Training Cost The expenses related to 
training personnel to 
effectively use BIM tools and 
methodologies

Hartmann et al. (2008), 
Tang et al. (2019), Al Hattab 
and Hamzeh (2018)

Return on investment (ROI) Measuring the financial gains 
or benefits obtained relative to 
the costs incurred in 
implementing BIM.

Arslan et al. (2020), 
Kim I. et al. (2020)

Global Economic Conditions External economic factors that 
can influence the adoption and 
success of BIM implementation 
on a global scale

Al-Yami and Sanni-Anibire 
(2021), Chen et al. (2018), 
Abbasnejad et al. (2021), 
Eilifsen et al. (2020)

3 Socio-cultural Culture and Values Organizational culture and 
values that may impact the 
acceptance and integration of 
BIM within a company

Adekunle et al., 2022b, 
Al-Ashmori et al., (2022), 
Alankarage et al. (2023), 
Tan et al. (2022)

(Continued on the following page)
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TABLE 2  (Continued) BIM implantation drivers summary.

Dimension Attributes Definition References

Leadership and Change 
Management

The effectiveness of leadership 
and change management 
practices in facilitating the 
transition to a BIM-enabled 
workflow

Abd Jamil and Fathi (2019), 
Ahmed et al. (2017), 
Al-Ashmori et al. (2023), 
Azhar, 2011; Olugboyega 
(2023)

Employee Attitudes and Beliefs The perceptions and 
acceptance levels of employees 
toward BIM, which can affect 
its successful implementation

Al-Ashmori et al. (2023), 
Alankarage et al. (2022), 
Elhendawi et al. (2019), 
Olanrewaju et al. (2022), 
Olugboyega (2023)

Labor Market Conditions The availability and expertise 
of skilled labour in the market 
proficient in BIM 
methodologies

Al-Mohammad et al. (2023), 
Liu et al. (2022), Tan et al. 
(2022)

Human Resources and Skills 
Development

Education, training, 
certification, ongoing 
professional development, 
collaborative learning, 
research, and promotion efforts

Al Hattab and Hamzeh (2018), 
Al-Mohammad et al. (2023), 
Awwad et al. (2022), 
Olugboyega (2023)

Collaborative Practices The extent to which BIM 
encourages and facilitates 
collaborative work practices 
among project stakeholders

Lu Y. et al. (2021), Al Hattab 
and Hamzeh (2018)

Generational Differences Variances in attitudes and 
approaches towards 
technology, including BIM, 
across different age groups 
within the workforce

Celoza et al. (2021), 
Stepanenko et al. (2019), 
Alwash et al. (2017), 
Awwad et al. (2022)

Effective Communication and 
Information Sharing

The ability of organizations to 
communicate and share 
information efficiently through 
BIM processes

De Schutter et al. (2018), 
Du et al. (2014)

4 Technological

Availability of BIM Software The accessibility and variety of 
BIM software solutions in the 
market.

Awwad et al. (2022), Chan et al. 
(2019), Ma et al. (2022)

Interoperability Platforms The compatibility and seamless 
integration of different BIM 
tools and software platforms

Awwad et al. (2022), 
Huang et al. (2023), Kadhim 
(2022), Mutis and Mehraj 
(2022), Tang et al. (2019)

IT Infrastructure The strength and adequacy of 
an organization’s IT 
infrastructure to support BIM 
implementation

Huang et al. (2023), Pan and 
Zhang (2022), Porwal et al. 
(2023)

Data Management and Data 
Standardization

Strategies and systems in place 
for the effective organization, 
storage, and retrieval of 
BIM-related data

Huang et al. (2023), Pan and 
Zhang (2021), Simon Elias 
(2019), Szép and Károlyfi 
(2021)

Machine Learning and AI 
Technologies

Integration of machine 
learning and artificial 
intelligence technologies to 
enhance BIM capabilities

Chauhan et al. (2021), 
Chen et al. (2023), Marchinares 
and Aguilar-Alonso (2020), 
Pan and Zhang (2022), Wang 
and Feng (2022)

(Continued on the following page)
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TABLE 2  (Continued) BIM implantation drivers summary.

Dimension Attributes Definition References

5 Legal

Intellectual Property Legal considerations regarding 
ownership and protection of 
intellectual property related to 
BIM models and data

Celoza et al. (2021), 
Stepanenko et al. (2019)

Liability and Risk Allocation Determination of 
responsibilities and risks 
associated with BIM 
implementation among project 
stakeholders

Alwash et al. (2017), Dao et al. 
(2020)

Contractual obligations Legal agreements outlining 
BIM-related responsibilities 
and requirements between 
parties involved in a 
construction project

Ahmad et al. (2021), 
Alwash et al. (2017), 
Arensman and Ozbek (2012), 
Arshad et al. (2019)

Dispute Resolution 
Mechanisms

Procedures in place to resolve 
disputes that may arise during 
the course of BIM-enabled 
projects

Alwash et al. (2017), 
Arensman and Ozbek (2012), 
Arshad et al. (2019), Ma et al. 
(2020)

Information Exchange 
Protocols

Agreed-upon standards and 
protocols for exchanging 
BIM-related information 
among project participants

Sansa et al. (2021), Hill and 
Lee (2012), Inyim et al. (2015), 
Kotler and Alexander Rath 
(1984)

6 Environmental

Sustainability and Green 
Building Initiatives

Integration of BIM in projects 
focused on sustainable and 
environmentally friendly 
construction practices

Glasgow and Dakhil (2017), 
Inyim et al. (2015), 
Siebelink et al. (2021)

Environmental Awareness Consideration of 
environmental impact and 
sustainability goals in 
BIM-enabled projects

Liu et al. (2022), Wang and 
Feng (2022)

Sustainability Policies Organizational policies and 
guidelines related to 
sustainable construction 
practices

Ahmad et al. (2021), 
Al-Ashmori et al. (2023)

Sustainability Tools BIM tools and features 
designed to support and assess 
the sustainability aspects of 
construction projects

De Schutter et al. (2018), 
Du et al. (2014)

Local Environmental 
Regulations

Adherence to and compliance 
with local regulations 
pertaining to environmental 
standards in construction 
projects

Abd Jamil and Fathi (2019), 
Ahmed et al. (2017), 
Sansa et al. (2021)

In the second phase of the survey design, we conducted semi-
structured interviews with SMEs to validate the factors identified 
in the reported literature and to explore new BIM adoption 
drivers that had not been previously covered. Table 3 presents 
the profile of the expert panel engaged in the semi-structured 
interviews, comprising four professionals with diverse expertise in 
digital transformation, BIM modeling, project management, and 
technical specification. Their varied job roles, years of experience 
(6–15), and geographic representation (United Kingdom, UAE, 

KSA) ensured balanced and credible input for validating the survey. 
The data collection included flexible, semi-structured interviews, 
which enabled the researchers to explore new and emerging 
factors, as well as refine existing ones based on expert insights. 
Following the identification of a research gap in the literature, 
semi-structured interviews were conducted with SMEs to gather 
qualitative data, validate the research findings, and gain an in-
depth understanding of the factors influencing the adoption of BIM
Level 3.
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FIGURE 1
Research methodology.

A set of interviews was conducted to explore the current status 
of BIM implementation at Level 3 and the barriers that influence 
its successful adoption at this level. Kuada (Kuada, 2012) argued 

that interviews can be used to gather valuable insights into the 
subjective experiences of participants, which are often essential 
for understanding the complex problems associated with BIM 
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TABLE 3  Interviewees profiles.

No Interviewee Expert 1 Expert 2 Expert 3 Expert 4

1 BIM Specialization Academia – Digital Transformation BIM Modelling Project Management Technical Specification

2 Job Designation PhD/BIM Coordinator Senior BIM Architect Project Manager Senior Engineer

3 Years of Experience 6 9 15 7

4 Country United Kingdom UAE UAE KSA

implementation. The data collected from these interviews were then 
used to corroborate questions about the survey and to provide a 
comprehensive understanding of the drivers and the limitations of 
BIM adoption. 

3.2 Data collection and analysis

3.2.1 Structural Equation Modeling (SEM) – EFA 
and CFA

A statistical technique known as SEM was used to analyze the 
relationship between drivers of BIM Level 3 implementation. SEM 
is suitable for studying complex topics, such as BIM implementation, 
because it enables the analysis of both latent and measured 
variables and supports the modeling of various BIM drivers. Before 
applying SEM, the study employed Exploratory Factor Analysis 
(EFA) to identify the latent constructs underlying the collected 
survey data. EFA is a widely accepted technique for reducing 
dimensionality and exploring factor structures in the early stages 
of model building (Hair et al., 2019; Mei et al., 2022). The dataset’s 
suitability for factor analysis was confirmed using the Kaiser-
Meyer-Olkin (KMO) measure and Bartlett’s Test of Sphericity. The 
KMO value exceeded 0.90, indicating excellent sampling adequacy, 
while Bartlett’s test was significant (p < 0.05), confirming that the 
correlation matrix was appropriate for factor extraction (Cohen, 
2013; Garson, 2012; Majumdar and Schehr, 2014). Following the 
EFA, the model structure was validated through Confirmatory 
Factor Analysis (CFA), and the reliability of the identified factors 
was assessed consistent with the literature. Then, SEM was used to 
explore the relationship between these factors and their influence 
on users’ perceptions, which became an exogenous dimension of 
the model (Kim and Jung, 2016). SEM enabled us to evaluate several 
hypothesized relationships simultaneously, grasp the intricacies of 
BIM Level 3 implementation, and empirically identify the most 
influential drivers. 

3.2.2 AHP and TOPSIS
The AHP method was used to rank the various factors that 

affect BIM adoption. AHP is a MCDM tool that enables decision-
makers to evaluate multiple alternatives against a set of criteria, 
where the weight of each criterion varies. It consists of structuring 
the decision problem, collecting data, normalizing the weights, 
and deriving a final ranking of the decision criteria. BIM drivers 
are particularly important for decision-making, so AHP is a 
highly convenient tool for assigning relative importance to various 
BIM drivers (Saaty, 2001).

The TOPSIS method was employed to evaluate and prioritize 
alternative solutions based on their proximity to an ideal solution. 
Intrinsically, this methodology assesses how each alternative 
performs compared to an ideal and a worst-case scenario, providing 
a comprehensive evaluation of each alternative’s effectiveness 
(Akram et al., 2019). The application of TOPSIS in BIM 
implementation enhances decision-making by determining the best 
alternatives based on multiple criteria, and it improves BIM Level 3 
adoption strategies (Tan et al., 2021).

An online questionnaire, developed in Google Forms, was 
sent to experts through LinkedIn and other professional networks, 
and circulated to 11 experts within the AEC sector worldwide. A 
total of 11 responses, deemed representative, were collected and 
subsequently analyzed for this study.

The data implies that this demographic comprises a diverse pool 
of BIM professionals with varying experience levels. The presence 
of highly experienced individuals and those with fewer years of 
experience suggests a broad spectrum of expertise. A significant 
majority (58%) of individuals in this demographic have 11–20 
years of experience in BIM. This suggests that a substantial portion 
of the group comprises seasoned professionals who have been 
working with BIM for a considerable period. Another noteworthy 
observation is that a significant segment (25%) of respondents 
has more than 21 years of experience in BIM. This group can 
be considered highly experienced and potentially includes BIM 
pioneers who have been involved in the technology’s early adoption. 
Furthermore, the data indicate that most organizations in this 
context belong to the private sector, accounting for 55%, while 
the government sector is less prominent in this dataset, yet still 
significant at 45% (Figure 2).

4 Results and discussion

4.1 Respondents profile

To collect data from BIM stakeholders worldwide, this study 
used an online survey that included a wide range of sectors 
and professional backgrounds. The survey was conducted on 12 
December 2023, and remained open for 2 weeks, resulting in 270 
responses, with 259 complete responses included in the analysis. 
The demographic data showed that most respondents (61.8%) were 
male, reflecting the fact that engineering and construction are 
mainly male-dominated fields. This highlights the need for increased 
gender diversity in these industries, as shown by the 38.2% female 
participants.
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FIGURE 2
Two pie charts. The first chart shows the organizational sector. The 
second chart shows years of experience.

Half of the respondents (52.9%) held managerial positions, 
while 35.5% were analysts/associates, and the smallest group 
(9.3%) were the C-suite executives. There was an even distribution 
of experience levels, with 36.7% of people having between 
5 and 10 years of experience, offering ample evidence of 
contributions from both mid-career professionals and senior 
experts. 20.8% of participants reported adopting BIM between 
2010 and 2019, highlighting a period of accelerated uptake 

within the industry. The primary organizational focus included 
construction management (21.2%), consultancy (18.5%), and 
owners/developers (15.1%), illustrating the diverse application 
of BIM practices across sectors. This demographic diversity 
ensures a comprehensive representation of perspectives on BIM
implementation. 

4.2 Exploratory and confirmatory factor 
analyses

The study used EFA, supported by KMO measure of sampling 
adequacy and Bartlett’s Test of Sphericity, which was conducted. 
A KMO value above 0.9 indicates excellent suitability for factor 
analysis, and Bartlett’s significance (p < 0.05) confirms that the 
correlation structure is appropriate for extraction (Hair et al., 2019). 
EFA was utilized to identify the underlying latent constructs in the 
data. Key measures of sample adequacy were met, with a KMO 
value exceeding 0.90 and significant results from Bartlett’s Test 
of Sphericity (p < 0.05), indicating the dataset was suitable for 
factor analysis. EFA extracted nine distinct factors, explaining a 
significant portion of the variance, with eigenvalues greater than 1. 
Factor loadings exceeded 0.4, and no cross-loadings were present, 
confirming the appropriateness of the factor structure (Table 4). 
The measured dimensions were (PD = Political Dimension; ECO = 
Economic; SCD = Socio-Cultural Dimension; TD = Technological 
Dimension; LD = Legal Dimension; ENV = Environmental; IPDA = 
Integrated Project Delivery Attributes; SPA = Sustainability Practices 
Assessment; BIMIL = BIM Implementation Level).

CFA was conducted to assess the reliability and validity of 
the constructs (Figure 3). The measurement model demonstrated a 
strong fit to the data (χ2/df = 1.816, RMSEA = 0.056, CFI = 0.927, and 
TLI = 0.919). Internal consistency was established with Cronbach’s 
alpha values exceeding 0.7 for all constructs, while Composite 
Reliability (CR) values further validated scale reliability. Convergent 
validity was confirmed with Average Variance Extracted (AVE) 
values >0.5, and discriminant validity was established as Heterotrait-
Monotrait (HTMT) values were below 0.85. These findings confirm 
that the data structure is robust and the measurement scales are both 
reliable and valid.

4.3 Integrated AHP and TOPSIS

Building on the CFA results, this study used the AHP and 
TOPSIS methods to prioritize and rank the drivers of BIM 
implementation.

AHP was used to assign weights to six primary drivers: 
socio-cultural, technological, legal, environmental, economic, and 
political. The highest weight (17.57%) was given to technological 
drivers, emphasizing the need for robust IT infrastructure, software 
interoperability, and skill development in BIM implementation. The 
second-ranked (16.69%) legal considerations included contractual 
clarity, intellectual property protection, and regulatory compliance. 
A weighted set of these drivers was used to rank project delivery 
systems using the TOPSIS method. IPD was ranked highest and 
aligns with BIM’s shared risk framework through its emphasis 
on collaboration. Construction Management at Risk (CMAR) was 
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TABLE 4  EFA communalities.

Code Initial Extraction PCA 
method

Code Initial Extraction

PD1 1 0.73 TD5 1 0.763

PD2 1 0.834 TD6 1 0.737

PD3 1 0.854 ENV1 1 0.823

PD4 1 0.818 ENV2 1 0.806

ECO1 1 0.738 ENV3 1 0.84

ECO2 1 0.806 ENV4 1 0.801

ECO3 1 0.777 ENV5 1 0.774

ECO4 1 0.757 LD1 1 0.81

ECO5 1 0.733 LD2 1 0.817

ECO6 1 0.773 LD3 1 0.806

SCD1 1 0.776 LD4 1 0.75

SCD2 1 0.736 LD5 1 0.761

SCD3 1 0.728 BIMIL1 1 0.847

SCD4 1 0.685 BIMIL2 1 0.801

SCD5 1 0.689 IPDA1 1 0.852

SCD6 1 0.794 IPDA2 1 0.851

SCD7 1 0.738 SPA1 1 0.745

SCD8 1 0.658 SPA2 1 0.746

TD1 1 0.823 SPA3 1 0.704

TD2 1 0.83 SPA4 1 0.748

TD3 1 0.819 SPA5 1 0.714

TD4 1 0.709 SPA6 1 0.771

second, followed by Design-Build (DB) and Design-Bid-Build 
(DBB). The resulting hybrid AHP-TOPSIS approach offered a 
nuanced prioritization framework that enabled decision-makers 
to synthesize strategies with project-specific requirements and 
resource availability (Figure 3). 

5 Proposed framework

5.1 Framework development

A structured methodology for evaluating and guiding 
organizations toward a complete collaboration and integration of 
information across the lifecycle of built assets has been represented 
by the BIM Level 3 DSS (Figure 4).

5.1.1 Identification of drivers
The proposed BIM Level 3 DSS was developed based on the 

holistic identification of key drivers affecting BIM implementation 
in the AEC industry. The main structure of this phase involved 
an extensive review of previous literature, industry reports, 
and case studies to develop a robust framework comprising 
seven primary dimensions. The political dimension examines 
government policies, regulations, and funding allocation related 
to supporting BIM adoption. The economic aspect addresses the 
financial aspects of BIM implementation, including a cost-benefit 
analysis and return on investment metrics. Organizational culture, 
workforce skills, and collaboration with external stakeholders are 
all social factors that emphasize the role of these factors in the 
effective adoption of new initiatives. These pursuits require BIM 
Level 3 maturity, which encompasses software interoperability, 
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FIGURE 3
CFA diagram.

robust IT infrastructure, skill development, and technological
considerations.

The third dimension of the view is the environmental dimension, 
comprising tools such as green building standards, lifecycle 
assessment, and generally environmentally responsible practices, all 
of which are duly supported by BIM. The legal aspects are related to 
questions regarding the clarity of contractual frameworks, liability 
administration, and the protection of intellectual property based 
on trust, as well as the effectiveness of risk mitigation in projects. 
The dimension of collaborative delivery methods that include IPD 
is based on the principles of shared risks and rewards inherent in 
BIM. These three dimensions become an overall frame of reference 

for a common understanding and grading of readiness for BIM Level 
3 implementation. They address both external and internal factors, 
providing the drivers for evaluating the maturity and integration of 
BIM practices in an organization. The DSS is a multidimensional 
approach that encompasses all the challenges and opportunities 
associated with the digitalization of the construction industry. 

5.1.2 Measuring drivers using SEM
The relationships and causal linkages among the identified 

drivers were quantified using SEM. The SEM method facilitates 
understanding the direct and indirect effects of these factors and 
the nuances of interdependencies among them, which are crucial for 
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FIGURE 4
DSS conceptual framework.

comprehending their role in BIM implementation. The significant 
mediators and moderators of the adoption process were identified 
through SEM analysis, and the statistical indices, as indicated 
by the RMSEA and CFI methods, ensured the robustness of the 
SEM model. Figure 5 illustrates the SEM analysis path diagram.

5.1.3 Assigning weights using AHP
This study used the AHP method to determine the relative 

importance of the drivers based on expert opinions and to 
present data-driven findings. This step facilitated the systematic 
prioritization of drivers based on their importance in achieving 
BIM Level 3 maturity. Subsequent ranking and decision-making 
processes were informed by the AHP results, complemented by the 
TOPSIS, to evaluate the project delivery methods. 

5.1.4 Developing the DSS
The measured drivers and their corresponding weights are 

integrated into a maturity assessment tool using the DSS. The 
maturity spider tool is a key feature of the system, visually 
representing an organization’s performance across all dimensions. 
This interactive interface enables stakeholders to identify the 
strengths and weaknesses of BIM, facilitating appropriate 
interventions for enhancing BIM readiness. 

5.1.5 Validation of the DSS
The DSS method was validated based on practical applications 

extracted from the case studies of Organizations A and B. 
Refinements to the accuracy, usability, and relevance of the system 
were confirmed through these case studies. 

5.1.6 Validation
Two private organizations’ case studies have been selected to test 

and validate the DSS. The selection of case studies in this research 
employed a purposive sampling strategy, focusing on BIM projects 
that represented diverse scales, complexities, and industry sectors. 
The goal is to ensure a comprehensive examination of the developed 
DSS across varied contexts, enabling the identification of common 
patterns, challenges, and success factors. Table 5 outlines the 
selected organization’s profile. Organization A demonstrated strong 
sustainability performance, reinforced by effective environmental 
policies and commendable leadership. The DSS accurately identified 
areas for improvement, including expanded training programs 
and the refinement of lifecycle assessment tools. The feedback 
on the tool’s user-friendly interface and its ability to align 
sustainability practice with strategic objectives was particularly 
lauded. However, Organization B experienced some difficulties 
in developing a workforce and achieving interoperability with 
existing systems. Actionable recommendations to fill these gaps 
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FIGURE 5
SEM path diagram.
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TABLE 5  Case studies organizations profiles.

Organizations 
(private)

Size Sector History of BIM Location Stockholder 
(user)

BIM score

A Medium (100-150) Construction Since 2018 UAE BIM Manager 47% (Level 2)

B Small (50 -100) Engineering 
Management

Since 2021 United Kingdom Senior Project Manager 63% (Level 2)

included developing new training modules and integrating cloud-
based interfaces provided by the DSS. The maturity spider tool 
also helped the organization visually identify critical areas of
underperformance.

Both organizations found the DSS able to deliver valuable 
insights and support decision-making. While these were generally 
successful, there were areas for further refinement, such as 
increased compatibility with other software formats and expanded 
predictive capability to match the modeled results with real-world 
performance data. 

6 Conclusion and future 
recommendations

The research undertaken was prompted by a noticeable gap 
in the existing literature, particularly concerning the absence 
of dedicated decision support systems capable of effectively 
measuring the implementation of BIM Level 3 across various 
project delivery systems within the AEC industry. This gap was 
identified as a critical void in the current state of BIM research 
and practice, hindering the industry’s ability to assess and advance 
BIM implementation maturity comprehensively. The lack of a 
dedicated DSS tailored to measure BIM Level 3 implementation 
across this spectrum substantially impedes organizations from 
transitioning seamlessly to advanced BIM practices. Consequently, 
the research aimed to develop an integrated DSS designed to 
facilitate BIM Level 3 implementation within the AEC industry 
effectively.

Traditional DSS models often fail to accommodate the nuanced 
requirements associated with different project delivery systems, 
hindering organizations’ ability to assess their readiness and 
progress in adopting BIM Level 3. This consequently inhibits 
effective decision-making and strategic planning, demonstrating the 
need for a comprehensive, adaptable, and project-delivery system-
specific tools in the industry capable of assessing and guiding the 
implementation roadmap.

The MCDM techniques, particularly the integration of AHP 
and TOPSIS, facilitated the systematic evaluation of diverse 
factors influencing BIM Level 3 implementation. The synergy 
between qualitative and quantitative data sources ensured a 
comprehensive exploration of the complex interplay of factors, 
contributing to a more robust understanding of the research 
goals. Rooted in a systematic methodology, this mixed-methods 
approach enabled the triangulation of findings, ensuring a 
comprehensive and robust exploration of the research goals. 
Empirical findings of SEM and AHP analysis confirmed the 

multifaceted nature of BIM Level 3 implementation, emphasizing 
the pivotal roles played by organizational culture, leadership 
commitment, technological infrastructure, and collaborativ
e practices.

Moving forward, researchers and practitioners should continue 
exploring and refining tools specifically catered to the diverse 
landscape of the IPD systems, taking into consideration all the 
project phases within the AEC industry. This involves ongoing 
collaboration between academia, industry professionals, and 
software developers to ensure that DSS are robust, comprehensive, 
and adaptable to the evolving nature of construction project 
delivery. This focused approach on the intersection of BIM 
Level 3 and project delivery systems is vital for fostering a more 
holistic and effective implementation of BIM within the AEC
sector. 

6.1 Research limitations

Certain limitations of this study are recognized, which provide 
valuable context for its findings. The geographic scope of the 
case studies used to validate the DSS was restricted. The findings 
were not generalized to regions or contexts outside of the study. 
Moreover, it also depends on expert opinions to derive weights 
and priorities of attributes for users in DSS, which may be biased. 
While they tried to diversify the panel of experts, the results 
have been interpreted subjectively, colored by the individual’s
experience.

The BIM dynamic technological landscape represents another 
limitation. The tools and frameworks developed during the study 
may need to be continually updated to stay relevant and reflect the 
latest innovations in BIM practice. The evolution of project delivery 
systems reinforces the need for periodic refinement of the DSS to 
accommodate changes in industry practice. 

6.2 Future recommendations

Based on this study, some avenues for further investigation 
and development are proposed. Advanced technologies, including 
machine learning, offer an excellent opportunity to implement 
machine learning algorithms in the DSS, extending its engineering 
capabilities. The system can bring predictive analytics to life, 
helping it evolve beyond descriptive insights to proactively 
identify patterns and predict outcomes, supporting more 
robust decision-making processes. Thus, a more dynamic 
and adaptive set of tools could be enabled, responding to 
the complexities and uncertainties of the AEC industry.
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Moreover, other case studies should be explored in their 
geographic scope to generalize the DSS to other regional and 
cultural contexts in future research. By expanding the scope, 
the system’s adaptability and relevance in different markets and 
regulatory environments can be further explored. Furthermore, 
the temporal evolution of BIM Level 3 implementation can be 
studied through longitudinal studies. It will provide insights into 
the sustained impacts of critical drivers and the evolution of BIM 
practices over time.

Future iterations of the DSS must be robust, comprehensive, 
and aligned with the needs of multiple stakeholders, necessitating 
collaboration between academia, industry practitioners, and 
policymakers. Fostering such collaboration would be instrumental 
to the seamless and standardized adoption of BIM Level 3 across the 
AEC sector. Furthermore, exploring the possibilities of applying 
BIM Level 4 frameworks based on findings from this study 
holds an attractive prospect for the future development of BIM 
maturity models. 

6.3 Executive summary

This study developed a DSS to help organizations successfully 
adopt BIM Level 3. The framework identifies six critical 
factors: leadership, culture, technology, collaboration, economic, 
and environmental considerations that influence readiness and 
implementation. By applying structured decision-making methods, 
the DSS provides a practical roadmap for assessing current capabilities 
and planning future actions. For industry leaders and project 
managers, the findings highlight the importance of investing in digital 
infrastructure, fostering collaboration, and embedding sustainability 
into BIM practices. This tool can support more informed decisions 
and smoother transitions toward advanced BIM maturity. 

This study advances the implementation of BIM Level 3 and 
highlights the ongoing need for iterative development in both 
research and practice. The study’s limitations may be addressed by 
implementing the recommended strategies to advance innovative, 
adaptable, and internationally relevant solutions for BIM adoption 
and implementation within the dynamic AEC industry.
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